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Lay Abstract
This thesis investigates the neural mechanisms behind tactile perception, specifi-
cally how the brain combines multiple sensory cues to construct a unified percept
when interacting with objects through touch. Typically, optimal sensory integra-
tion involves assigning more weight to more reliable cues. Our research focused
on tactile integration by examining participants’ ability to perceive the positions
of edges crossing their index, middle, and ring fingers simultaneously. The results
indicated that, contrary to predictions, participants exhibited various sub-optimal
cue integration strategies. Their ability to perceive the combined positions of all
three fingers was not superior to that of the best-performing individual finger. We
also explored cue conflict situations, where the locations of the tactile cues were
no longer from a straight edge, unbeknown to participants, and the results here
reinforced the finding that participants did not consistently employ optimal cue
combination strategies. This research offers valuable insights into how the brain
processes tactile information.
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Abstract
When examining objects using tactile senses, individuals often incorporate mul-
tiple sources of haptic sensory information to estimate the object’s properties.
How do our brains integrate various cues to form a single percept of the object?
Previous research has indicated that integration from cues across sensory modal-
ities is optimally achieved by weighting each cue according to its variance, such
that more reliable cues have more weight in determining the percept. To explore
this question in the context of a within-modality haptic setting, we assessed par-
ticipants’ perception of edges that cross the index, middle, and ring fingers of
the right hand. We used a 2-interval forced choice (2IFC) task to measure the
acuity of each digit individually, as well as the acuity of all three digits working
together, by asking participants to distinguish the locations of two closely spaced
plastic edges. In examining the data, we considered three perceptual models, an
optimal (Bayesian) model, an unweighted average model, and a winner-take-all
model. The results indicate that participants perceived sub-optimally, such that
the acuity of the three digits together did not exceed that of the best individual
digit. We further investigated our question by having participants unknowingly
undergo a 2IFC cue conflict condition, where they thought they were touching a
straight edge which was actually staggered and thus gave each digit a different
positional cue. Our analyses indicate that participants did not undertake optimal
cue combination but are inconclusive with respect to which suboptimal strategy
they employed.
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Chapter 1

Introduction to Haptic
Perception and Bayesian Analysis

1.1 What is Perception?

In the realm of perceptual studies, the investigation of tactile perception boasts
a rich and extensive history within both the fields of psychology and philosophy
(Merleau-Ponty, 1962). This enduring pursuit of understanding how our physical
surroundings shape our consciousness can be traced back to early Enlightenment
thinkers like René Descartes, who grappled with these concerns while formulating
the renowned "mind-body problem" (Ostenfeld, 2018). Descartes’ distinction be-
tween the seemingly immaterial realm of the mind and the tangible substance of
our physical bodies gave rise to the perplexing question of how these two domains
could interact and exert influence on each other. This conundrum underscores
the uncertainty surrounding the reliability of our senses in faithfully conveying
the external world to our consciousness. Consequently, perception, defined as our
conscious sensory experience, necessitated reevaluation and a more critical exam-
ination of its execution.

From a psychological standpoint, we can view conscious experience as an en-
tirely physiological process. This perspective hinges on the assumption that even
the ostensibly immaterial aspect of conscious perception is a product of intricate
biological processes orchestrated by our nervous systems. Nevertheless, the ability
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of biological organisms to utilize their neural circuitry for processing environmen-
tal cues is a complex and not easily elucidated endeavor. It is well-established
that sensory stimuli elicit neural action potentials to encode information, and, in
turn, our nervous system exhibits remarkable proficiency in decoding and inter-
preting the sensory information it receives to generate sensations from stimuli.
Yet, comprehending this intricate and pivotal relationship between the external
environment and internal perceptions requires detailed experimentation and ob-
servation.

In this context, the field of psychophysics assumes particular relevance, offering
a vital tool for capturing the manifestations of these internal mechanisms and, in
turn, shedding light on their operational principles.

1.2 Signal Detection Theory

Signal detection theory (SDT) marks an early attempt at formalizing our under-
standing of how perception functions (Green & Swets, 1996; Tanner Jr. & Swets,
1954). The advancement of SDT was a significant milestone in psychophysics
(Treisman & Faulkner, 1985; Wixted, 2020), as it provides a structure by which
analysis can be performed to test whether individuals are able to detect a signal
irrespective of the presence of noise. Within this theory we find the explanation as
to why an observer’s decisions are fundamentally probabilistic. Thus, the stochas-
tic character of an individual’s perception, and their decisions made regarding it,
is quantitatively accounted for as noise.

1.2.1 Sensory Noise

A crucial aspect of stimulus detection involves recognizing that the same stimulus
presented to an observer can lead to varying internal perceptions. For instance,
if we repeatedly expose an individual to an identical light stimulus, they may
detect it in one trial but not in the next. This variability in both perception and
response can primarily be attributed to the biophysical properties of the nervous
system and the resulting noise it generates. It must be noted, however, that noise
can be regarded as a pervasive element within the process of perception. For our
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purposes, noise is defined as random or irregular fluctuations in neural activity
not stemming from the source signal which significantly contributes to perceptual
variability (Faisal et al., 2008). Biophysical properties, such as the initial state of
an individual’s neural circuitry, can thus be expected to undergo minute changes
as a function of time before each trial in any perceptual task, even under controlled
conditions. These changes can be considered to be one contributor to the general
state of sensory noise present in the nervous system, though there exist other
sources.

At the level of individual neurons, we observe membrane noise arising from the
dynamics of ion channels. In neuronal networks, noise emerges from the conver-
gence of numerous independent random synaptic inputs. Additionally, external
factors introduced by the presentation of the stimulus to the observer add another
layer of noise (Bialek & Setayeshgar, 2005). Even the noise present in how our
motor systems move our body to interact with stimuli adds a level of complexity
and noise to our nervous system (Frank et al., 2006). The multiplicity of noise
sources underscores the intricate nature of perception and the challenges it poses
in achieving consistent and precise stimulus detection.

The noise associated with a cue is often described as Gaussian when, through
repeated sampling of that cue, the spread of the collected samples conforms to a
normal distribution. This tendency for noise to exhibit Gaussian characteristics
arises from the fact that noise can result from a variety of random events. These
events encompass scenarios such as the dispersion of air molecules or the minute
fluctuations in temperature, all of which can contribute to measurement impreci-
sion and, consequently, introduce noise. This randomness is typically attributed
to either thermodynamic or quantum mechanical factors. It should also be noted
that this Gaussian distribution is found in the final stage of perception, and that
at the level of neuronal firing the process is more apt to be described as a Poisson
process due to the discrete stochastic firing rates present (Knill & Pouget, 2004;
Tolhurst et al., 1983).

By employing central limit theorem we see that when sampling from distribu-
tions of the mean a large enough sample size will generate a normal distribution.
Specific to our study purposes, this would refer to the process by which we take
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multiple trials of a participant’s responses on a perceptual task, thus sampling
their internal measurement distribution. Consequently, being able to characterize
this noise distribution quantitatively, through the measure of its mean (x) and
variance (σ2) is a valuable tool in assessing a feature of perception.

1.2.2 The Two-Interval Forced Choice Task

One method frequently employed to assess stimulus detection is the two-interval
forced-choice (2IFC) task, wherein participants are tasked with choosing the cor-
rect option from two presented stimuli. For instance, in a typical 2IFC paradigm,
a participant may sequentially hear two sounds and then be prompted to select
which of the two they believe to be higher in pitch. This approach offers the
advantage of allowing participants to weigh the sensations produced by the two
stimuli relative to each other.

Furthermore, this method doesn’t rely on the participant’s subjective decision
criteria, i.e. their personal assessment of the amount of stimulus required for them
to acknowledge its presence. This is because the decision criteria is inherent in
both presentations of the stimulus to the observer (Luce & Krumhansl, 1988).

When exploring signal detection theory, a natural point of interest arrives in
the notion of a perception as a result of stimulus intensity (Green & Swets, 1996).
Consequently, a mathematical function relating stimulus level and the probabil-
ity of correct detection by an observer has been formalized and referred to as a
psychometric function. Ψ. The psychometric function assumes that an observer
has an internal probabilistic ‘map’ or rule which connects the stimulus intensity to
the response, and that this map tends to be consistent within each observer. The
psychometric function of a participant can only be determined through experimen-
tation and the subsequent analysis of data the gathered. Usually a participant is
tested and their response, either correct or incorrect, to varying intensities of a
stimulus is recorded.

Originally, psychometric functions were perceived as step functions, implying
a distinct boundary or threshold where stimuli transition from undetectable to

4
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detectable. However, as our understanding evolved, we came to embrace a sig-
moidal interpretation of these functions (Macmillan et al., 2022; Wickens, 2002).
This change in perspective challenged the then conventional notion of a threshold
as an absolute boundary. Instead, it portrays it as a point of transition within
the sigmoidal curve. This nuanced perspective allows us to explore the intricate
interplay between signal and noise in the perceptual landscape, ultimately refining
our grasp of the threshold concept in signal detection theory.

However, the questions arises as to how one can succinctly compare psychome-
tric functions between individuals, as such a comparison would lend itself well to
data analysis. To this end, a threshold can be used for ease of analysis. In our
research specifically, we use the participants’ 76% threshold of their psychometric
function as a point of reference, as it also serves as a measure of their sensory
acuity (i.e. σsensory or σs ).

1.3 Tactile Perception

Within the expansive domain of perceptual studies, the investigation of tactile
perception stands as a unique testament to the intricate relationship between our
sensory experiences and the world around us. While much research has tradition-
ally focused on our sense of vision and hearing, the significance of our sense of
touch should not be underestimated, particularly in the context of navigating and
comprehending our environment. Beyond merely allowing us to sense and per-
ceive characteristics of stimuli, tactile perception, mediated by the intricate neural
pathways of the somatosensory system, equips us with the remarkable ability to
interact with our surroundings on an unparalleled level of precision and subtlety.

The human hand emerges as a central protagonist in this sensory narrative,
representing itself as one of our most remarkable and versatile tactile organs.
Its unique combination of sensitivity and dexterity facilitates interactions with
our environment in ways that no other sensory modality can emulate. The sen-
sory receptors, including mechanoreceptors embedded in the skin and distributed
throughout the hand, play a pivotal role in detecting and transducing tactile in-
formation (Johansson & Flanagan, 2009). These specialized receptors respond to

5
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mechanical stimuli such as pressure, vibration, and skin deformation, ultimately
converting these physical cues into neural signals that are transmitted to the brain
for processing (Handler & Ginty, 2021; Johnson, 2001).

Beyond immediate sensory-motor control, our hands act as exploratory instru-
ments, enabling us to probe the intricate details of an object’s surface. We can
trace both the contours of familiar exteriors and navigate complex and unfamil-
iar terrains. In these moments, tactile perception not only informs us about the
physical attributes of the objects we encounter but also enriches our emotional and
cognitive experiences. In turn, this deepens our connection with our surroundings
and in turn fosters a sense of presence and engagement.

The hand and its role in perception further exemplify the intricate relation-
ship between our sensory experiences and the world. The brain’s processing of
cues from each digit of the hand highlights the remarkable sophistication of tactile
perception. Each digit contributes unique sensory information, enabling us to dif-
ferentiate between fine textures, temperatures, and shapes (Dargahi & Najarian,
2004). Notably, the hand is not just a tool for sensing but for grasping as well.
The feedback which we receive guide our motor actions, ensuring the appropri-
ate force is applied and that our grip adapts to the object’s specific properties.
And, as we interact with a stimulus, we also experience the shift in our sensory
epithelium as the arrangement of our skin changes as we move (Handler & Ginty,
2021). The brain integrates this multi-dimensional input, allowing us to create a
comprehensive and coherent perception of the objects we touch.

The brain has the remarkable ability to combine the data from each digit to
create a holistic perception of an object’s properties, seamlessly integrating infor-
mation from multiple sources (Camponogara & Volcic, 2021). In our study we
hope to capture this complex interplay by designing the experiment to allow for
this active movement by participants, rather than relying on a participant’s passive
perception of the stimulus being applied to the hand.

However, it is worth noting that despite the hand’s extraordinary capabilities
and the richness of tactile perception, research in the field of touch has historically
received less attention compared to vision. Even studies on tactile perception

6
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seem to often employ the integration of visual and tactile cues in combination,
rather than just focusing on the tactile modality (Camponogara & Volcic, 2021;
Ernst & Banks, 2002; Riemer et al., 2019; Sathian et al., 2011). As a result,
tactile perception, including the intricacies of hand perception, remains an area
ready for exploration and discovery. Closing this gap in research can lead to a
deeper understanding of the hand’s role in perception and its broader implications
for our cognitive and technological advancements. In addition to its immediate
role in guiding motor actions and enriching our sensory experiences, the study
of tactile perception in the hand holds broader implications for fields such as
neuroscience, psychology, and technology. Understanding how the hand processes
tactile information, how it differentiates between stimuli, and how it adapts to
changing environmental conditions can shed light on fundamental questions about
the organization of the brain, the nature of perception, and the development of
innovative technologies, such as haptic interfaces and prosthetic limbs.

