Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

The Ionoregulatory Physiology of Freshwater-Adapted Mummichog (Fundulus Heteroclitus)

dc.contributor.advisorWood, C. M.
dc.contributor.authorPatrick, Marjorie
dc.contributor.departmentBiologyen_US
dc.date.accessioned2018-05-30T20:30:11Z
dc.date.available2018-05-30T20:30:11Z
dc.date.issued1994-09
dc.description.abstractThis thesis examined the ionoregulatory physiology of freshwater-adapted mummichog (𝘍𝘶𝘯𝘥𝘶𝘭𝘶𝘴 𝘩𝘦𝘵𝘦𝘳𝘰𝘤𝘭𝘪𝘵𝘶𝘴) 𝘪𝘯 𝘷𝘪𝘷𝘰 and its interaction with acid-base regulation. Under control conditions (water [NaCl] ≈ 0.7-1 .0 mmol· L⁻¹, [Ca²⁺] ≈ 0.1 or 1.0 mmol· L⁻¹), Na⁺ turnover was vigorous with a positive Na⁺ balance maintained, whereas unidirectional Cl⁻ influx was virtually zero resulting in a slight negative Cl⁻ balance. Michaelis-Menten analysis revealed a low affinity, high capacity Na⁺ uptake mechanism that was independent of both Na⁺ efflux and ammonia excretion. Cl⁻ uptake started at higher water [NaCl] levels ( > 2 mmol • L⁻¹) but did not saturate within the freshwater [NaCl] range, indicating a completely different uptake mechanism, independent from Na⁺ influx. Using both internal and environmental manipulation, Na⁺ uptake was found not to be coupled to ammonia excretion. Instead, a link with acid excretion (Na⁺ /H⁺ exchange or Na⁺ channel/H⁺ -ATPase coupling) remains possible but could not be confirmed. There was no evidence for the presence of a Cl⁻/HC0₃⁻exchange mechanism in the gills. However, mummichog were capable of differentially manipulating Na⁺ and Cl⁻ efflux components as an additional response to an internal acid-base disturbance. This ability and the suggested Na⁺ uptake/acid excretion coupling indicate that mummichog resemble other freshwater fish in that an iono/acid-base relationship exists. In these studies, the use of the Strong lon Difference Theory as a means of assessing acid-base balance through the measurement of differential Na⁺ and Cl⁻ fluxes proved to be acceptable and practical alternative to the measurement of acid-base fluxes by traditional titration methodology. Finally, whole-body Ca²⁺ uptake was investigated using a recently developed technique for small fish. Ca²⁺ uptake by the mummichog involves a carrier-mediated step as revealed by saturation of uptake as external [Ca²⁺] increased. Inhibition of uptake by external La³⁺ but not Mg²⁺ suggested that apical Ca²⁺ channels are involved in the uptake process but are not voltage-gated. Chronic exposure to low Ca²⁺ water resulted in a stimulated Ca²⁺ uptake, most likely in response to depletion of internal Ca²⁺ levels whereas chronic exposure to high Ca²⁺ did not elicit any changes in uptake. This thesis revealed that the freshwater-adapted mummichog does share certain ionoregulatory qualities with other freshwater fish but at the same time possesses unique characteristics which may reflect its euryhaline natureen_US
dc.description.degreeMaster of Science (MS)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/22992
dc.language.isoenen_US
dc.subjectionoregulationen_US
dc.subjectfreshwateren_US
dc.subjectmummichogen_US
dc.subjectfundulusen_US
dc.titleThe Ionoregulatory Physiology of Freshwater-Adapted Mummichog (Fundulus Heteroclitus)en_US
dc.title.alternativeIonoregulation of Freshwater-Adapted Fundulus Heteroclitusen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
patrick_marjorie_l_1994Sept_masters.pdf
Size:
8.14 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: