Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/29327
Title: Investigation of Multi-Digit Tactile Integration
Other Titles: Investigation of Multi-Digit Tactile Integration: Evidence for Sub-Optimal Human Performance
Authors: Jajarmi, Rose
Advisor: Goldreich, Daniel
Department: Psychology
Keywords: Bayesian inference;sensory integration;psychophysics;tactile perception;optimal cue integration;cue conflict;perception;Bayesian modelling
Publication Date: 2023
Abstract: When examining objects using tactile senses, individuals often incorporate multiple sources of haptic sensory information to estimate the object’s properties. How do our brains integrate various cues to form a single percept of the object? Previous research has indicated that integration from cues across sensory modalities is optimally achieved by weighting each cue according to its variance, such that more reliable cues have more weight in determining the percept. To explore this question in the context of a within-modality haptic setting, we assessed participants’ perception of edges that cross the index, middle, and ring fingers of the right hand. We used a 2-interval forced choice (2IFC) task to measure the acuity of each digit individually, as well as the acuity of all three digits working together, by asking participants to distinguish the locations of two closely spaced plastic edges. In examining the data, we considered three perceptual models, an optimal (Bayesian) model, an unweighted average model, and a winner-take-all model. The results indicate that participants perceived sub-optimally, such that the acuity of the three digits together did not exceed that of the best individual digit. We further investigated our question by having participants unknowingly undergo a 2IFC cue conflict condition, where they thought they were touching a straight edge which was actually staggered and thus gave each digit a different positional cue. Our analyses indicate that participants did not undertake optimal cue combination but are inconclusive with respect to which suboptimal strategy they employed.
URI: http://hdl.handle.net/11375/29327
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Jajarmi_Rose_202312_MSc.pdf
Open Access
4.01 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue