Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/27276
Title: Impact of Charge Profile on Battery Fast Charging Aging and Dual State Estimation Strategy for Traction Applications
Authors: Da Silva Duque, Josimar
Advisor: Dr. Ali Emadi
Department: Mechanical Engineering
Keywords: Battery;Fast Charging;Extended Kalman Filter;Smooth Variable Structure Filter;Battery Aging;State of Charge Estimation;Battery Capacity Estimation
Publication Date: 2021
Abstract: The fast-growing electric vehicles (EVs) market demands huge efforts from car manufacturers to develop and improve their current products’ systems. A fast charge of the battery pack is one of the challenges encountered due to the battery limitations regarding behaviour and additional degradation when exposed to such a rough situation. In addition, the outcome of a study performed on a battery does not apply to others, especially if their chemistries are different. Hence, extensive testing is required to understand the influence of design decisions on the particular energy storage device to be implemented. Due to batteries’ nonlinear behaviour that is highly dependent on external variables such as temperature, the dynamic load and aging, another defying task is the widely studied state of charge (SOC) estimation, commonly considered one of the most significant functions in a battery management system (BMS). This thesis presents an extensive battery fast charging aging test study equipped with promising current charging profiles from published literature to minimize aging. Four charging protocols are carefully designed to charge the cell from 10 to 80% SOC within fifteen minutes and have their performances discussed. A dual state estimation algorithm is modelled to estimate the SOC with the assistance of a capacity state of health (SOHcap) estimation. Finally, the dual state estimation model is validated with the fast charging aging test data.
URI: http://hdl.handle.net/11375/27276
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Duque_Josima_Da_Silva_finalsubmission2021December_Master.pdf
Open Access
9.93 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue