Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

The Ionoregulatory Physiology of Freshwater-Adapted Mummichog (Fundulus Heteroclitus)

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis examined the ionoregulatory physiology of freshwater-adapted mummichog (𝘍𝘶𝘯𝘥𝘶𝘭𝘶𝘴 𝘩𝘦𝘵𝘦𝘳𝘰𝘤𝘭𝘪𝘵𝘶𝘴) 𝘪𝘯 𝘷𝘪𝘷𝘰 and its interaction with acid-base regulation. Under control conditions (water [NaCl] ≈ 0.7-1 .0 mmol· L⁻¹, [Ca²⁺] ≈ 0.1 or 1.0 mmol· L⁻¹), Na⁺ turnover was vigorous with a positive Na⁺ balance maintained, whereas unidirectional Cl⁻ influx was virtually zero resulting in a slight negative Cl⁻ balance. Michaelis-Menten analysis revealed a low affinity, high capacity Na⁺ uptake mechanism that was independent of both Na⁺ efflux and ammonia excretion. Cl⁻ uptake started at higher water [NaCl] levels ( > 2 mmol • L⁻¹) but did not saturate within the freshwater [NaCl] range, indicating a completely different uptake mechanism, independent from Na⁺ influx. Using both internal and environmental manipulation, Na⁺ uptake was found not to be coupled to ammonia excretion. Instead, a link with acid excretion (Na⁺ /H⁺ exchange or Na⁺ channel/H⁺ -ATPase coupling) remains possible but could not be confirmed. There was no evidence for the presence of a Cl⁻/HC0₃⁻exchange mechanism in the gills. However, mummichog were capable of differentially manipulating Na⁺ and Cl⁻ efflux components as an additional response to an internal acid-base disturbance. This ability and the suggested Na⁺ uptake/acid excretion coupling indicate that mummichog resemble other freshwater fish in that an iono/acid-base relationship exists. In these studies, the use of the Strong lon Difference Theory as a means of assessing acid-base balance through the measurement of differential Na⁺ and Cl⁻ fluxes proved to be acceptable and practical alternative to the measurement of acid-base fluxes by traditional titration methodology. Finally, whole-body Ca²⁺ uptake was investigated using a recently developed technique for small fish. Ca²⁺ uptake by the mummichog involves a carrier-mediated step as revealed by saturation of uptake as external [Ca²⁺] increased. Inhibition of uptake by external La³⁺ but not Mg²⁺ suggested that apical Ca²⁺ channels are involved in the uptake process but are not voltage-gated. Chronic exposure to low Ca²⁺ water resulted in a stimulated Ca²⁺ uptake, most likely in response to depletion of internal Ca²⁺ levels whereas chronic exposure to high Ca²⁺ did not elicit any changes in uptake. This thesis revealed that the freshwater-adapted mummichog does share certain ionoregulatory qualities with other freshwater fish but at the same time possesses unique characteristics which may reflect its euryhaline nature

Description

Citation

Endorsement

Review

Supplemented By

Referenced By