Fabrication of succinate-alginate xerogel films for in vitro coupling of osteogenesis and neovascularization
Loading...
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Biomaterials Advances Journal
Abstract
The osseointegration of metallic implants is reliant on a cascade of molecular interactions and the delivery of macromolecules to the implant environment that occurs before substantial bone formation. Early blood vessel formation is a requisite first step in the healing timeline for osteoid formation, where vascular development can be accelerated as a result of controlled hypoxic conditioning. In this study, alginate-derived xerogel films containing varied concentrations of disodium succinate salt which has been shown to induce pseudohypoxia (short-term hypoxic effects while maintaining an oxygenated environment) were developed. Xerogels were characterized for their morphology, succinate release over time and cellular response with osteoblast-mimicking Saos-2 and human umbilical vein endothelial cells (HUVEC). Scanning electron microscopy revealed a multiscale topography that may favour osseointegration and alamarBlue assays indicated no cytotoxic effects during in vitro proliferation of Saos-2 cells. pH measurements of eluted succinate reach 95% of peak value after 7 hr of immersion for all gels containing 10 mM of succinate or less, and 60% within the first 40 min. In vitro exposure of HUVECs to succinate-conditioned media increased the net concentration of total proteins measured by bicinchoninic acid (BCA) assay and maintains stable vascular endothelial growth factor (VEGF) and extracellular platelet-derived growth factor (PDGF) for vessel formation through comparison of enzyme-linked immunosorbent assays (ELISAs) of the culture media and cell lysate. Tube formation assays also showed a sustained increase in tube diameter across the first 48 hr of HUVEC culture when succinate concentrations of 1 and 10 μM in the xerogel. Overall, the succinate-alginate films serve as a prospective organic coating for bone-interfacing implant materials which may induce temporary pseudohypoxic conditions favourable for early angiogenesis and bone regeneration in vivo at succinate concentrations of 1 or 10 μM.
Description
Keywords
Alginates, Bone regeneration, Culture Media, Conditioned, Human Umbilical Vein Endothelial Cells, Humans, Implant coating, Neovascularization, Neovascularization, Physiologic, Osteogenesis, Platelet-Derived Growth Factor, Prospective Studies, Pseudohypoxia, Succinate, Succinic Acid, Vascular Endothelial Growth Factor A, Xerogel
Citation
Joseph Deering, Dawn S.Y. Lin, Andrew D'Elia, Boyang Zhang, Kathryn Grandfield, Fabrication of succinate-alginate xerogel films for in vitro coupling of osteogenesis and neovascularization, Biomaterials Advances, Volume 141, 2022, 213122, ISSN 2772-9508, https://doi.org/10.1016/j.bioadv.2022.213122. (https://www.sciencedirect.com/science/article/pii/S2772950822003995)