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Abstract     

The fast-growing electric vehicles (EVs) market demands huge efforts from car 

manufacturers to develop and improve their current products’ systems. A fast 

charge of the battery pack is one of the challenges encountered due to the battery 

limitations regarding behaviour and additional degradation when exposed to such a 

rough situation. In addition, the outcome of a study performed on a battery does not 

apply to others, especially if their chemistries are different. Hence, extensive testing 

is required to understand the influence of design decisions on the particular energy 

storage device to be implemented. Due to batteries’ nonlinear behaviour that is 

highly dependent on external variables such as temperature, the dynamic load and 

aging, another defying task is the widely studied state of charge (SOC) estimation, 

commonly considered one of the most significant functions in a battery 

management system (BMS).  

This thesis presents an extensive battery fast charging aging test study 

equipped with promising current charging profiles from published literature to 

minimize aging. Four charging protocols are carefully designed to charge the cell 

from 10 to 80% SOC within fifteen minutes and have their performances discussed. 

A dual state estimation algorithm is modelled to estimate the SOC with the 

assistance of a capacity state of health (SOHcap) estimation. Finally, the dual state 

estimation model is validated with the fast charging aging test data.   
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Chapter 1           

Introduction 

 

1.1 Background and Motivation 

The high output voltage and energy density place Lithium-ion battery as the 

principal means of rechargeable energy storage for portable devices. Recently, the 

demand for a faster charging time of batteries applied to these mobile devices such 

as electronics, electric vehicles, power tools, and even military equipment has been 

given increasing attention [1]. That is mainly driven by the electrification of 

transportation estimated to have battery electric vehicles (BEVs) representing about 

60% of the automobile market by 2050 [2].  

The acceptance of battery electric vehicles BEVs by potential customers is 

linked to the improvement of the battery’s ability to compete with internal 

combustion engine vehicles (ICEs) concerning the charging time and the range 

anxiety, which is related to the driver’s fear of having the battery depleted during 

his journey [3],[4],[5],[6]. Improving the battery charging time of a BEV to be 

equivalent to the refuelling time of an ICE would require a charging power of least 

400kW [7]. Nevertheless, reaching such a high power is a challenge due to physical 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

2 

 

constraints from the battery itself, charge stations and the electric grid 

infrastructure.  

The BEV fleet available today is increasing fast, with new models surging 

from both the well-established car manufacturers and smaller players getting into 

the market. These new models' charging times, Table 1.1, are still not competitive 

with ICE vehicles and are dependent on the charge station power used and the 

battery pack size it carries. In addition, the fast charging (FC) time accounts for the 

first about 80% of the battery pack capacity and does not cover the other twenty 

percent of the remaining capacity that can last even longer than the FC. 

Table 1.1: Battery electric vehicle fast charging times [8]. 

Vehicle 
Battery Capacity 

[KWh] 

Fast Charging 

Time [Min] 

2019 CHEVROLET BOLT 60 30 

2019 AUDI E-TRON 95 60 

2019 BMW I3 42.2 50 

2019 HONDA CLARITY EV 25.5 30 

2019 HYUNDAI IONIQ EV 28 33 

2019 HYUNDAI KONA EV 64 75 

2019 JAGUAR I-PACE 90 55 

2019 KIA SOUL EV 27 46 

2019 KIA NIRO EV 64 75 

2019 NISSAN LEAF 40 60 

2019 NISSAN LEAF PLUS 64 45 

2019 VOLKSWAGEN E-GOLF 35.8 60 

Note: Charging time based on a level 3 50kW DC charge station. 
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Along with the charging time challenge, companies face other problems in 

composing an attractive and reliable product. States estimation of the energy 

storage system is one of them. That is because the batteries behave differently 

depending on external variables such as temperature gradient, current load and their 

state of health (SOH). The battery management system is responsible for providing 

crucial information through measurements and software for the control and 

protection of the storage unit. State of charge (SOC) and state of health are two 

estimations within the set BMS provides. SOC is the ratio of current flow integrated 

by the battery rated capacity, whereas SOH is the ratio of the metric used, capacity 

or impedance, for an aged battery and a new one [3]. 

The growing interest in fast-charging from industry has required the necessity 

of better understanding the charging process limits and the consequences different 

approaches bring to the battery life. The strong impact charging profile has on 

battery life, the pursuit for fast charging minimizing the large gap in time between 

the internal combustion vehicle refuel and electric vehicle charging, and the 

importance of providing a consistent state of charge estimation at the different 

stages of the battery life has motivated this work. Therefore, this thesis brings a fast 

charging aging study with promising current charging profiles from published 

literature and a dual state estimation strategy accounting for the capacity state of 

health (SOHcap) and state of charge (SOC). 
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1.2 Research Contributions 

The work performed in the course of this thesis brings a vast data set with 

valuable information pertaining to battery aging prepared to be easily employed in 

the development of state of charge, health and power algorithms. Programs with the 

test schedules are written for the battery cycler and can be straightforwardly 

modified to continue the investigation of the influence fast charging profiles have 

on batteries.  

To complete this work, new cabling of the channels for the purchased battery 

tester was built, and the battery laboratory facility improved with new cable trays 

installed. Also, fixtures for sixteen purchased cylindrical cell holders were built, 

contributing to future studies eliminating the need to assemble new fixtures and 

weld them on every cell’s terminals tested. These efforts will benefit future 

researchers with ready to be used equipment. 

1.3 Thesis Outline 

This thesis contains a combination of experiments and modelling and is 

organized into seven chapters: 

Chapter 1 addresses the motivation and contributions to future works. 

Chapter 2 provides a review of battery charging methodologies and their 

influence on degradation minimization through the outcomes of their use in the 

literature.  
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 Chapter 3 introduces a review of state estimation algorithms applied in the 

battery state of charge and state of health. 

Chapter 4 describes the fast charging aging test design of experiment created 

with the four protocols designed to prevent battery aging. It also exposes the 

motivation of the features considered in their design.  

Chapter 5 presents an overview of the dual state estimation modelling 

development with the strategies adopted in the model's conception. 

Chapter 6 reveals the outcomes of the fast charging aging test to date with 

an analysis of the influence each designed charging profile had on capacity 

retention, battery temperature, internal resistance, and open circuit voltage curve 

drift across the battery life cycle. In a second part, the dual state estimation 

algorithm designed in Chapter 5 is validated with a series of simulations 

encompassing the SOC estimation robustness to sensor error simulating nine cases 

for a new and aged battery, robustness to initial SOC error, and SOC and SOH 

estimation over the battery life cycle. 

Chapter 7 summarizes the work with a discussion about the outcomes of both 

experimental and simulation work, with the recommendation of future work to 

enrich the current analysis. 
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Chapter 2        

Battery Charging Methodologies to 

Minimize Aging: State of the Art 

 

The growing interest in fast-charging from industry has required the necessity of 

better understanding the charging process limits and the consequences different 

approaches bring to the battery life. The battery management system (BMS) is the 

most expensive system of an electric battery vehicle [9]; thus, extra attention shall 

be laid on its integrity. 

Battery degradation occurs independently if the device is being utilized or 

not. The degradation magnitude is dictated by a combination of the way the battery 

is solicited and external factors such as temperature. For instance, positive and 

negative electrodes present different degradation mechanisms [10] and are 

responsible for the majority of the battery aging phenomena [2]. These mechanisms 

are originally caused by mechanical or chemical reactions inside the battery that 

can induce changes in the structure and chemical composition of the electrodes and 

electrolytes. 

The battery charging methodology presents itself as extremely important in 

the battery’s performance to minimize aging phenomenons. As demonstrated in 
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[11], charging current and voltage can distinctively affect different lithium-ion 

batteries’ cycle life. Additionally, in general, high charging current has more impact 

on cell life than discharging currents. Therefore, this chapter brings a review of the 

charging profiles, Figure 2.1, studied in the literature aiming at battery aging 

minimization. 

 

Figure 2.1: Battery charging methodologies. 
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2.1 Constant Voltage Protocol 

The constant voltage (CV) is a charging profile that maintains the potential 

𝑉𝑐ℎ steady, usually at the value of the maximum battery voltage 𝑉𝑚𝑎𝑥, while the 

current drops due to the internal impedance increase up to a higher state-of-charge, 

Figure 2.2. It is mainly employed as the last phase of charging protocols to take the 

cell’s capacity utilization to its highest. Nevertheless, the algorithm can also be 

applied as a one-phase charging profile from the beginning or incorporated between 

other phases to build different charging strategies.  

2.1.1 Constant Voltage in the Literature 

The CV used to charge the battery from depleted condition to fully charged 

causes a faster degradation rate due to its high initial currents [12]. The experiment 

brought in [13] depicted the almost two times faster charging with the CV protocol 

of charge voltage 𝑉𝑐ℎ equals to battery maximum voltage  𝑉𝑚𝑎𝑥 compared to the 

standard constant current constant voltage (CCCV) that could keep a nearly linear 

aging in the capacity up to about the cycle 180 when the degradation is enhanced, 

and the end of life (EoF) takes place just past the 200th cycle. However, the speed 

turned to be more detrimental to the 1.1Ah Sony US18500 battery than the CCCV 

that kept similar behaviour until EoF a little over 300 cycles. [12] work likewise 

experimented with the constant voltage protocol in 1.4Ah Sony US18650 cell, 

stating that the charging time from 0 to 80% was almost twice as fast as the CCCV; 

however, the battery used did not reveal a drastic capacity fade of the cell submitted 
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to CV.  Instead, the batteries aged 7.3% and 9.5%  with the standard and CV 

charging,  respectively, after a hundred and fifty cycles. 

2.2 Constant Current Protocol 

This type of protocol consists of applying an unchanged current until the end 

of charging or up to the following profile to form a charging strategy. Combining 

it with a following constant voltage (CV) phase forms the constant current constant 

voltage (CCCV) profile, the most prevalent method for charging a battery [13], 

[14]. The constant current (CC) charging alone is applied when there is no need in 

charging the cell to its total capacity; this is because when the growing voltage hits 

the maximum voltage specified by the manufacturer or the maximum voltage of the 

designed protocol, the battery still has not reestablished all the lithium-ions back to 

the anode. Consequently, charging profiles with decaying current must be applied 

at the end of charging protocols to charge the battery to its full capacity. 

The CCCV charging profile, Figure 2.2, also serves as a reference when 

comparing the effectiveness of other designed charging protocols and works as 

described: first, the charging current 𝐼𝑐ℎ𝑔 is kept constant at a specified C-rate until 

the rising voltage reaches a pre-defined value 𝑉𝑚𝑎𝑥, then the second phase, the CV, 

the charging voltage 𝑉𝑐ℎ remains constant to the point the dropping current hits a 

defined limit 𝐼𝑒𝑛𝑑 or the time passes a maximum pre-set value 𝑡𝑐ℎ𝑔. 
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Figure 2.2: Illustrative chart of constant current constant voltage protocol. 

2.2.1 Constant Current in the Literature 

The work in [11] showed the difference in capacity retention an aging test can 

result in three different cells with similar characteristics. Through CCCV protocols 

with absolute ampere values of 1A, 3A and 5A constant current phase, a strategy 

claimed by the authors to submit the cells to comparable current density and 

electrode stress, they demonstrated the 1.25Ah Sanyo UR18650SA and 1.1Ah Sony 

US18650VT1 cells that shared the same cathode and anode materials, diverged 

regarding the number of cycles at the end of life (80% SOH). Sony’s cell reached 

around 1000 cycles using the three protocols. In contrast, the Sanyo’s got 900, 700 

and 500 cycles with 1A (0.9C), 3A (2.7C) and 5A (4.5C) CCCV, respectively. The 

third cell, a 1.1Ah A123 APR18650M1A, had the best outcome concerning cycle 

life among the CCCV protocols. It lost just 3% of its capacity when submitted to 

1A (0.9C) CCCV protocol after one thousand two hundred cycles and 5% with the 

3A (2.7VC) CCCV one. With the current increased to 5A (4.5C), the A123 cell 

behaved like Sanyo’s cell, having just 600 cycles achieved with 80% capacity 
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retention. These results indicate the current increase caused lithium plating, 

intensifying the cell degradation massively. 

2.3 Multistage Constant Current Protocol 

The multistage constant current profile is a variant of the CC protocol. It 

consists of constant current steps of different C-rates increasing, decreasing or 

randomly shaped to attend to design requirements, Figure 2.3. This protocol works 

similarly to the CC; however, transitions are set to occur at values of voltages lower 

than the 𝑉𝑚𝑎𝑥, either triggerd by the pre-defined voltages or time spent on each 

particular phase (step). Equally to CC charging, the MCC also has to count on a 

decaying current profile at the end of its schedule to charge the battery to its full 

capacity utilization, a CV phase, for example. 
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Figure 2.3: Illustration of multistage constant current protocols followed by a CV phase: 

(a) decreasing MCC, (b) increasing MCC, and (c) random MCC.  

The application of the MCC protocol is not limited to the early stages of 

charging strategies. The protocol can replace the CV charging method by applying 

(a) 

(b) 

(c) 
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a monotonically decreasing C-rate of the periods to reach a higher state of charge 

of the cell [11]. When used that way, it is designed to follow the CV charging as 

close as possible with the necessary number of stages to reach the desired capacity. 

It begins with a current 𝐼1 switching to the next period of lower C-rate, defined in 

the design, when the terminal voltage hits the 𝑉𝑚𝑎𝑥. Once the final current 𝐼𝑒𝑛𝑑 

phase (lowest pre-set current step) runs and the 𝑉𝑚𝑎𝑥 is reached, the charging is 

terminated. Timewise, it is inferior to CV charging if both implemented to charge 

up to the same SOC, but it has the advantage of simpler implementation as the need 

for voltage controlling through software and hardware is eliminated [11]. 

 
Figure 2.4: Illustrative comparison of constant voltage and multistage constant current 

protocol in charging strategies.  

2.3.1 Multistage Constant Current in the Literature 

Authors have studied the advantages and how to extract the best from MCC. 

In [15], an algorithm using Particle Swarm Optimization (PSO) with a fuzzy logic 

control to maximize battery charging time and cycle life was proposed. The same 

strategy was employed in [16] work that reduced the charging time by half while 
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improving the battery lifespan; however, with the expense of 12% less capacity 

charged each cycle from MCC capability to reach higher SOC. Taguchi method 

approach was used in [17] to search for an optimal five stages MCC charging 

pattern and obtain claimed benefits from the charging method such as energy 

transfer improvement, cycle life increase and faster charging [18].  

A comparison of multistage constant current, constant current constant 

voltage and pulse charging is depicted in [19]. MCC profile outperforms the other 

two profiles in an overall analysis of charging time, efficiency, control complexity, 

implementation complexity and cycle life. Employing a consecutive orthogonal 

array [20] could optimize multistage constant current capable of charging the 

battery to 95% SOC while improving the efficiency by one percent compared to the 

CCCV charging. The study also showed that the designed charging protocol 

increased the battery lifespan by 57% at seventy percent capacity retention.  

2.4 Boost Charging Protocol 

Boost Charging (BC) derivates from the CCCV protocol with an extra 

constant voltage phase implemented at the beginning of charging, making it a faster 

charging algorithm [13]. It comprises a brief first phase of high dropping current 

input into the battery because of applied 𝑉𝑏𝑜𝑜𝑠𝑡 that is terminated by the time 𝑡𝑏𝑜𝑜𝑠𝑡, 

followed by a CCCV protocol of lower currents, Figure 2.5 (b). According to [13], 

if the resulting current from the CV applied somehow surpasses the battery limit, 

the CV boost phase can be replaced by a CC or a CCCV to limit it, forming a 

CCCCCV and a CCCVCCCV or (CCCV)2, respectively. The values of 𝑉𝑏𝑜𝑜𝑠𝑡, 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

15 

 

𝑡𝑏𝑜𝑜𝑠𝑡 and 𝐼𝑏𝑜𝑜𝑠𝑡 are arbitrary and shall respect battery specifications not to bring 

further damage to it. 

 

 

 
Figure 2.5: Illustrative curves of boost charging protocols: (a) CCCCCV, (b) CVCCCV 

and (C) CCCVCCCV.   

(a) 

(c) 

(b) 
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2.4.1 Boost Charging in the Literature 

BC is said to decrease the time of the charging process with no further 

degradation to the battery due to lower chances of lithium plating occurrence at a 

low state of charge [11]. The protocol results from [13] using Sony US18500 

cylindrical cells exhibited a similar aging rate compared to the standard 1C CCCV 

charging, even with the five minutes initial CV phase with 𝑉𝑏𝑜𝑜𝑠𝑡 of 4.3V, 100mV 

higher than the battery maximum voltage, to enhance the charging speed. 

In [13], they submitted a prismatic Philips LP423048 Li-ion battery to two 

variants of the BC protocol with 4.5C 𝐼𝑏𝑜𝑜𝑠𝑡: a CCCCCV of 4.4V 𝑉𝑏𝑜𝑜𝑠𝑡_𝑚𝑎𝑥 and a 

(CCCV)2 of 4.3V 𝑉𝑏𝑜𝑜𝑠𝑡_𝑚𝑎𝑥. In this comparison, the (CCCV)2 depicted a slightly 

better curve when contrasted with the standard 1C CCCV, indicating the high initial 

currents can be applied with no extra damage to the battery. In addition, the result 

suggests that the currents at higher SOC have more influence on aging as for the 

CCCV protocols, the decreasing CV phase initiated at a higher SOC compared to 

the two other BC protocols. Nevertheless, the CCCCCV protocol had the highest 

aging rate of the three, probably caused mainly by the higher voltage achieved in 

the boost phase. 

 The boost phase in charging concerning the beginning of the period was 

observed in [11] research. The CC boost phase counted with either five or six 

minutes duration, depending on the cell, charging 40% of their capacity. They based 

their designed protocols on the previous research [13], also taking the 𝑉𝑏𝑜𝑜𝑠𝑡_𝑚𝑎𝑥 

above the 𝑉𝑚𝑎𝑥 but by 50mV. Out of the three profiles with boost interval starting 
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at 0, 10 and 20% SOC, the last presented the best result in both Sanyo UR18650SA 

1.25Ah and an A123 APR18650M1A 1.1Ah cells. Yet, the high current BC 

protocols were found to be detrimental to the batteries as the charging time is about 

in the middle of 1C and 3C CCCV protocols, but with similar aging of the 3C one. 

The authors inferred that the results might be a cause of the greater changes in the 

anode volume or the higher internal resistances that lead to lithium plating at earlier 

stages of SOC, and further investigation was required to better understand the real 

cause. Denominated in [21] as a multistage fast charging technique, a boost 

charging protocol CCCCCV type capable of charging the tested cell in twenty 

minutes was proposed. Their extensive test showed similar capacity retention 

compared to the standard charging protocol recommended by the cell’s supplier of 

charging time almost three times slower, indicating no further degradation occurred 

to the cell. 

2.5 Pulse Charging Protocol 

Presenting as a more dynamic charging strategy, pulse charging (PC) appears 

in the literature claiming benefits to battery life. As a characteristic, this profile has 

sudden changes in the current amplitude applied into the storage device, forming 

periodic waves. It consists in decreasing the charging current 𝐼ℎ𝑖𝑔ℎ to a lower 

current 𝐼𝑙𝑜𝑤,To a rest period (no current flow), or even change the direction of 

amperage discharging the cell for a brief period (configuring an alternate current 

profile), Figure 2.6. It is over either after a specified period or when the terminal 

voltage exceeds a pre-defined value as in other charging methodologies. 
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Figure 2.6: Illustrative of pulse protocols followed by CV phase: (a) PC with rest, (b) PC 

with positive lower current, and (c) PC with negative lower current. 

The PC also serves as a final charging phase replacing the CV charging to 

take the cell towards its full capacity as the MCC, Figure 2.7. As there is no need 

for voltage control as with CV and variable amperage amplitudes like in MMC, it 

offers a lower implementation cost. The PC phase starts after the terminal voltage 

(a) 

(b) 

(c) 
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reaches a pre-defined voltage 𝑉𝑠𝑤𝑖𝑡𝑐ℎ that is lower than the maximum voltage 𝑉𝑚𝑎𝑥. 

The pulse current 𝐼ℎ𝑖𝑔ℎ works just like when used in the main charging phase; 

however, the pauses obey a minimum pause duration 𝑡min_𝑝𝑎𝑢𝑠𝑒 and a pre-defined 

voltage 𝑉𝑓𝑙𝑜𝑎𝑡 lower than 𝑉𝑚𝑎𝑥. When a pulse is ceased, a rest period starts, and 

voltage drops towards 𝑉𝑓𝑙𝑜𝑎𝑡. The rest period lasts until the two requirements, 

terminal voltage hits 𝑉𝑓𝑙𝑜𝑎𝑡 and 𝑡min_𝑝𝑎𝑢𝑠𝑒 are met. The charging process comes to 

a halt when the cell voltage takes more than a maximum period 𝑡max_𝑝𝑎𝑢𝑠𝑒 to reach 

𝑉𝑓𝑙𝑜𝑎𝑡. Due to no clamp of the voltage at the pulses, 𝑉𝑓𝑙𝑜𝑎𝑡 shall be reasonably lower 

than 𝑉𝑚𝑎𝑥 so the cell voltage does not surpass too much 𝑉𝑚𝑎𝑥 when the pulse is 

applied. The closer 𝑉𝑓𝑙𝑜𝑎𝑡 is to 𝑉𝑚𝑎𝑥 more capacity utilization of the cell is achieved. 

Nevertheless, the strategy comes with more degradation of the battery because of 

higher voltages of the terminal during the pulses [11]. 

 

Figure 2.7: Illustrative curve of Constant Current Pulse Charging protocol. 

Apart from being used in fast charging phases and as the last phase of a 

charging protocol, the PC is used alternatively to other methods to preheat batteries 
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in lower temperature environments and recuperates the cell kinetic, improving its 

performance [22].  

2.5.1 Pulse Charging in the Literature 

Lithium-ion diffusion speed in the electrode is a crucial factor when charging 

a Li-ion cell [23]. With higher rate charging, concentration polarization is more 

susceptible and causes a faster increase in the voltage towards the upper limit. Pulse 

charging is claimed to ease this concentration polarization, enabling a higher power 

transfer rate, speeding up battery charging. Tests to verify these statements were 

performed on Sony US18650S 900 mAh cells by [23]. They concluded that the cells 

submitted to pulse charging presented higher active material utilization, 

engendering a higher discharging capacity and increased battery lifespan. The study 

also analyzed tests performed with scanning electron microscopy (SEM) and X-ray 

diffraction (XRD) that showed better inhibition of passive film growth on the anode 

and superior stability of the cathode material. 

Variations of Pulse charging profile have been investigated. In [24], various 

charging protocols such as CC, CCCV and the named by the authors “constant 

current-constant voltage with negative pulse (CC-CVNP)” were employed on 

Lithium-ion EIG 7 Ah LiFePO4-based cells to study the influence frequency, 

period and amplitude of negative pulse (NP) on cell aging. The CC-CVNP 

protocols were designed to approach negative pulse and rest period at the same 

protocol, example shown in Figure 2.8. Results showed that protocols with the same 

amount of time spent on negative pulses spread in more extended periods along 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

21 

 

charging bring more positive effects than the smaller periods applied at a higher 

frequency. Moreover, the lower amplitude of NP lasting longer versus higher 

amplitude in a briefer period resulting in the same amount of ampere-hours taken 

out of the battery during these pulses also leads to the assumption that the longer 

time spent on a single negative pulse has more to offer for battery’s life than the 

pulse amplitude. 

  

Figure 2.8: Illustrative image of constant current-constant voltage with negative pulse 

(CC-CVNP), based on [24]. 

The same EIG 7Ah high power cell was studied posteriorly to [24] work. 

Expecting better active material utilization and the possible effect of Li-ion 

diffusion on the electrolyte/active material particles interface through a decreased 

diffusion resistance using very low frequency (mHz), [25] investigated the negative 

pulse impact in fast charging. They designed and performed aging tests with eight 

different charging protocols, two with negative pulses and rest period incorporated, 

reaching a rate of up to 4C. After 1700 cycles, the results revealed that both 

strategies with negative pulses had better capacity retention than the constant 
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current constant voltage one. Plus, even when compared against the multistage 

constant current constant voltage protocols of lower mean current, these two 

protocols had higher capacity retention. The study also brought better numbers 

favouring the negative pulse protocols concerning ohmic resistance, charge transfer 

resistance, passivation resistance, and diffusion resistance, contributing to the 

acceleration of Li+ ions diffusion through the active materials. 

The pulse frequency was studied in [11] with two different cells, a Sanyo 

UR18650SA 1.25Ah and an A123 APR18650M1A 1.1 Ah. Using a 50% duty cycle 

(𝑡𝐼ℎ𝑖𝑔ℎ/𝑡𝑐𝑦𝑙𝑒), meaning half the time the current is at the higher amperage, the 

designed protocols had 5A (4C Sanyo and 4.5C A123) as 𝐼ℎ𝑖𝑔ℎ and 1A 5A (0.8C 

Sanyo and 0.9C A123) as 𝐼𝑙𝑜𝑤, forming a 3A 5A (2.4C Sanyo and 2.7C A123)  

mean current profile. The authors designed 1 Hz and 25 Hz PC protocols to 

investigate further the findings form [26] that stated different impacts on cells 

performance above and below ~10 Hz cycle PC. The test outcome confirmed the 

expectations with a slightly better performance of the 25Hz protocol over the 1Hz 

one for Sanyo’s cell. However, for the A123 cell, the result was a negligible 

difference in the capacity fade of the PC protocols and the 3A CCCV one.  

The use of pulse charging in place of constant voltage protocols as the last 

phase of the charging methodology was also tested in [11]. They revealed that the 

PC charges the batteries up to different SOC with the same algorithm, 82%, 92% 

and 98% for the three cells tested. Additionally, the PC phase takes longer than the 

usual CV period. Lastly, they demonstrated the protocols, even surpassing the 𝑉𝑚𝑎𝑥   
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by around 70mV did not degrade the cell as much as the CCCV with 𝑉𝑐ℎ set 50mV 

above 𝑉𝑚𝑎𝑥, also tested in the research, staying with a similar performance of the 

standard CCCV of the same CC current amplitude.  

2.6 Constant Power Protocol 

Constant Power (CP) bases on the current 𝐼𝑐ℎ following its relationship with 

voltage 𝑉𝑐ℎ (𝑃𝑐ℎ = 𝑉𝑐ℎ ∗ 𝐼𝑐ℎ) to result in the constant power 𝑃𝑐ℎ input into the 

battery. CP charging is then characterized as a protocol that starts with a high 

current that decays along with time until the increasing voltage hits the 𝑉𝑚𝑎𝑥 [27], 

Figure 2.9.  

 

Figure 2.9: Illustrative curve of Constant Power protocol.  

2.6.1 Constant Power in the Literature 

The constant current protocol followed by a CV (CPCV) was evaluated 

against CCCV and MCCCV protocols in the [27] studies. They submitted the cells 

to 0.5C current mean up to cycle one hundred and increased the mean current to 1C 

until the cells end-of-life. Interestingly, the CP charging had a slightly higher 
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capacity fading up to the C-rate rise, with the numbers inverting and favouring CP 

past cycle two-hundredth. 