1.4 Bayesian Inference

Now that the discussion of how to measure the internal response of sensory data
has occurred, we can further discuss possible models of how these cues combine to
create a sensory percept. Before approaching this topic, let us begin with Bayes’
Theorem (Bayes et al., 1763):

P (Hi|D) = P (D|Hi) · P (Hi)∑N
k=1 P (D|Hk) · P (Hk)

(1.1)

The benefit of Bayesian analysis is that it provides a posterior probability (de-
noted as P (Hi|D)) of one hypothesis, Hi, out of N total hypotheses occurring.
It calculates this given the prior probability of a hypothesis (denoted as P (Hi))
as well as its likelihood (denoted as P (D|Hi)), where the likelihood is defined as
the probability of the data, D, occurring under the assumption that the hypoth-
esis is true. To illustrate with an example, if one is out on a walk late at night
and perceived some sort of animal in the distance, we can create two hypotheses;
hypothesis 1 is that the animal is a dog and hypothesis 2 is that the animal is a
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coyote. Since you encounter more dogs in your neighbourhood, hypothesis 1 has a
much higher prior, but given that you see the animal to be very large and walking
menacingly the likelihood of the coyote hypothesis given this data is quite high.
Thus, Bayesian analysis can mathematically weight the information appropriately
to produce accurate predictions of which hypothesis is more probable, account-
ing for both what we have learned from the prevalence of scenarios (priors) and
not disregarding current evidence (likelihoods). It also should be noted also that
background knowledge impacts both our priors and likelihood.

Up to this point we’ve described Bayesian processing as a way to explain a
perceptual process, but the same calculations can also be used for a statistical
Bayesian analysis. The focus remains on modeling uncertainty using probabil-
ity distributions and updating these distributions based on observed data. These
methods allow one to make inferences about population parameters based on sam-
ple data. There are key differences found between the frequentest and Bayesian
approach to statistics (Pek & Van Zandt, 2020). Rather than the common sta-
tistical tool of null hypothesis significance testing, Bayesian analysis formulates
the posterior probability of each hypothesis (or model) to determine if the data
favours one over the other. This is encapsulated within the a ratio of the marginal
likelihoods of two hypotheses, formally referred to as the Bayes factor (Jeffreys,
1961). Bayesian statistics allows investigators to obtain a degree of belief in each
of their hypotheses or models, which is in contrast to the frequentest approach
of either rejecting or failing to reject the null hypothesis. As both methods have
their respective advantages, in this thesis we will rely upon a combination of the
two when approaching the data.

1.4.1 The Bayesian Brain

In the realm of human perception, a Bayesian framework, which employs the same
principles applied in statistical analysis, offers a valuable perspective. It posits
that the brain constructs a model of the external world, continuously adjusting
it based on incoming sensory data (Rowe et al., 2020; Vetter & Newen, 2014).
Even under this assumption, the task given to the nervous system to accomplish
perception is no easy one; it must take in the neural impulses originating from our
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sensory organs and decode the population response of neurons into some mean-
ingful and coherent observation. This task seems even more challenging when
considering, as previously mentioned, the variability inherent within perception.
An identical stimulus typically does not consistently elicit the exact same neu-
ral response (i.e. action potential firing rate in each neuron). Furthermore, the
brain must distinguish this specific neural response pattern from those generated
by different stimuli. While some mystery remains, Bayesian inference provides a
normative model against which to compare our processing of sensory information
(Ghahramani, 1995; Rohe & Noppeney, 2015).

Accordingly, if we are to assume Bayesian reasoning is behind how the brain
processes sensory information, then we are assuming that the brain perceives a
stimulus characteristic H as a conditional probability P (H|D) where D is the
sensory data available to the brain. Generally, this would indicate that the brain
is computing the likelihood of multiple possible values of the parameter H, and
thereby allowing for optimal integration of additional information (Knill & Pouget,
2004).

We can then use this conceptualization to begin discussing more complicated
experimental questions involving the integration of sensory cues within the brain
and its relation to perception. For the purposes of this thesis, stimulus cues will
specifically refer to the features of the stimulus presented to an observer, while
a cue measurement will refer to the internal perception of the cue formed by an
observer after presentation of the stimulus.

1.4.2 Cue Combination

The process of integrating multiple stimulus cues is a common aspect of our percep-
tual experience. However, comprehending how these cues come together to shape
our perception poses a complex challenge, and can at times lead to surprising
results.

For example, listening to another individual requires both an examination of
the acoustics the speaker makes as well as the visual information conveyed by
the configuration of the mouth and other facial features. This is demonstrated
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by McGurk and MacDonald (1976) in the McGurk effect, in which a participant
was exposed to a film of a woman speaking [ba] but had been dubbed onto lip
movements for [ga] and as a result adult participants heard [da]. This striking
example highlights how an auditory cue can be significantly influenced by the
presence of another cue, in this case, a visual one.

Another classic example of multi-sensory processing and cue combination is the
ventroliquism effect, in which observers, when simultaneously presented with an
auditory and visual stimulus, will report that the auditory source is closer to the
visual source than it truly is (Bruns, 2019). A study by Alais and Burr (2004) has
shown that this effect was regulated by the respective reliability of our visual and
auditory cues, indicating that perception was influenced by the more reliable cue,
which is typically visual.

The rubber hand illusion is another phenomenon that arises from tactile and
visual cue combination, to create a coherent perception of one’s body (Riemer et
al., 2019). To produce this illusion, a participant’s real hand is hidden from view,
and a lifelike rubber hand is placed in a similar position. When both the real hand
and the rubber hand are synchronously stroked, most participants begin to feel as
though the rubber hand is their own. They report a sense of ownership and body
awareness toward the rubber hand, even though they logically know it’s not their
real hand.

To better understand the interplay between multi-modal cue integration, we can
look to Bayesian models once more. Bayesian models serve as normative frame-
works in the field of perception and decision-making, providing optimal strategies
for processing sensory information and making inferences. While these models rep-
resent the idealized approach, human cognition often operates within the realm of
bounded rationality. While humans are not expected to be perfectly Bayesian, as
that would require a level of computational perfection that is rarely attainable, re-
search in cognitive psychology and neuroscience has shown that humans can often
approximate Bayesian principles in their sensory perception and decision-making
processes (Ernst & Banks, 2002; Knill & Pouget, 2004; Rohe & Noppeney, 2015).
We may not reach the pinnacle of Bayesian optimality, but we tend to approach
it to varying degrees. However, the question arises as to what would it appear as
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for a human observer to be either Bayes’ optimal or not, which is one we will now
explore.

1.4.2.1 Winner-Take-All Model

Let’s begin by exploring what would happen if the brain didn’t integrate cues from
stimuli sources. One alternative approach could be the ‘winner-take-all’ (WTA)
model, which involves focusing solely on the cue provided by the sensory system
with the least noise (i.e. greatest acuity), indicated by the smallest σ when mod-
eled as a Gaussian distribution. While this strategy may appear plausible and
resource-efficient, it can fall short in terms of accuracy and efficiency compared to
a model that fully embraces the integration of multiple cues. Relying on only one
cue, even if the sensory system processing it is the most reliable, means that the
resulting sensory percept is still subject to the noise inherent within the sensory
processing system. Even adding less reliable sensory cues can sharpen our ability
to pinpoint the characteristics of stimuli detected accurately. In order for the brain
to accomplish this, then, it must know at minimum which sensory cue has the best
acuity in order to disregard other cues it is given.

1.4.2.2 Unweighted Average Model

Another possible model the brain could use to combine cues is the unweighted
average model (AVG). Under the average model, cue combination is achieved by
taking the mean of all cues to form a percept of a stimulus. As a result, each cue
can influence an observer’s final percept equally. While the potential advantage of
this model is that the observer is considering more information, the drawback is
that this model is more vulnerable to error caused by cues that have low reliability.
In other words, if all cues are rated equal, even cues from a sensory modality that
is less accurate, an observer’s perception will likely be skewed towards the more
inaccurate stimuli. Alternatively, the benefit of this approach could lie in the fact
that the brain does not need to ’contrast’ the acuity of the cues it receives, it only
needs to average them.
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1.4.2.3 Optimal Model

Finally, we can consider the optimal (OPT), i.e. Bayesian, method of cue combi-
nation. While discussing the previous possible models, it becomes apparent that
an optimal model should both include all possible cues and appropriately weight
each cue according to its accuracy. In the case that the reliability of different
cues changes as a result of experimental parameters, an optimal Bayesian observer
would weight cues on different trials accordingly. Similar to the WTA model, the
brain in the OPT model is assumed to know the acuity of each of the cues it
receives, in order to produce this percept. Assuming each cue is processed inde-
pendently of the other and that a Gaussian function can model the distribution
of each measurement, we will have the following equation for an observer’s mean
percept where wi and µi are the ith’s cue’s respective weight and value.

µsensory = w1µ1 + w2µ2 + w3µ3 (1.2)

The weight of each cue can be derived from Bayes formula through the product

of the likelihoods such that wi =
i

σ2
i∑

k
1

σ2
k

.

1.5 Current Research Question

Considering the intricate nature of the somatosensory system, our objective was to
investigate whether the brain optimally combines tactile cues. To our knowledge,
there has been limited prior research on the integration of tactile-tactile cues, and
thus, this study seeks to fill this gap in the existing literature. To achieve this, we
will concentrate on a stimulus edge presented to the index, middle, and ring fin-
gers, assessing the acuity of each digit individually. Furthermore, we will evaluate
participants’ tactile acuity when the stimulus is simultaneously applied to all three
digits to determine how the sensory perception of the cue was integrated by the
participant. Additionally, the integration of these cues will be assessed following
the application of a cue conflict paradigm. In this paradigm, the edge stimulus
presented to all three digits simultaneously is modified from its usual straight-edge
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form, resulting in a slight positional discrepancy for each digit. Previous research
in this lab by Prodribaba (2018) suggested that optimal cue combination of tactile
cues was not achieved by participants. However, we have improved upon the initial
study design by increasing the participant’s hand stability and by introducing an
informative cue conflict paradigm, in the goal of determining the validity of these
results with further testing. The results of our experiment will allow us to better
determine which possible model of cue integration the participant employs, and
thus better our understanding on the strategies the brain employs when combining
tactile cues in complex sensory environments.
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Chapter 2

Mathematical Derivations &
Computer Simulations

While our primary objective is to investigate human tactile perception, it is essen-
tial to comprehend how such data will be categorized within our analyses. Given
this, we can simulate human participant responses using computer programs. The
advantage of this approach is twofold: it serves as a reflection of what we might
expect in the actual experiment and as a proof of concept. By simulating the data
and subsequently conducting Bayesian data analysis, we can evaluate the effec-
tiveness and accuracy of our methods. However, to create any such simulation, we
must first outline the procedure for our experiment.

The actual experiment will span two days, with both days involving the partic-
ipant undergoing 8 blocks, each consisting of 70 trials of the 2IFC task. The first
4 blocks will exclusively test either the index (D2), middle (D3), ring finger (D4),
or all three digits simultaneously (D234; see Figure 2.2a for a visual of how the
2IFC is performed on D234). The remaining 4 blocks will assess all three fingers
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simultaneously but will each include a cue conflict (CC) of either +1.0, +0.5, −0.5,
or −1.0 mm.

In order to simulate experimental data, we programmed a computer to select
the sensory acuity of a participant’s individual digits by sampling from specified
normal distributions. Each simulated participant was additionally assigned a cue
combination strategy as the method (i.e. model) employed by each participants.
Then simulated was their responses for each 2IFC trial, indicating whether they
correctly or incorrectly discriminated the stimulus on each trial. Subsequently, we
can analyze these results and compute the probability of each model being used.

To understand how the program will function, we must first introduce the quan-
tifiable aspects of the 2IFC task and the subsequent data analyses which will be
performed.

2.1 A Quantitative View of The Two Interval
Forced Choice Task

Referring to a previously mentioned point of the uncertainty due to internal noise,
it is important to note that the internal representation of the stimulus is generally
conceptualized as the result of a normal probability distribution function (PDF).
This PDF has a horizontal axis representing the internal response and a vertical
axis representing the probability of that internal response occurring given the
stimulus. If we take the two stimuli in the 2IFC, each produce a PDF of some
internal response within the participant’s neural circuitry, as in Figure 2.1 (Heeger,
1997).

When delving into psychophysical processes, the 2IFC task, or its variants, fre-
quently emerges. A 2IFC task relies upon the participant being presented with
two observation intervals in succession and then being asked to draw comparisons
in their perception. In our experimental design, we ask the participant to discrim-
inate between the relative positions of an edge which the digit(s) of the hand tap
down on twice sequentially. The edges’ positions will be separated by a distance
of ∆ in each case (see Figure 2.2b). Regardless of the order in which the tap
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Figure 2.1: Probability Density Functions. Depiction of the
probability density functions arising from two stimulus cues. The
probability of a certain level of internal response occurring is
shown as the height of the curve.

is applied, we can characterize the two edges by their relative position, referring
to the distal edge measurement (i.e. the edge closer to the tips of the fingers)
as XD and the proximal edge measurement (i.e. the edge closer to the palm) as
XP . Consequently the question at hand becomes what is the probability that XD

will be correctly characterized as the distal edge for each separation of ∆ given?
Note that since during the actual task the participant will be asked to determine
whether the second edge they contacted was more proximal or distal relative to
the first, we see that in doing so they must have first reflected upon the positions
of each edge. Thus our reframing of the problem holds.

We can further restate the above question, in this task we are essentially looking
to find the psychometric function of the participant. The psychometric function
is one which describes the relationship between a stimulus level (the independent
variable) and the probability of a behavioural response (the dependent variable)
occurring. While there are several methods of obtaining the psychometric function,
the one we are interested in arises from the results of the 2IFC task, as will be
soon outlined (Klein, 2001).

We can begin by assuming that each edge percept results from the brain select-
ing a position for that edge, xP and xD, from some internal measurement of each
stimulus represented by a Gaussian distribution (see Figure 2.1 B). This Gaussian
distribution will be centred at the true position at which the distal or proximal
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edge contacted the digit (x′
D or x′

P ), and will have a standard deviation of σs re-
lated to the participant’s acuity (here s is short for sensory, as this is the σ value
associated with the participant’s sensory perception). Accordingly, individuals
with high acuity in their digits will have a smaller σs.

(a) A sample of how the 2IFC task would perform on the index
(D2), middle (D3) and ring fingers (D4).

(b) A depiction of the internal measurement of where the
proximal and distal edge are located are both drawn from a
Gaussian centred at the true location of each edge

Figure 2.2: 2IFC Task Description. A visual illustration of the
2IFC task and the distribution of taps applied to the hand’s digits.

If xD and xP represent the participant’s percept of where the distal edge and
proximal edge are, respectively, then we are looking for instances where xD −xP >

0, as such cases indicate that the participant is correctly identifying the positions of
the two edges. Expanding this further, we can create a new Gaussian constructed
by taking the distribution of the difference scores between the two initial Gaussian
distributions representing the internal measurements of the distal and proximal
edges (see Figure 2.2).
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(a)

(b)
Figure 2.3: Simulated Gaussian Difference Distribution. (a) the
probability of a participant’s internal measurement occurring after
tapping down on the proximal edge where x′

P = 4 mm and the
probability of their internal measurement occurring after tapping
down on the distal edge where x′

D = 6 mm. In both graphs the
participant has a standard deviation of σs = 1. (b) the difference
Gaussian is depicted with a mean of ∆ = 2 and a standard
deviation of σ =

√
2.

This difference Gaussian will have a mean of ∆ = x′
D − x′

P and a standard
deviation of σ =

√
σ2

s + σ2
s =

√
2 · σs. We further see how the participant draws

from this difference Gaussian such that their probability of drawing a measurement
∆m = xD − xP is shown in Equation 2.1.

P (∆m|∆) = 1
σ

√
2π

exp −(∆m − ∆)2

2σ2 (2.1)

Our next step is determining how to translate this probability into a psycho-
metric function, which will model a participant’s rate of correctly detecting the
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stimulus of our 2IFC task. To start, it is clear that for any ∆m drawn from this dif-
ference Gaussian the participant will only answer correctly when ∆m > 0. Thus,
if we were to integrate the area under the curve from ∆m = 0 to ∆m = ∞ we
would have the probability of the participant responding that the comparison is
more distal for this trial (Equation 2.2).

P (‘Comparison Distal’|∆) =
∫ ∞

0

1
σ

√
2π

exp −(∆m − ∆)2

2σ2 d∆m (2.2)

Now that we have our integral, we can perform a series of operations to ma-
nipulate it into a form that is more suited to our purpose. We can first shift the
Gaussian to center on 0 and shift the bounds of the integral accordingly.

P (‘Comparison Distal’|∆) =
∫ ∞

−∆

1
σ

√
2π

exp −(∆m)2

2σ2 d∆m (2.3)

Next, since our Gaussian distribution is now symmetric and centered on 0 we
realize that the integral from −∆ to ∞ equals the integral from −∞ to ∆.

P (‘Comparison Distal’|∆) =
∫ ∆

−∞

1
σ

√
2π

exp −(∆m)2

2σ2 d∆m (2.4)

Finally, we see that the probability of a participant responding correctly to
the 2IFC task is simply the value of the cumulative normal distribution of our
difference Gaussian, with a mean of 0 and a standard deviation of

√
2 · σs, at ∆.

The psychometric function of the participant can be determined, and will appear
as shown in Figure 2.4.
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Figure 2.4: Sample Psychometric Function, Ψ(∆). The resulting
psychometric function from the Gaussian distribution of
differences, relating the probability of a participant correctly
comparing the location of the two stimuli relative to each other.

2.2 Finding the Participant’s Sensory Variance

We will now examine how we may find the posterior probability of each digit’s
σs given a participant’s performance on the 2IFC task. First, we will consider
that each digit has a σs that is some value between 0.1mm to 7.00mm, as we
are confident the true value of σs exists within this range. We can capture this
range by taking a series of intervals that cover it. Such intervals, in mm, would
appear as [0.05, 0.15), [0.15, 0.25), ..., [6.95, 7.05]. Consequently, the hypotheses for
each σs is taken as the midpoints of each of these intervals (i.e. H1 = 0.1, H2 =
0.2, ..., H700 = 7.0). We apply a uniform prior probability to these hypotheses.

Our next step involves determining the posterior probability for each possible
hypothesis, which can be determined quite straightforwardly by using a likelihood
function to evaluate the data, D, as will be shown in the steps below.
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In the previous section we laid the foundation of how we may determine the
probability of a participant getting a correct response in a specific trial with edge
separation ∆ and their given σs. We can represent this probability as Ψ(∆), and
consequently the probability of the participant being incorrect is 1 − Ψ(∆). It
follows then that for each hypothesised σs we can multiply the probabilities of the
participant responding as they did, either correctly or incorrectly, for each trial
separation and combine that all together.

P (dk|σs) = Ψ(∆k)ck · (1 − Ψ(∆k))ik (2.5)

P (D|σs) =
N∏

k=1
P (dk|σs) (2.6)

Note that dk represents the data obtained for a specific separation of ∆ in the
form of ck and ik, which are, respectively, the number of times the participant
correctly and incorrectly responded to that separation of ∆ in the 2IFC task. N

represents the total number of ∆ values which took place in the participant’s block.

Ultimately, if we apply this method to each hypothesized σs we will have pro-
duced the likelihood of each σs for each digit(s) tested. To then form the posterior
PDF, Bayes Theorem is applied (see Equation 1.1) using the respective likelihood
value and prior probability of each hypothesis. Since we are assuming a uniform
prior, P (σs), the term cancels out and all that remains is the final posterior PDF
P (σs|D) = P (D|σs)∑

k
P (D|σsk

) . From this posterior we can extract the maximum a poste-
riori (MAP) probability estimate, i.e. the mode of the posterior.

2.3 Finding the Participant’s Sensory Percept
for the Three Finger Cue Conflict Condition

In the previous sections, we assumed that the placement of a single tap was con-
stant across all three fingers. However, this will no longer be the case during the
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cue conflict task, as the first tap will apply an edge stimulus with different po-
sitional cues and thus require modifications to the previously outlined procedure
(see Figure 2.5). Given that each digit will receive a different presentation loca-
tion of the stimulus, then we can label the resulting perceptual bias in the percept
location (i.e. a shift in the PSE) as µ.

Figure 2.5: 2IFC Task With a Cue Conflict. In this version
of the 2IFC task, the first presentation of the reference
stimulus (tap 1) provides a conflicting cue presentation by a
value of δ to the participant in comparison to the second
presentation of the non-conflict comparison stimulus (tap 2).

Like before, we will create a range of hypotheses indicating possible σ234 and
µ values. Likewise, hypotheses for σ234 consist of the midpoints of each interval
ranging from 0 mm and 7.01 mm (i.e. Hσ1 = 0.1, Hσ2 = 0.2, ..., Hσ700 = 7.0).
For µ the hypotheses consisted of 161 values in steps of 0.05, beginning at −4.00
mm and ending at 4.00 mm (i.e. Hµ1 = −4.00, Hµ2 = −3.95, ..., Hµ161 = 4.00).
We can then, for each hypothesized σs, evaluate which µ would have the highest
probability given the participant’s responses. Note that the value of Ψ(∆) would be
calculated similarly, with the exception that the psychometric function Gaussian
used would no longer have a mean equal to 0, but to the value of any potential
Hµ.

P (dk|µ, σ234) = Ψ(∆k)ck · (1 − Ψ(∆k))ik (2.7)

P (D|µ, σ234) =
N∏

k=1
P (dk|µ, σ234) (2.8)
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The result of these calculations would be a joint likelihood function, in which
the probability of the data is dependent upon both a hypothesized σ234 and µ.
For our purposes, we can treat σ234 as a nuisance variable and focus our atten-
tion on µ by marginalizing over σ234. This results in us taking the summation for
all probabilities with the same σ234 hypothesized, leaving only a distribution of
probabilities dependent on µ. Like earlier, we can calculate the posterior probabil-
ity by implementing Bayes formula (Equation 1.1) with the above likelihood and
assuming a uniform prior.

P (µ|D) =
∑
σ234

P (µ, σ234|D) (2.9)

2.3.1 Cue Conflict Conditions

While the above descriptions of cue combination are relatively straightforward,
what is less apparent is how tactile cues are combined when the cues themselves
are conflicting from what the observer believes to be occurring.

2.3.2 Calculations for Each Model

Each model will have different associated ways of calculating the resulting psy-
chometric functions that occur when tactile cue integration occurs. The ways in
which σ234 and µ are calculated are listed in Table 2.1. See Appendix A for deriva-
tion of σ234 under the OPT and AVG model. The perceptual bias for each model
predicted during the CC conditions is also shown in Table 2.2. See Appendix A
also for the derivation of the perceptual bias under the OPT model.
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Table 2.1
D234 Percept and Sigma per Model

Model Percept (µ234) Sigma (σ234)

OPT µ234 =
x2
σ2

2
+ x3

σ2
3

+ x4
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

σ234 =
√

1
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

AVG µ234 = x2+x3+x4
3 σ234 =

√
σ2

2+σ2
3+σ2

4
3

WTA µ234 = xσmin
σ234 = σmin

Table 2.2
D234 PSE Shift per Model.

Model PSE shift (µ)

OPT
( 1

σ2
2

− 1
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

)
δ

AVG 0

WTA −δ, 0 or + δ

δ = -1.0, -0.5, +0.5 or +1.0
mm, and is determined by the
CC condition.

2.4 Model Comparison

We have now established our three primary models and ascertained a method to
calculate the posterior probability of a participant’s σs and µ for each finger and
all three fingers combined. The next question is determining which model is the
most likely given a participant’s data. Looking back to Bayesian analysis, when
we have an exhaustive set of N models (i.e. M1, M2, ..., MN) we can reformulate
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Bayes’ formula in the following way.

P (Mi|D) = P (D|Mi)P (Mi)
P (D|M1)P (M1) + ... + P (D|MN)P (MN) (2.10)

An important caveat here, however, is that in order for the above expression
to remain reasonable, each possible model should be included within our list of
N models. And while there is just one optimal model, there are nearly infinite
sub-optimal models that could be employed by an observer. Thus for the purpose
of our analyses, we will assume that the priors for models not included in our
analyses are close to 0, and thus the expression is still valid. For the purposes of
our study we will also assume there is an equal prior probability for all the models
we consider.

To calculate the likelihood of a given model M we can use the marginal likeli-
hood formula.

P (D|M) =
∑

i

P (D|µ, σ234)P (µ, σ234|M) (2.11)

The data consists of the responses across trials in blocks across the four CC
conditions, which we will denote as Dcc1, Dcc2, Dcc3 and Dcc4, as well as the non-
conflict three finger condition, Dcc0. To find P (D|σ234, µ) we will need to take the
product of all probabilities calculated by each condition in the data, as shown in
Equation 2.12. .

P (D|µ, σ234) =
4∏

k=0
P (Dcck

|µ, σ234) (2.12)

To find P (D|M), we should first turn our attention to finding the value of
P (σ234, µ|M). Computationally, for a single participant, this is done by running
5000 trials, where in each we sample a value of σ from the known posterior of
each digit (i.e. getting a sample of σ2, σ3 and σ4). This sample is proportional
to the values of the posterior it is drawn from, ensuring that most samples are
appropriately centred on the mode of the posterior. While this is a relatively
straightforward process, the more challenging task is to determine µ, which will
shift in each trial of the 2IFC task according to ∆. If we recall from Table 2.1, we
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can find the value of our percept under each model. For example, in the optimal

model µ =
x2
σ2

2
+ x3

σ2
3

+ x4
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

which can be further simplified to µ = ∆ +
( 1

σ2
2

− 1
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

)
δ.

Thus, as we know both the trial’s condition (δ) and the tap separation between
the reference and comparison cues (∆), we can determine our value of µ. After
5000 trials in which σ234 and µ are calculated (and dividing these distributions by
the number of trials) we will have formed a natural likelihood distribution of both
results. In other words, σ234 and µ will be appear in the computer program at a
rate related to their likelihood.

To determine P (Dcck
|σ234, µ) for k = 1, 2, 3 and 4 we need only to follow the

steps in Section 2.3, specifically Equations 2.7 and 2.8, for each trial where we
sample our σ234 and µ), take the sum of all these values (and as stated above,
divide by the number of trials run), and finally we will have found P (D|M).

Now that all the missing pieces are present, it will be possible to calculate
P (Mi|D) in Equation 2.10 and we can obtain the probability model of each model
being the one applied.

2.5 Parameters of the Simulation

While we have touched upon cue combination models in Chapter 1, we will now
begin to apply how such models can be used by a computer program, to mirror
human participants.

Before starting the simulation we must choose what the σs of our 24 participants
will be for each of their digits. For demonstrative purposes I have chosen two sets
of distributions from which σs will be drawn from. For the first set of simulations
(Set 1) each of the 24 participants will have a σs drawn from Gaussian distributions
of the index, middle and ring digits with means of 1.0 mm, 2.0 mm, and 4.0 mm
respectively. The second set of distributions (Set 2) will similarly be drawn from
Gaussian distributions of the index, middle and ring digits with means 2.0 mm, 2.2
mm and 2.5 mm respectively. In all of these Gaussian distributions the variance
was 0.3.
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The purpose in running the simulation twice, with two separate sets of σs,
is to demonstrate how varying the σs may impact the ability of the analyses to
distinguish which model is being employed. For example, in Set 1 where the σs

are quite different from each other, it may be quite apparent when the AVG model
is used, but less clear whether the OPT or WTA model is used. In Set 2 of the
σs where they are all similar values to each other the issue is now the inverse; it
is now difficult to distinguish between a optimal model and the average model,
but easier to see if the winner-take-all model is being used. When the experiment
is conducted on human participants we expect to see a range of σs combinations
for the digits each participant, thus it is beneficial to highlight how any such
distribution may be biased.

Now that the σs of each participant has been chosen, the simulation proceeds
by simulating the performance of the each participant on the 2IFC task. On this
we will also vary the number of trials present to demonstrate how increasing the
number of trials per block. Thus, we will run the simulation three times per set
of σs varying the number of trials from 70, 140 and 300 per block effects the
analyses. The expectation with this variation is that with increased trial length
comes increased accuracy in our analyses.

With our simulation we can also predict the shape of the psychometric function
of the under each model as shown in Figure 2.6. Under the WTA model (2.6a,
we expect the psychometric function of the best finger to match the three-finger
psychometric function. Conversely, we see that the psychometric function in the
three finger condition to be an average of three single digit psychometric function
under the AVG model, and that the psychometric function in the three finger
condition is expected to be better than all three digits alone in the optimal model.

2.6 Simulation Results

From using model comparison on the simulated 2IFC data, we can now determine
P (M |D) for each of our stated models. Thus we can form a distribution of these
probabilities as shown in Figures 2.7 - 2.9b. Analyses were conducted on both Set
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(a) WTA Ψ(∆) (b) AVG Ψ(∆) (c) OPT Ψ(∆)
Figure 2.6: Simulated Psychometric Functions Under Models. The depiction of the
psychometric function given σs Set 1 (σ2 = 1.0 mm, σ3 = 2.0 mm, σ4 = 4.0 mm under
each model of cue combination. Note that under the WTA model (a) the best finger’s
psf (i.e. the index finger) overlaps with the three finger psf.

1 and 2 and over each tested block trial length (70, 140 and 300) and performed
twice, once without the data on the cue conflict blocks and once with.

On σs Set 1 (see Figures 2.7a 2.8a 2.9a) we see a clear trend for the cases
where the OPT model is the one being employed to combine cues, in which it the
model comparison analysis classifies the OPT model, WTA model and AVG as
the most likely models respectively. In the case where the AVG model is the one
used, we observe that the AVG, WTA, and then OPT models are the most likely
respectively. Finally, when the WTA model is the one used, the WTA, OPT and
then AVG models are the most likely respectively.

Note that in the case where only 70 2IFC trials are simulated and cue conflict
data is not included is when the analysis is most prone to wrongly classify the
data. More specifically, under Set 1 it is most difficult to distinguish between the
OPT and WTA models when one is employed under these conditions. This is
because the in Set 1 the average of σs is ≈ 1.53 mm, which is quite distinct from
the optimal σs (≈ 0.94 mm) and winner-take-all σs (≈ 1.00 mm). But, as we can
see, the optimal and winner-take-all σs are much closer to each other, leading to
the resulting difficulty in distinguishing the two without sufficient data.

Conversely, let’s observe the results of the simulation for Set 2 (see Figures
2.7b 2.8b 2.9b). In the figures where the OPT model is used the most likely
classifications are the OPT, AVG and then WTA model respectively. When the
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AVG model is used to combine cues the OPT, AVG and then WTA are the most
likely respectively when analysing without cue conflict data, and the trend becomes
AVG, OPT and WTA when using cue conflict data. Finally, when the WTA model
is used, the highest distributions of probability are WTA, AVG and then OPT
respectively.

If we do the same as we did for Set 1 and calculate the approximate values for
σs under each model for Set 2, then we can better make sense of why the analysis
would classify the data as it did. Here we see that the optimal σs is ≈ 1.32 mm, the
average σs is ≈ 1.29 mm and the winner-take-all σs is ≈ 2.00 mm, which explains
why the OPT and WTA models were more likely to be wrongly classifed as the
other in the analysis.

For each of these simulations, when the number of simulated 2IFC trials run
is increased from 70 to 300 and the cue conflict data is included, the distribution
trends described becomes further exaggerated and more accurate in their classifi-
cation.

In addition to finding the distribution of the posterior probabilities of each
model for each condition listed, the winning model (i.e. the model with the largest
posterior probability of the three for each participant) has been tabulated.

In Tables 2.3 and 2.4 we can have the resulting classifications for each partici-
pant with our without the cue conflict data present in the participants simulated
under Set 1. Again, we see that the accuracy of our analysis improves with the
cue conflict and with more trials, with the most easily distinguishable model as
the AVG model. In Tables 2.5 and 2.6 we again show the final classifications for
participants under Set 2, with the WTA being the most easily distinguished model.
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(a) Model Posteriors For Set 1 σs.

(b) Model Posteriors For Set 2 σs.
Figure 2.7: Simulation Results of 70 Trials. 70 2IFC responses
were simulated, and the resulting probability of each model for all
participants are shown in the boxplot for each distribution set.
Also shown are the probabilities with and without the cue conflict
data for comparison.
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(a) Model Posteriors For Set 1 σs.

(b) Model Posteriors For Set 2 σs.
Figure 2.8: Simulation Results of 140 Trials. 140 2IFC responses
were simulated, and the resulting probability of each model for all
participants are shown in the boxplot. Also shown are the
probabilities with and without the cue conflict data for
comparison.
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(a) Model Posteriors For Set 1 σs.

(b) Model Posteriors For Set 2 σs.
Figure 2.9: Simulation Results of 300 Trials. 300 2IFC responses
were simulated, and the resulting probability of each model for all
participants are shown in the boxplot. Also shown are the
probabilities with and without the cue conflict data for
comparison.
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Table 2.3
Model Classification of Simulated Set 1, Without CC
Data.

Winning Model
Model Used Trial Number OPT AVG WTA

OPT
70 19 2 3
140 18 0 6
300 17 0 7

AVG
70 1 16 7
140 1 21 2
300 1 21 2

WTA
70 13 4 7
140 12 2 10
300 3 1 20

Table 2.4
Model Classification of Simulated Set 1, With CC Data.

Winning Model
Model Used Trial Number OPT AVG WTA

OPT
70 18 0 6
140 23 0 2
300 23 0 1

AVG
70 0 24 0
140 0 24 0
300 0 24 0

WTA
70 0 0 24
140 4 0 20
300 1 0 23
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Table 2.5
Model Classification of Simulated Set 2, Without CC
Data.

Winning Model
Model Used Trial Number OPT AVG WTA

OPT
70 17 5 2
140 17 5 2
300 17 7 2

AVG
70 12 9 3
140 13 9 2
300 11 13 0

WTA
70 1 5 18
140 1 4 19
300 0 2 22

Table 2.6
Model Classification of Simulated Set 2, With CC Data.

Winning Model
Model Used Trial Number OPT AVG WTA

OPT
70 14 5 2
140 13 11 0
300 18 6 0

AVG
70 9 15 0
140 15 9 0
300 3 21 0

WTA
70 0 2 22
140 0 0 24
300 0 0 24

2.6.1 Test-Retest Reliability Across Simulated Trials

Given that our experimental design involves blocks testing the same experimen-
tal condition (i.e. digit) on each of the two days, it is worth considering what
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the distribution of the posterior will appear as when simulating σ across sets of
trials. Thus, the responses of 24 participants to a 70 block set of 2IFC trials
were simulated twice. The first and second set of 70 trials represent the first and
second day of our testing experimentally. The ‘digit’ of each participant had an as-
signed set value of it’s sensory acuity, which was drawn from a normal distribution
N(µ = 1.0 mm, σ = 0.3 mm) and held consistent for all trials. The comparison
of each simulated participant’s most likely σ in the first comparison against each
other is shown in Figure 2.10. Note that the identity line, in red, is shown as a
measure by which to compare the participant’s performance across days 1 and 2.
Similarly, the Bayesian confidence intervals (CI), which indicate here that there
is a 75% probability that the true estimate lies within the interval, are included
in the figure. The average σ value on the first set of 70 trials was 0.95 mm (SD
= 0.28 mm) while for the second set it was 0.99 mm (SD = 0.28 mm). A paired
t-test between the σ modes of the two blocks was conducted and found to be non-
significant (p = 0.17). The simulation thus shows no significant difference between
the two sets of results, as expected.

It should also be noted that even with an ideal participant, whose σs is not
changed between trials, the responses display an unavoidable level of variability
inherent to the task. The σs for each participant is not an exact match on each
simulated day, as evidenced by the slight deviations from the identity line. Thus,
this amount of variability is, at minimum, expected to also be present in human
participants.
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Figure 2.10: Comparing σs of Two Simulated Blocks. For each
simulated participant, two blocks of 70 2IFC trials were produced and a
resulting σs was generated. These two values are compared to each other
in this figure, with an identity line in red for comparison, and the
Bayesian 75% CI of each participant is present.
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Chapter 3

Experimental Results

In this chapter we shall present both the methods surrounding the human par-
ticipants and analysis of their results, drawing parallels to the analysis of the
simulations performed in Chapter 2.

3.1 Methods

3.1.1 Participants

For this study 24 participants were recruited (mean age = 18.98, std = 0.78).
Participants were recruited via the PNB Research Participation System (SONA)
drawing from the McMaster University student body. Participants were screened
via self-report for the following conditions, which can adversely affect tactile acuity
or the ability to perform psychophysical tasks: diabetes, nervous system disorder
or injury (tremor, epilepsy, multiple sclerosis, stroke, etc.), learning disability,
dyslexia, attention deficit disorder, cognitive impairment, carpal tunnel syndrome,
arthritis of the hands, hyperhidrosis.

3.1.2 Apparatus

For this experiment two multi-stimulus pieces were constructed. Each piece was
designed using OpenSCAD and Ultimaker Cura software and printed in PLA plas-
tic using an Ultimaker2GO 3D printer. The multi-stimulus piece consisted of a
plastic bar with six edges protruding from it (see Figure 3.1a). Four of the six
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edges were used in this experiment, and each edge was specifically designed to test
either digit(s) D2, D3, D4 or D234.

The second multi-stimulus piece, which was designed for the cue conflict task
of the last four blocks, consisted of a plastic cylindrical-like bar with 6 edges pro-
truding from it (see Figure 3.1b). Each edge of this piece spanned all three digits.
Four of the six edges were constructed as the reference stimulus for the respective
four CC conditions, which were each labeled as either −1.0, −0.5, +0.5, or + 1.0.
The remaining two straight edges were constructed as the comparison stimulus,
and were placed on opposite sides of the bar. The labelling of each CC condition
reflected the position of the index cue edge relative to the middle cue edge. To
elaborate, if the D2 cue edge position was more distal than the D3 cue edge the
condition was denoted as a positive conflict (′+′), and conversely if the D2 edge
was more proximal than the D3 cue edge the condition was denoted as a negative
conflict (′−′). The magnitude of the condition (0.5 or 1.0 in mm) was reflected
by the absolute value of distance of the D2 and D4 edges from the D3 edge. Of
note is that the direction of the displacement of D2 and D4 edge were in opposing
directions of equal magnitude.

The width of each stimulus edge piece was approximately 3 mm, and the length
an edge spanning all three fingers was 80 mm. To ensure the digits were applied to
only the edge of the stimulus that was appropriate two foam wedges were inserted
between both D2 and D3 as well as D3 and D4.

In addition to the multi-stimulus pieces, a base piece was constructed to attach
the stimulus piece to a stepper motor (ISM-7411 NEMA 23 National Instruments
Integrated Stepper motor), allowing for a simple switch between the first and sec-
ond multi-stimulus cue pieces (see Figure 3.2b). The multi-stimulus cue piece was
mounted onto the base, and the base in turn was secured onto the stepper motor
which rotated accordingly to change the stimulus level (∆) applied to the partic-
ipant. The stimulus level is applied through a custom computer program written
in the LabVIEW (National Instruments) programming language. The LabVIEW
SoftMotion module was utilized to control the stepper motor. Throughout the
experiment the subsequent stimulus level was determined using a modified version
Ψ method, which is a Bayesian Adaptive Procedure (BAP) created by Kontsevich
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(a) (b)
Figure 3.1: Multi-Stimulus Cue Pieces. (a) depicts the non-conflict
multi-stimulus piece used for the 2IFC in the first four blocks of the
experiment while (b) depicts the CC multi-stimulus piece used for the last
four blocks of the experiment.

and Tyler (1999). The BAP efficiently finds a participant’s psychometric function
by determining the most informative next stimulus intensity (∆) to administer to
the participant in order to maximize the information gained from their response.
We modified this procedure by including a series of possible lapse rates, and later
marginalizing over them, rather than assuming the lapse rate to be 0.04 as was
done by Konsevitch and Tyler.

A hand rest for the participant was also developed, with three versions printed
to accommodate the range of hand sizes present in the participant population (see
Figure 3.2a). The posts protruding from the piece were intended to fit the crevices
between D1 and D2 as well as between D4 and D5. A knob was attached to the
center of the piece at the end facing the cue stimulus in order to slightly elevate
D3. This was to ensure that with the movement of the fingers all digits would be
relatively level with each other, as otherwise D3 has a tendency to extend further
than D2 and D4.

A cardboard box was constructed to ensure that participants would not see the
location of the stimulus edge. The box had two openings, a smaller one facing
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the participant for them to place their hand within and a larger one in the back
which the investigator could use to observe the participant’s hand and the stimulus
apparatus. The length of the participants forearm rested on a foam pad while their
hand lay on the hand rest.

(a) Hand Rest.
(b) Stimulus Support
Base.

Figure 3.2: Support Pieces. (a) provides a depiction of the hand rest. D1
and D5 were placed on the outside of the two posts and D2, D3 and D4 rested
in the center of the apparatus, with D3 resting on the rounded protrusion. (b)
shows the base that the multi-stimulus cue pieces were placed onto. The flat
circular disk was permanently attached to the stepper motor plate through
the four screws-holes shown.

3.1.3 Procedure

Participants came in for testing over two days within a week from each other and
on both days they were asked to complete the same task and in the same or-
der. Upon beginning the experiment they were asked to sit down and place their
hand in the appropriate position within the cardboard box. Recorded instructions
were then played aloud and restated by the participant. To ensure their perfor-
mance on the task would proceed smoothly they completed 30 practice trials of
the 2IFC task, and during each trial of the practice automated auditory feedback
on their accuracy was given. An infrared laser beam was present throughout all
trials and used to ensure that the participants did not touch the stimulus outside
of the appropriate time points. If the beam was broken, indicating that the par-
ticipant’s hand was touching the piece at an inappropriate time, an automated
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computer voice instructed the participant to raise their hand. Once the practice
trials were completed participants began the experimental blocks. Participants
were not blindfolded during the study, as previous studies have indicated that
doing so reduces performance on tactile tasks Zuidhoek et al., 2004.

On each day participants underwent 8 blocks of the 2IFC, with each block
consisting of 70 2IFC trials. The first four blocks each individually tested either
D2, D3, D4 or D234 while the last four blocks tested only D234 while applying
each of the four possible CC conditions (−1.0, −0.5, +0.5, and + 1.0). On each
2IFC trial the participant heard two auditory beeps (one for each interval) which
indicated that they should tap their digits down onto the stimulus piece. They
were tasked to compare the edge location on the first tap with the second, and
state whether they believed the second edge to be proximal or distal relative to the
first. Participants recorded their response by pressing the corresponding arrows on
a USB remote. Between each block the participant was given a 2 minute resting
period, with an extended break after the 4th block. During this extended break
the participant was led into another room to wait while the investigator removed
the first multi-stimulus piece to then replace with the CC multi-stimulus piece, all
without the participant’s awareness. This swap was undisclosed to the participant
in order to maintain the illusion that the participant touched only straight edges.

The order of the first four blocks was partially counterbalanced such that each
of the six possible permutations of D2, D3, D4 was applied to an equal number of
participants. The D234 condition was applied on either the first or last block, to an
equal number of participants. The order of the last four blocks was also counter-
balanced with 2 permutations, with respect to the direction of the CC (beginning
either with + or − conflict). While ideally this study would be counterbalanced in
8! permutations, that would involve a sample size of 40320 participants. In total
each of the 24 participants were given an order of the conditions which was unique
to them.

3.1.4 The Guessing Bayes Factor

It was worth ascertaining whether participants did not pay attention or were guess-
ing their responses. The guessing Bayes factor serves as a measure of the likelihood
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ratio, which assesses the likelihood of the data given two hypotheses: one where
the participant is making random guesses and another where the participant’s
responses follow a psychometric function, Ψ.

BF = P (Data|Chance)
P (Data|Ψ) (3.1)

The numerator of this Bayes factor (Equation 3.1) calculates the probability
of the participant’s data (comprising both correct and incorrect responses across
stimulus levels) assuming the participant is merely guessing (with a 50% chance
of guessing correctly) on all trials up to the current one. On the other hand, the
denominator computes the probability of the data based on the computer pro-
gram’s estimate of the participant’s most-probable psychometric function. In the
majority of cases, the guessing Bayes factor for the participant tends to converge
towards zero as the experiment progresses from trial to trial, indicating that the
participant’s performance aligns with a psychometric function. However, we did
find one participant who, on their day 1 D234 task, had a Bayes factor of 10,
indicating they were likely guessing or inattentive on that block. Thus their data
were removed from the analyses where appropriate.

3.2 Statistical Analysis

We performed paired two-tailed t-tests and repeated measures analysis of variance
(RM-ANOVA) using python, with an α-level of 0.05. If the results indicated
that RM-ANOVA failed Mauchly’s test of sphericity then the Greenhouse-Geisser
correction was used. Bonferroni adjustments were used for all main effect pairwise
comparisons. The σs and µ values being analyzed represent the mode of the
posterior probability distributions for each participant.

To begin the analysis we will focus only on the data from the non-conflict cue
combination task conducted on the first four blocks of the study. Subsequently the
results of the last four blocks, in which a cue conflict was applied, will be added
to the data analysis.
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3.2.1 Results of Non-Conflict Cue Combination

The first result of our analysis which was examined was the relationship between
the results of the σs found on day 1 and on day 2. In Figure 3.3 the values of these
results on day 1 and day 2 are plotted against each other, with an identity line
present for reference. A further measure of comparison was conducted through
paired t-tests on each digit condition. Comparing the day 1 and day 2 we find
the results to be non-significant except for the condition of D234, where t(22) =
2.26 and p = 0.03 (uncorrected for multiple comparisons). Thus indicating that
participants were consistent in their acuity D2, D3 and D4 but improved upon
their acuity of D234 on the second day of testing.

Figure 3.4 summarizes the distribution of the σs values of each digit(s) on both
days 1 and 2. The means and std of these distributions are also summarized in
Table 3.1. Both of these results indicate that on day 1 the σs’s of participants are
lower for the individual digits (D2, D3 and D4) than for D234. In other words,
acuity in the D234 is lower compared to the individual digits. Conversely, on day 2,
it appears that there is no significant difference between all four of the conditions,
such that D234 is neither significantly improved nor worsened compared to any
digit by itself.

Table 3.1
The Average σs Value of Each Digit(s)

D2 (mm) D3 (mm) D4 (mm) D234 (mm)

Day 1 σs 1.73 (SD=0.81) 1.95 (SD=1.04) 1.50 (SD=0.73) 2.44 (SD=1.15)

Day 2 σs 1.70 (SD=0.88) 1.75 (SD=1.03) 1.51 (SD=1.04) 1.72 (SD=0.89)

RM-ANOVA on the σs values for day 1 confirms this, with F (3, 69) = 5.9219(p =
0.004), η2 = .099. Mauchly’s test indicated that the assumption of sphericity had
not been met, χ2[5] = 14.38 (p = 0.013), thus the Greenhouse-Geisser estimates of
sphericity, ϵ = 0.71, correction was used for the analysis.
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Figure 3.3: Comparison of σs on Days 1 and 2. The comparison for each
digit’s σs is shown for all participants. The red line serves as an identity line
for reference, and the error bars represent the Bayesian 75% CI.

Post-hoc pairwise comparisons with a Benjamini/Hochberg FDR adjustment
indicated that there was no significant difference between the σs values at the
level of D2 and D3, (p = 0.32), at the level of D2 and D4 (p = 0.25) and at the
level of D234 and D3 (p = 0.12). However, the σs value was was significantly
higher at level D234 than at levels D2 (t(23) = 2.57, p = 0.017) and D4 (t(23) =
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3.30, p = 0.018). A significantly higher σs was also found at the level of D3 than
at level D4 (t(23) = 2.94, p = 0.007).

Figure 3.4: σs Posteriors for D2, D3, D4 and D234. The boxplot
distributions of of σs are shown, such that the box shows the quartiles of the
data set while the whiskers extend showing the rest of the distribution. The
line in the box represents the median and outliers are indicated.

The same analysis was computed on day 2, and Mauchly’s test indicated that
the assumption of sphericity had been met χ2[5] = 8.70 (p = .120) and thus no
correction was made. The effect of digit was not significant, F (3, 69) = 0.74 (p =
.53), η2 = .010 thus indicating that the D234 condition had a sensory acuity that
was similar to D2, D3 and D4.
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Figure 3.5: Best Single Digit vs D234 σs. This figure depicts the smallest
(i.e. best) σs of the three individual digit against the σs of D234 on days 1
and 2. In this figure we see the general trend of the the best individual finger
σs being less than that participant’s D234 σs.

Another point of interest is determining how the finger with best acuity (lowest
σs) compares to the D234 condition. In Figure 3.5 this comparison is mapped out
on day 1 and day 2, with an identity line for reference. Paired t-tests for day 1
show t(23) = −5.08 (p < .001) indicating that the D234 condition is significantly
worse in acuity than the individual’s best finger. For day 2, similarly significant
results were found with t(23) = −5.01 (p < .001).

Comparing the result of the observed D234 σs against what would have been
predicted by the calculations of our models (see Table 2.1 for the method by
which sigma was calculated) we can also gain a sense of how well these models
are predicting the experimental data. The results of this comparison are shown in
Figure 3.6.
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Figure 3.6: Observed vs Predicted D234 σs. For each
participant the predicted D234 σs was calculated based on their
D2, D3 and D4 psychometric functions and depicted against the
observed D234 sigmas in laboratory on days 1 and 2. The
identity line serves as a reference for how the two values compare.
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More formally, in a paired sample t-test we see that on day 1 the predicted
OPT, AVG and WTA D234 σs were all significantly lower than the experimental
experimental D234 σs, with t(23) = -6.84 (p < .001), t(23) = -6.85 (p < .001)
and t(23) = -5.07 (p < .001). Similarly on day 2 all D234 σs values predicted by
models were also significantly lower, with t(23) = -6.74 (p < .001), t(23) = -4.12
(p = .004) and t(23) = -3.32 (p < .001).

These results appear to indicate that the current models we have present are
not accurately capturing the data. Furthermore, given the lower than expected
acuity present in D234, that there may be some other, as yet unstated, model
currently utilized by observers.

3.2.2 Alternative Models

In order to make sense of the previous section’s results we began to consider three
additional models for the data. In a similar vein to the WTA model, in which
the digit with the best sensory acuity is the only sensory cue used to determine
the percept, the alternative models consist of a index-take-all (ITA), middle-take-
all (MTA) and ring-take-all (RTA) models. Under these new models during cue
combination only one digit forms the sensory percept, regardless of whether that
digit has the highest acuity or not.

To determine whether these models were substantial we plotted the D234 σs

against each individual D2, D3, and D4 σs for days 1 and 2 (see Figures 3.7 - 3.9).

To describe these figures paired t-tests were applied to the data points in each
graph. For day 1, it was found that D2 and D4 had significantly better acuity
than D234, t(23) = −2.63 (p = 0.011) and t(23) = −3.94 (p < .001) respectively
while D3 did not differ significantly from D234 (p = .105). On day 2, it found
that the acuity of D2, D3 and D4 all did not differ significantly from D234, where
p = .873, p = .881 and p = .216 respectively. The relationship between these
models seems especially fitting on day 2, increasing our belief that these models
may be more descriptive of the data than those we had initially.
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Figure 3.7: D234 vs D2 σs. Each day was shown comparing the observed D2
σs against the observed D234 σs with an identity line for comparison. The 75
% Bayesian CI of each σs value is also indicated, as well as an identity line in
red.

Figure 3.8: D234 vs D3 σs. Each day was shown comparing the observed D2
σs against the observed D234 σs with an identity line for comparison. The 75
% Bayesian CI of each σs value is also indicated, as well as an identity line in
red.

49

http://www.mcmaster.ca/
https://pnb.mcmaster.ca/


M.Sc. Thesis– Rose Jajarmi; McMaster University– Department of PNB

Figure 3.9: D234 vs D4 σs. Each day was shown comparing the observed D2
σs against the observed D234 σs with an identity line for comparison. The 75
% Bayesian CI of each σs value is also indicated, as well as an identity line in
red.

3.2.3 Model Comparison without Cue Conflict Data

The final step for the analysis of the non-conflict cue combination data is to find the
probability, using Bayesian inference, that the participants are using a particular
model given their data. The results of these posterior probabilities are summarized
in Figure 3.10 and the individual winning results in Table 3.2.

In Figure 3.10 the distributions on day 1 seem heavily skewed towards the
alternative models, with ITA, MTA and RTA having similar ranges of probabilities,
while the original models are less favoured. This distribution is also reflected in
the results of Table 3.2, with the ITA, MTA and RTA being each chosen as the
best model of 7 participants. On day 2 the more likely models appear to be shifted
further towards the original three models in comparison to day 1.
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Figure 3.10: Model Posteriors, No CC Data. The boxplot distribution of the
posterior probabilities of each model is shown, calculated while including the
additional models. Results of each day are shown separately.

Table 3.2
Categorization of Each Participant’s Model, Excluding CC
Data

Winning Model
OPT AVG WTA ITA MTA RTA

Day 1 0 1 2 8 6 7
Day 2 3 2 3 9 7 0

3.2.4 Cue Conflict Data

As mentioned before, the prior analysis did not consider the data gathered from
the cue conflict portion of the study, which will be this section’s focus. As was
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done for the participant’s σs we can calculate the most likely perceptual bias µ for
each CC condition. Figure 3.11 shows these values for each participant compared
across the two days, with an identity line for reference.

Figure 3.11: µ on Day 1 vs Day 2. For each cue conflict condition, a
comparison of the the participant’s day 1 and day 2 PSE shift, µ, is shown.
Also present is an identity line in red for comparison and 75% confidence
interval bars.
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Conducting paired t-tests on the data in the figures we see that only for the +1.0
condition was found to have a non-significant p-value p = .463 while the other con-
ditions, -1.0 , -0.5, +0.5, were all found to have significant difference. The values
of the t-tests were t(23) = 3.94(p < .002), t(23) = −3.88(p < .001) and t(23) =
3.30(p = .003) respectively. This shift in perceptual bias experienced by partic-
ipants across days was unexpected and notable and is consistent with the idea
that participants are, across days, changing the strategies they are using for cue
combination.

Figure 3.12: CC µ Distribution. The boxplots here show the distribution of
µ values for each cue conflict condition on days 1 and 2, after adjusting for the
various technical issues causing bias. The day 1 CC condition -1.0 median and
day 2 +0.5 CC condition median coincides with the top line of the quartile
box.

The distributions of µ values for each participant are shown in Figure 3.12
and highlight the difference across days 1 and 2, as well as across CC conditions.
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The mean values for µ on each condition and day are listed in Table 3.3. At a
glance, it appears that, on day 1, conditions -0.5, +0.5 and +1.0 support either
an ITA model or a model where D2’s σs plays a larger influence on the precept.
Conversely while the -1.0 condition supports a RTA model or a model in which
D4’s σs significantly influences the percept. On day 2, this distinction appears
less clear and seems to mostly support either an AVG model, an OPT model or a
MTA model.

Table 3.3
The Average µ per CC Condition.

-1.0 -0.5 +0.5 +1.0

Day 1: µ 1.04(SD=0.64) -0.45(SD=0.40) 0.38(SD=0.43) 0.88(SD=1.24)

Day 2: µ 0.55(SD=0.51) -0.09(SD=0.56) 0.06(SD=0.35) 0.70(SD=0.9)

A RM-ANOVA on day 1 µ values found a significant effect of CC condition,
F (3, 69) = 24.13 (p < .001), η2 = .369. Mauchly’s test indicated that the as-
sumption of sphericity had not been met, χ2[5] = 25.02 (p < .001), thus the
Greenhouse-Geisser estimates of sphericity, ϵ = 0.56, correction was used for the
analysis. Post-hoc pairwise comparisons with a Bonferroni adjustment indicated
that there was no significant difference between the µ values at the level of +1.0
and -1.0, (p = 0.47) but significant differences (with all p < 0.001) at every other
level. µ values in condition +1.0 were found to be significantly higher than those
in +0.5 (t(23) = 2.05) and -0.5 (t(23) = 5.05) and similarly µ values in condi-
tion -0.5 were significantly lower than those in -1.0 (t(23) = −11.66) and +0.5
(t(23) = −7.31). Finally, values in condition -1.0 were significantly higher than
those in condition +0.5 (t(23) = 5.27).

A RM-ANOVA on day 2 µ values found a significant effect of CC condition,
F (3, 69) = 11.12 (p < .001), η2 = .369. Like on day 1 the assumption of sphericity
was not met, χ2[5] = 30.93 (p < .001), and the Greenhouse-Geisser estimates
of sphericity, ϵ = 0.56 was used. To further examine the differences of the
RM-ANOVA post-hoc pairwise comparisons with a Bonferroni adjustment were
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conducted. Values between conditions +1.0 and -1.0 did not differ significantly
(p = 0.424) as well as between +0.5 and -0.5 (p = .200). Conversely, values
in condition +1.0 were significantly larger than -0.5 (t(23) = 3.38, p = 0.016)
and -0.5 (t(23) = 3.38, p = 0.016). At the level of condition -1.0, it was signifi-
cantly larger than the levels of condition -0.5 (t(23) = 4.83, p < .001) and +0.5
(t(23) = 6.38, p < .001).

3.2.5 Model Comparison With Cue Conflict Data

We can now turn to conducting the analysis of model comparison on the full data-
set available to us. Again this model comparison will include the three additional
models, ITA, MTA and RTA. The distribution of posterior probabilities for results
of the comparison are shown in Figure 3.13. On day 1 the models that appear to
be the most favoured are AVG, WTA, ITA and MTA, while on day 2 the most
likely models are AVG, WTA and MTA; notably the MTA model is in the lead for
both days. On both days, the OPT and RTA model are not favoured.
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Figure 3.13: Model Posteriors, With CC Data. The Boxplots
distribution of the posterior probabilities are present, where the
probabilities are calculated using the CC data for days 1 and 2.

The final categorizations of each model are shown in Table 3.4, and seem to
reflect the distributions from Figure 3.13. In these new analyses, the AVG, ITA
and MTA are the only models that participants are being categorized as.

Table 3.4
Categorization of Each Participant’s Model, Including CC
Data.

Winning Model
OPT AVG WTA ITA MTA RTA

Day 1 0 6 0 8 10 0
Day 2 0 7 0 4 13 0
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Chapter 4

Technical Considerations and
Pilot Study

This chapter focuses on the technical aspects of our study, particularly those re-
lated to the cue conflict testing. During this examination, certain concerns emerged
regarding the reliability of the cue conflict data and, consequently, our ability to
interpret the results of our analysis. To address these issues, we conducted a new
pilot study.

4.1 Questions About the Cue Conflict Condition

When we initially analyzed the cue conflict data, we observed an unexpected trend.
On both days 1 and 2, there was a significant ‘dip’ in the data. Notably, the
mean value (µ) for the -0.5 condition was -1.5 mm and -1.3 mm on the respective
days. This raised concerns because these values were considerably larger than
what we would anticipate given the experimental conditions. For instance, even if
participants were using an ITA strategy, such a perceptual shift exceeded the true
cue conflict introduced by the stimulus. This distribution is depicted in Figure
4.1, which can contrasted with Figure 3.12 for reference.
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Figure 4.1: Original CC µ Distribution. Without making the
relevant key adjustments, the distribution of the most likely µ values
of each participant on days 1 and 2 appears as so. Of note is that on
the -0.5 CC condition we see that the distribution of values is far
lower than expected.

This prompted us to conduct a thorough investigation to understand the reasons
behind this ‘dip’ in the data. Our investigation revealed several potential sources
of error, which, in turn, enabled us to refine our final analysis. In Chapter 3, we
presented the outcome of this recalibration process, and will shortly outline the
steps taken to arrive at what we consider to be a more accurate result.

4.1.1 Cue Conflict Multi-Stimulus Piece

Our investigation began by scrutinizing the cue conflict multi-stimulus piece it-
self to identify any physical features that might explain the observed discrepancy.
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Upon measuring the width of each edge of the stimulus piece, we discovered varia-
tions to exist between them. Despite the software specifications indicating a width
of 3 mm for the cue piece, we found that for conditions +1.0, +0.5, -0.5, and 1.0,
the average edge widths were 2.7 mm, 3.0 mm, 2.8 mm, and 3.1 mm, respec-
tively. The two straight comparison edge widths were also 2.8 mm and 2.9 mm. In
contrast, the average width of each edge in the normal cue combination stimulus
consistently remained around within +/- 0.1 mm of 3.0 mm. The most likely cause
of this discrepancy was attributed to challenges in the 3D printing process when
producing the cue conflict multi-stimulus piece. Measures were subsequently taken
to rectify this error in printings of the stimulus for future use.

While the difference in thickness may be relatively small, this could introduce
a confounding variable in the results, as the process of model comparison assumes
that the σs for each digit remains constant. However, if the stimulus edge changes
it’s width, this could mean that the participant’s σs has changed and thus our
analysis loses some power in its accuracy.

So while this may play some role in explaining the data, it does not, however,
appear to be a full solution. As such, we looked to other possibilities to explain
the data.

4.1.1.1 Increasing Precision of the 3D Printer

Addressing the 3D printer-related issue entailed a substantial process of trial and
error, during which multiple steps were implemented to produce a refined stimulus
piece devoid of the problems encountered in the original study’s stimulus. One
of the precision challenges stemmed from the fact that the cue conflict edges had
to be printed with varying support stands beneath them, unlike straight edges.
To enhance edge stability and sharpness, we reduced the print speed from 60.0
mm/s to 50.0 mm/s, allowing more time for each plastic layer to cool before the
next one was added. Additionally, we increased the infill amount, representing the
print’s density, from 20% to 50% to provide enhanced structural support during
the printing process. To further enhance print resolution, we adjusted the layer
height from 0.1 mm to 0.06 mm. Lastly, the wall count layer, a measure of the
outer wall thickness in terms of layers, was increased from 3 to 5, based on a layer
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view analysis indicating that this adjustment would improve both the stability and
resolution of the print design.

