Sparse Canonical Correlation Analysis (SCCA): A Comparative Study
Loading...
Files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
<p>Canonical Correlation Analysis (CCA) is one of the multivariate statistical methods that can be used to find relationship between two sets of variables. I highlighted challenges in analyzing high-dimensional data with CCA. Recently, Sparse CCA (SCCA) methods have been proposed to identify sparse linear combinations of two sets of variables with maximal correlation in the context of high-dimensional data. In my thesis, I compared three different SCCA approaches. I evaluated the three approaches as well as the classical CCA on simulated datasets and illustrated the methods with publicly available genomic and proteomic datasets.</p>