Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Sparse Canonical Correlation Analysis (SCCA): A Comparative Study

dc.contributor.advisorBeyene, Josephen_US
dc.contributor.advisorNarayanaswamy Balakrishnan and Aaron Childsen_US
dc.contributor.authorPichika, Sathish chandraen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.date.accessioned2014-06-18T16:56:49Z
dc.date.available2014-06-18T16:56:49Z
dc.date.created2011-12-24en_US
dc.date.issued2012-04en_US
dc.description.abstract<p>Canonical Correlation Analysis (CCA) is one of the multivariate statistical methods that can be used to find relationship between two sets of variables. I highlighted challenges in analyzing high-dimensional data with CCA. Recently, Sparse CCA (SCCA) methods have been proposed to identify sparse linear combinations of two sets of variables with maximal correlation in the context of high-dimensional data. In my thesis, I compared three different SCCA approaches. I evaluated the three approaches as well as the classical CCA on simulated datasets and illustrated the methods with publicly available genomic and proteomic datasets.</p>en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.identifier.otheropendissertations/6721en_US
dc.identifier.other7714en_US
dc.identifier.other2424107en_US
dc.identifier.urihttp://hdl.handle.net/11375/11779
dc.subjectCCAen_US
dc.subjectSCCAen_US
dc.subjectHigh-Dimensionalen_US
dc.subjectMultivariate Analysisen_US
dc.subjectMultivariate Analysisen_US
dc.titleSparse Canonical Correlation Analysis (SCCA): A Comparative Studyen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
448.26 KB
Format:
Adobe Portable Document Format