4.1.2 Home Position of the Cue Conflict Stimulus

In our exploration of the data, an issue was also discovered with the home po-
sition of the multi-stimulus CC piece. To explain, between the first four blocks
and the last four blocks there is a change in the cue piece from the non-conflict
multi-stimulus piece to the cue conflict multi-stimulus piece. As such, the cue
conflict multi-stimulus piece would need to rotate into the correct position once
the 5th block began. However, it was discovered that while a 72◦ rotation would
be required to accomplish this task, only a 60◦ rotation was done, leading the
resulting cue piece to be, on a whole, 12◦ distal from its ‘home’ position on the
digits. This reduces the accuracy of our analysis, as we assume the participant’s σs

for each digit to be consistent from the first half to the second. However, chang-
ing the position of the edge to such a large degree may also result in changing
the participant’s σs during their CC trials. As a result, assumptions made during
our analysis of the participants’ posteriors when including CC data may not be
valid. Another unintended consequence of this issue is that the digits on the CC
multi-stimulus were at times aligned incorrectly. It was reported by some partic-
ipants that certain digits (particularly D4) could, at times, not feel the reference
or comparison stimulus during some CC conditions.

4.1.3 Rotation of the Cue Conflict Edge

Subsequently, a more significant issue emerged during the investigation. A discrep-
ancy was identified between the experimental distance programmed into the com-
puter, which instructed the motor’s rotation in each 2IFC trial, and the presumed
distance between the comparison stimulus and the reference stimulus. Specifically,
the computer directed the motor to rotate 60◦ from the middle cue edge on the
reference (CC) stimulus to the straight edge of the comparison stimulus. However,
laboratory measurements revealed that the rotational steps required to traverse
this path differed from the expected 60◦, and these discrepancies had implications
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for our analysis. For conditions -1.0, -0.5, and +0.5, the differences were calcu-
lated to be 0.578 mm, 0.716 mm, and 0.405 mm, respectively, added in the distal
direction. To rectify this issue in the analysis, these values were incorporated into
the total distance moved by the comparison stimulus. It is worth noting that
this disparity between the experimental and calculated stimulus levels may have
compromised the efficiency of BAP, as the procedure relied on inaccurate stimulus
intensities (i.e. ∆) to choose the next stimulus level.

4.1.4 Speculative Analysis

As previously mentioned, the home position of the CC multi-stimulus piece was
shifted 12◦ distally. This adjustment occasionally led to a situation where the
participants’ shortest finger, typically D4, couldn’t physically reach the stimulus.
Such occurrences were primarily limited to specific CC conditions that positioned
the edge of the shortest finger further distally.

The absence of this tactile cue was particularly relevant because it had the
potential to influence participants’ perception, making them perceive the cue as
being more distal in the reference task than it actually was. Given that this issue
was most likely to arise in the -1.0 CC condition, where the D4 edge was in the
furthest distal position, we performed the same Bayesian analysis while excluding
the data from this condition only.

The results are presented in Figure 4.2 and Table 4.1. These results indicate a
slightly more pronounced inclination towards the ITA model on day 1, in contrast
to the findings reported in Chapter 3. Meanwhile, the results for day 2 exhibit
relatively consistent outcomes.
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Figure 4.2: Model Posteriors, Excluding +1.0 CC Condition. In
this figure the distribution of the posterior probabilities are
shown, but are calculated without the CC condition +1.0 from
the data on days 1 and 2.

Table 4.1
Categorization of Participants when Excluding CC Condition
-1.0 mm from Data.

Winning Model

OPT AVG WTA ITA MTA RTA

Day 1 0 7 0 8 8 1

Day 2 0 6 0 5 11 2
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4.2 Pilot Study

The goal of the pilot experiment was to construct a study which attempted to
address the question raised by the original study, i.e. examining whether or not
extended training would influence which models participants were most likely em-
ploy for cue combination. If participants do improve and ‘switch’ to more optimal
models as a result of increased training, we will likely see a sensory D234 σs that
is much lower than any other digit’s sensory σs on day 5 in comparison to the
participant’s results on day 1.

4.2.1 Methods of Pilot Study

While the pilot study makes few changes to the 2IFC testing procedure of the
original study, there are some key changes made to the overarching structure of
the experiment which will be discussed in the following paragraphs. The apparatus
and general laboratory organization also remains unchanged with regards to the
original study. The exception to this were the cue pieces used for the 2IFC task,
which were reprinted to remove the issues faced within the original study. The
dimension of the cue pieces were also changed by decreasing the width from 3 mm
to 2 mm. Three undergraduate participants were recruited from within our lab
for this pilot, and they will be referred to as P1, P2 and P3.

The participants came in for testing over a 5 day period, and on day 1 and day
5 they completed the same procedure as the original study’s day 1 and day 2. In
other words, on the first and last day they completed 4 blocks of the non-conflict
cue combination task (see Figure 3.1a for reference to the multi-stimulus piece
used) and on the last four blocks they under went a cue conflict task (see Figure
3.1b for reference to the multi-stimulus piece used). Similar to the original study,
each block consisted of 70 trials of the 2IFC task.

Days 2, 3 and 4 were dedicated to training the participants on the 2IFC task.
On these days only the normal cue combination task (thus only the cue stimulus
seen in Figure 3.1a) was used. To further examine whether the type of training
had an affect, the participants were divided into two groups. One participant (P1)
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only experienced the D234 edge stimulus for all training day blocks while two
participants (P2 and P3) equally divided the blocks between the four edges (D2,
D3, D4 and D234). While the pilot’s sample size is small, we hope to expand on
the between-subjects condition in a future study. Throughout all training days
each participant received automated feedback indicating their correct/incorrect
judgements of each 2IFC trial.

4.2.2 Preliminary Results of Pilot Study

Like in Chapter 3 of this thesis I will begin by contrasting the values of σs on day 1
and day 2 of the experiment. The results are shown in Figure 4.3 and indicate that
while P1 did not differ greatly between days, P2 and P3 show some improvement
in their acuity on day 5 across all four conditions.

Figure 4.3: Pilot: Comparison of σs. The three pilot participants
are distinguished by colour, and an identity line in red is present for
comparison. The Bayesian 75% CI is shown as well.
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In Table 4.2 the mode of the σs posteriors on days 1 and 5 are shown respectively,
and appear to indicate that P1 and P3 did not show a pattern of greater acuity
in D234 than all of their individual digits, and did not improve in reducing their
σs greatly upon training. While P2 did show large improvements in their acuity
of their D234 on day 5 compared to D1, their improvement was not to the extent
that it was clearly better than any single digit.

The next step in the analysis was to apply Bayesian model comparison to find
what model the participants are most likely using. The distribution of probabilities
for each model is shown in Figure 4.5. No consistent trend was found among the
three participants, but results here do seem to be consistent with the results of the
original study in Chapter 3. On days 1 and 5, the ITA, AVG and RTA models have
the largest posteriors, though participants 2 and 3 are classified under different
models for the two days. The final classifications are shown in Tables 4.4 and 4.5,
showing the calculations completed both with and without cue conflict data.

Table 4.2
Pilot: σs of Each Digit.

σs on Day 1

ID D2 D3 D4 D234

P1 0.8 0.6 0.6 0.7

P2 2.4 2.0 1.8 3.8

P3 2.0 3.6 2.2 1.8

σs on Day 5

ID D2 D3 D4 D234

P1 0.8 0.6 0.9 0.8

P2 0.8 0.9 1.3 1.2

P3 1.4 2.3 1.6 1.8

Table 4.3
Pilot: µ of Each CC Condition.

µ on Day 1

ID -1.0 -0.5 +0.5 +1.0

1 0.8 0.4 -0.8 0.0

2 -0.2 -1.0 -1.2 0.0

3 -0.6 -0.2 -0.2 0.0

µ on Day 5

ID -1.0 -0.5 +0.5 +1.0

1 -0.8 1.4 -1.2 0.2

2 -2.0 -2.4 -0.6 -1.2

3 0.0 1.2 0.4 0.8
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Figure 4.4: Pilot: Comparing µ on Days 1 and 5. The three
pilot participants are distinguished by colour, and an identity line
in red is present for comparison as well as the 75% Bayesian CI.
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Figure 4.5: Pilot: Model Posteriors For Each Participant. The
above distribution is of the posterior probabilities calculated for
each model on days 1 and 5 of the pilot. The top row of figures
shows the probability calculated without the CC data while the
bottom row of figures shows the probability when including it.
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Table 4.4
Pilot: Categorization of Each Participant’s Model, Excluding
CC Data.

Winning Model
OPT AVG WTA ITA MTA RTA

Day 1 0 1 0 1 0 1
Day 5 0 0 0 1 0 2

Table 4.5
Pilot: Categorization of Each Participant’s Model, Including
CC Data.

Winning Model
OPT AVG WTA ITA MTA RTA

Day 1 0 1 0 0 2 0
Day 5 0 1 0 0 2 0

Further investigation with a larger sample size of a naïve participant population
will be necessary to determine whether the results of the pilot are representative.
As is, the pilot data seems to suggest that training is not as effective in producing
optimal cue combination as would be predicted given the results of the original
study.
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Chapter 5

Discussion

General Discussion

The general focus of this thesis centers on employing a Bayesian perceptual frame-
work to further our understanding of tactile cue combination in human perceptual
systems. Specifically, our goal was to investigate whether the brain optimally
performs tactile multi-cue integration. Underscoring this framework was an un-
derstanding of the probabilistic nature of decision-making and the role of sensory
noise in the sensory process. The human hand was chosen as a focus in our exper-
imental design due to its relevance in tactile perception. Bayesian inference was
described as a normative model of perceptual processes and applied to our under-
standing of how the brain constructs models of the external world and abstracts
complex sensory inputs. The integration of multiple sensory cues was examined,
and three models of cue combination (OPT, AVG and WTA) were initially pre-
sented as possible candidates.

Prior to testing participants in a laboratory setting, computer simulations were
employed to simulate human participant responses, serving as reflections of ex-
pected outcomes in actual experiments and as proof of concept. The simulation
settings mirrored the same testing procedure conducted in laboratory settings,
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which involved a two-day experiment with eight blocks, each consisting of 70 tri-
als of a 2IFC task. The computer program simulated 24 participant responses,
drawing from two idealized distributions their sensory acuity (σs), and underwent
each of the three models cue combination. The simulations showed the strength
of Bayesian model comparison in correctly classifying the results, which increased
in accuracy with both a larger number of trials and when cue conflict data was
included.

The experimental study also involved 24 participants recruited from McMaster
University, and various screening criteria were applied to ensure the participants’
eligibility. Statistical analyses were performed, comparing participants’ sensory
acuity (σs) for each digit conditions on day 1 and day 2. The results showed
that participants improved their acuity for D234 on day 2, while D2, D3, and
D4 remained consistent. The analysis also compared participants’ best single-
finger acuity to D234 acuity and found significant differences, with the single-digit
showing more sensitivity than D234. Additionally, participants’ D234 acuity was
compared to model predictions, revealing significant discrepancies. Alternative
models, including index-take-all (ITA), middle-take-all (MTA), and ring-take-all
(RTA), were considered as a result. These alternative models were shown to be
a better fit for the data than the original three were alone. The analysis also
incorporated cue conflict data, which showed a shift in perceptual bias between
day 1 and day 2, particularly on conditions -1.0 , -0.5 and +0.5. Model comparison
revealed that when cue conflict data is not considered, the ITA and MTA models
are favoured on both days. When cue conflict data is considered, the MTA, ITA
and AVG model were the most favored on both days, though ITA categorizations
decreased by day 2.

During the initial stages of data analysis, concerns arose regarding the reliabil-
ity of cue conflict data and its impact on our analysis. An unexpected dip in the
data was observed, particularly in the -0.5 condition, prompting a thorough in-
vestigation into potential sources of error. Discrepancies in the CC multi-stimulus
piece’s physical features, 3D printing precision and rotation positioning issues were
identified and addressed.

From the final results of the study it becomes clear that in this experimental
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design tactile cue integration is markedly sub-optimal. The results of this study
are in line with the previous work by our lab by Prodribaba (2018), in which par-
ticipants also failed to achieve optimal cue combination of tactile cues. Similarly, a
paper by Rosas et al. (2005) had also shown non-optimal cue integration of texture
and haptic cues in participants. However, many other studies on cue integration
indicate optimal cue integration, leading us to consider what could be the cause of
this lack of optimally in our study Alais and Burr, 2004; Ernst and Banks, 2002;
Körding and Wolpert, 2004.

Perhaps mediating this issue is a lack of experience in the experiment-specific
task, which in turn is reducing the participants’ ability to integrate sensory in-
formation on this task optimally. Within our study it appears that there is some
improvement from day 1 to day 2, specifically in condition D234, indicating the
possible role of training in moving the participants towards optimally (or towards
being less sub-optimal). Of note, however, is the fact that the trend towards im-
proved tactile cue-integration on day 2 was most apparent when CC data was not
considered. While corrections were done in our analysis to account for some issues
that arose during the CC portion of the experiment, we cannot know to what ex-
tent our post hoc analysis is effective in eliminating error. Thus, at the moment,
the non-conflict data is more informative to our final conclusions.

The pilot study aimed to examine the influence of extended training on par-
ticipants’ model choices, with three participants completing a 5-day experiment
involving the same testing paradigm as the original study on days 1 and 5, but with
days 2-4 only involving training on the non-conflict multi-stimulus piece. Prelimi-
nary results demonstrated varied effects on sensitivity and perceptual bias, but no
general trend towards being particularly optimal. Bayesian analysis of posterior
probabilities on days 1 and 5 suggested potential shifts in model classification.

While the pilot data suggests that cue combination within the hand perhaps
reaches some threshold performance that is not improved relative to any individual
digit, it would still be worthwhile to conduct the testing on a larger group of par-
ticipants naive to the study to be certain of the effect of training on performance.

Another possible explanation for the less than optimal cue integration would
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be that the cue combination task is somehow increasing the participant’s cognitive
load, in the sense that the brain is dividing its attention among the three digits,
leading to each digit having a worse σs in the D234 condition. One of the key
assumptions of our model is that the σs of each individual digit remains constant,
but it could be that it becomes more difficult for the brain to accurately perceive
the presentation of a cue with the additional digits present. One could also consider
that under this assumption, the brain could in fact be combining the tactile cues
optimally, but that each cue it receives is now less accurate. Further testing would
be required to investigate whether this truly could be the case.

5.1 Sources of Error

In the course of our research, several potential sources of error and limitations have
emerged, which necessitate a critical examination of the reliability and validity of
our findings. These issues shed light on the complexity of the cue conflict paradigm
and underscore the importance of refining our experimental design and analysis
methods for future investigations.

5.1.1 Challenges in the Cue Conflict Paradigm

One significant challenge arose during the analysis of the cue conflict data. We
observed an unexpected dip in the data, particularly on days 1 and 2, where partic-
ipants displayed larger perceptual shifts than anticipated given the experimental
conditions. Although we identified one potential source of this issue related to
the width of the cue conflict stimulus piece, it is essential to acknowledge that
there may be additional, as-yet undiscovered factors influencing these results. The
complexity of the human sensory system and the intricacies of cue combination
suggest that the true nature of sensory integration might involve more subtleties
than currently understood.

5.1.2 Infinite Sub-Optimal Models

It is worth noting that there is a vast number of potential sub-optimal models, and
the choice to include or exclude them in our analysis can significantly impact the
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results. Our analysis hinges on the assumption that other possible models are non-
significant in explaining participants’ behavior. An example of this is the transition
from considering three models to six models, highlighting the sensitivity of our
conclusions to the model selection process. It remains an open question whether
some of these other sub-optimal models could indeed contribute to explaining
participants’ responses to a certain extent, thus requiring further investigation.

5.1.3 Assumptions in our Analysis

Within our research framework, we rely on several assumptions that merit scrutiny.
Firstly, the assumption of normality in modeling participants’ perceptual biases
and sensory acuity may not be entirely accurate, as individual variations in sensory
processing can deviate from a strict normal distribution. Secondly, the assump-
tion of independence between digits may not hold true in all scenarios, as the
sensory system’s interaction between adjacent digits could introduce dependen-
cies. Moreover, the assumption that the brain inherently knows the acuity of each
finger might not be entirely accurate, and participants might need to learn this
information through specific training designed for the task. These assumptions
highlight the need for future studies to consider alternative modeling approaches
that accommodate these complexities.

5.1.4 Mechanical Considerations of Experiment

Another potential source of error that became evident during the study was the
possibility of participants’ fingers shifting from their initial location on the stimu-
lus. This occurrence could influence participants’ perception and create ambiguity
in interpreting their sensory acuity. Also of note is the possibility that, after a
certain number of trials, the cue pieces stability was slightly compromised as the
screws would become loose over time to some small extent. This aspect, while not
noticed in the original study, can be easily addressed by re-tightening the appro-
priate screws for future experiments. While these issues has been identified and
addressed in subsequent studies by ensuring proper stimulus design, it is crucial
to acknowledge its potential impact on our current data and thus our analysis.
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5.1.5 Effect of Covid-19

The research conducted for this thesis was not without its share of challenges,
many of which were exacerbated by the unique circumstances brought about by
the Covid-19 pandemic. One significant obstacle was the strict limitations placed
on in-person interactions and testing with study participants. The necessary safety
measures and restrictions made it particularly challenging to conduct tactile per-
ception experiments that required close physical proximity. Adhering to safety
protocols, we found creative solutions to continue our research while ensuring
the health and well-being of both participants and researchers. Moreover, the
pandemic-induced limitations extended to collaboration with peers, with remote
work and physical distancing measures impacting the free exchange of ideas and
discussions amongst peers and collaborators. Despite these challenges, the dedica-
tion and adaptability of this research team allowed us to navigate these unprece-
dented circumstances and successfully conduct this study.

5.2 Future Directions

As we reflect on the outcomes and limitations of our current study, it becomes
evident that there are promising avenues for future research that can both enhance
our understanding of sensory integration and address some of the unresolved issues
we encountered during this investigation.

5.2.1 Pilot Study Insights

Building on the insights gained from our pilot study, we recognize the need for
further refinement in the design and execution of our experiments. One issue
that we have yet to fully resolve is the occurrence of participants’ digits landing
on the wrong edges of the cue conflict stimulus. This unintended outcome could
potentially skew our results and interpretations. However, we are committed to
rectifying this issue in the forthcoming actual study by implementing more precise
control measures to ensure that participants’ fingers are appropriately positioned.
Additionally, some participants in our pilot study exhibited a high degree of fa-
miliarity with the study and its premises, which could influence their responses.
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Future investigations will aim to recruit participants who have no prior exposure
to the study, reducing the potential for familiarity bias and enhancing the gener-
alizability of our findings.

5.2.2 Manipulating Digit Acuity

Another intriguing avenue for future research involves artificially manipulating
the sensory acuity of one specific digit, such as the index finger, and examining its
impact on participants’ behavior. By increasing the σs of the index finger’s sensory
estimate, we can create a controlled scenario to probe which model participants
are using for sensory integration. If participants consistently prioritize information
from the index finger, even when it is less reliable due to the increased sigma, it
could provide valuable insights into their perceptual decision-making processes.
This approach allows us to explore the robustness of the models under different
conditions and gain a deeper understanding of how sensory uncertainty influences
the integration of tactile information.

5.2.3 Broader Applications

Expanding upon our current study’s outcomes and potential future directions,
we hope that one day the insights gained here can extend beyond the realm of
pure research. The principles and findings from our investigation into sensory
integration and perceptual decision-making hold promise for various applications,
particularly in the fields of robotics and surgery (Sankar et al., 2021).

In the field of robotics, our research can inform the development of tactile
sensors and robotic systems that aim to mimic human-like tactile perception. By
understanding how humans integrate sensory cues to make decisions, we can guide
the creation of robots that interact more intuitively with their environments. These
robots could possess improved object recognition capabilities and adaptability in
various tasks, including those requiring dexterity and object manipulation. Such
research would have particular relevance in the field of prosthetics, as those with
impaired arms or hands would benefit from robotic limbs which can both act to
manipulate objects and sense them.
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Moreover, the knowledge derived from our study can be beneficial in surgi-
cal contexts. Surgeons rely heavily on haptic feedback during minimally invasive
procedures Patel et al. (2022), where direct tactile contact is limited. Understand-
ing how the human brain processes and integrates tactile information can lead to
the design of more advanced haptic feedback systems for surgical robots. These
systems could provide surgeons with enhanced tactile sensations, improving their
ability to perform delicate and precise procedures.

By considering these potential applications in the fields of robotics and surgery,
our research not only advances our fundamental understanding of sensory integra-
tion but also contributes to practical advancements in technology and healthcare.
As we continue to explore and refine the intricacies of human tactile perception,
we anticipate that these insights will play a pivotal role in shaping the future of
these industries.

5.2.4 Conclusion

In conclusion, our research endeavor into the intricacies of sensory integration and
perceptual decision-making has shed light on the multifaceted nature of human
tactile perception. While our study has unveiled valuable insights and raised im-
portant questions, it also highlights the complexity of this phenomenon. As we
navigate the intricate interplay between sensory modalities and decision processes,
there remains much to explore, refine, and understand, with particular emphasis
on the role of cue integration in the sensory system. With ongoing dedication to
empirical rigor and innovative approaches, the path forward promises continued
revelations and a deepening of our comprehension of how humans process and
integrate sensory information.
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Appendix A

Supplemental Derivations

Unweighted Average Model: σ234

In our calculations each stimulus applied to a digit (D2, D3 and D4) produces a
measurement distribution which is modelled as a Gaussian.

D234 will thus have a percept of µ234 = x2+x3+x4
3 under the AVG model (see

Table 2.1), where each xi indicates the cue percept of that stimulus applied to the
respective digit. Beginning with x = x2 + x3 + x4, we note that since the distribu-
tions are Gaussian, when adding the percept we can also add their variances.

σ2
x = σ2

2 + σ2
3 + σ2

4 (A.1)

σx =
√

σ2
2 + σ2

3 + σ2
4 (A.2)

Since µ234 = x
3 , this means that σ234 = σx

3 as well.

σ234 =

√
σ2

2 + σ2
3 + σ2

4

3 (A.3)

And thus the AVG model derivation of σ234 is complete.
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Optimal Model: σ234

If we examine the percept formula for the optimal model, as shown in Table 2.1 we
can apply a similar logic to the AVG model to calculate σ234. We start by keeping

in mind our final equation of our percept, µ234 =
x2
σ2

2
+ x3

σ2
3

+ x4
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

. We know that each

individual digit’s percept, xi will have a standard deviation of σi, and multiplying
both sides by a constant will still maintain equality, as seen in equation A.4 for
x2.

sd

x2 ·
1

σ2
2

1
σ2

2
+ 1

σ2
3

+ 1
σ2

4

 = σ2 ·

 1
σ2

2
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

 =
1

σ2
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

(A.4)

Since the variance of µ234 is the sum of the the variances of µ2, µ3 and µ4, we
will have the following result.

σ2
234 = σ2

2 + σ2
3 + σ2

4 (A.5)

σ2
234 =

 1
σ2

1
σ2

2
+ 1

σ2
3

+ 1
σ2

4

2

+
 1

σ3
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

2

+
 1

σ4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

2

(A.6)

σ2
234 =

1
σ2

2
+ 1

σ2
3

+ 1
σ2

4(
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

)2 = 1
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

(A.7)

σ234 =
√√√√ 1

1
σ2

2
+ 1

σ2
3

+ 1
σ2

4

(A.8)

Thus completing the derivation of σ234 under the OPT model.
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Perceptual Shift Under Cue Conflict

As mentioned previously, the µ234 under the optimal model is µ234 =
x2
σ2

2
+ x3

σ2
3

+ x4
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

.

Under the CC condition, however, we can more precisely state what each digit will
be relative to the other. More specifically, x2 = ∆ + δ, x3 = ∆ and x4 = ∆ − δ for
δ = −1.0, −0.5, +0.5, or + 1.0 mm.

Replacing these terms we find the following:

µ234 =
∆+δ
σ2

2
+ ∆

σ2
3

+ ∆−δ
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

=
 1

σ2
2

− 1
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

 δ +
 1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

1
σ2

2
+ 1

σ2
3

+ 1
σ2

4

∆ (A.9)

µ234 =
 1

σ2
2

− 1
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

 δ + ∆ (A.10)

Thus, when comparing a reference CC edge to the location of the straight
comparison edge (the latter edge being shifted by ∆ on some trial), we would expect

the perceived difference to be ∆ +
( 1

σ2
2

− 1
σ2

4
1

σ2
2

+ 1
σ2

3
+ 1

σ2
4

)
δ. Hence why the participant’s

psychometric function is now "biased" compared to a 2IFC task in which only
straight edges are applied.
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