2.7 Unusual Charging Protocols 

2.7.1 Adaptive Charging Protocols 

More complex charging protocols involving temperature control,  function of 

voltage or internal resistance are proposed in the literature. Using a genetic 

algorithm, a multistage constant heating (MCH) strategy was developed in [14]. 

The study accomplished to reduce by 9% the charging time while maintaining the 

cell temperature lower than the conventional CCCV approach depending on the 

environment temperature tested. In the same line, [28] proposed the constant 

temperature constant voltage (CTCV) adjustable to both cell and environment 

temperature. They accomplished to reproduce different scenarios of cooling and 

confirmed the designed CTCV algorithm could improve the charging time by 20% 

while maintaining the maximum temperature similar to the 1C CCCV profile.  

A universal voltage protocol (UVP) was developed and tested in [29] study 

to adapt to cell aging and be employed on cells of the same design regardless of the 

number of cycles. The protocol dictates a voltage path resulting in a nonlinear 

current profile that starts low with a high ascending slope at the early SOC stages, 

reaching its peak around 15% SOC, and then a descending curve up to the charging 

end, Figure 2.10. 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

25 

 

 
Figure 2.10: Illustrative curve of the Universal Voltage Protocol, adapted from [29]. 

 Aging tests were conducted with UVP and 2C CCCV protocols of similar 

charging time and proved to effectively maintain the charging efficiency across 

tests and improve the battery life cycles by more than 3.5 times the 2C CCCV 

protocol. 

A method formed of a periodic flow of three phases, the search mode, the 

charge mode, and the full charge detect mode resulting in a variable frequency pulse 

charging of fixed voltage amplitude (4.2V), was developed and proposed in [30]. 

The study showed an improvement of 10% in charging time of the variable 

frequency pulse charging (VFPC) when compared to pulse charging of fixed 

frequency. A 14% faster charging was achieved with the duty-varied voltage pulse-

charging (DVVPC) in comparison to the CCCV protocol in [31]. Additionally, the 

charge efficiency was improved by 3.4% in the comparison. 

In [32], they introduced an impedance tracking method to detect lithium 

plating offline and online through the impedance differential and be used as a 

trigger to decrease the charging current amplitude in fast charging. With the 
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requirement of a brief pause of 0.5s on every SOC percentage, both methods induce 

the charging profiles to be a multistage pulse charging protocol of variable duty. 

The work compared the profiles originated from the two 1C PC with the same rest 

period. The offline and online protocols reached 1.75 and 3.5 times the lifespan PC 

algorithm provided but at the expense of increasing 20% the charging time. 

2.7.2 Other Charging Protocols 

Cold derating (CD) algorithm was explored in [33], Figure 2.11. It starts with 

a low increasing current lasting the first SOCs followed by a CC phase up to the 

end of the charging or a next phase to charge the battery completely. The protocol 

is said to prevent the start of lithium plating since the kinetics is inferior at low 

SOCs, and the high charging load launched right away in the charging process 

would favour the degradation mechanism [33]. The overpotential reserve (OPR) 

protocol, Figure 2.11, on the other hand, has a high constant current start followed 

by a nonlinear diminishing current following the curve of the open-circuit potential 

of the negative electrode. The strategy is driven by the assumption that the negative 

overpotential in the electrolyte/negative electrode interface shall not surpass the 

overpotential dictated by the negative electrode open-circuit potential to avoid the 

lithium plating trigger [34]. 
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Figure 2.11: Illustrative image of (a) pure Cold Derating and (b) Overpotential reserve 

superimposed on a 1C constant current protocol, adapted from [33]. 

Cold derating (CD), overpotential reserve (OPR), alternating current (AC) of 

2.5Hz frequency and 50% duty cycle, and a current interrupt (CI) 90% duty cycle, 

these last two configuring pulse charging protocols, were approached in designed 

charging profiles based on strong physical theories to mitigate degradation in [33]. 

All four neutral mean current protocols and fourteen combinations made with them 

selected using statistical analysis to reduce the number of experiments preserving 

the significance level of the results were superimposed on a 1C constant current 

profile. As a benchmark, four cells were tested with pure 1C CC protocols forming 

twenty-two experiments in total. The aging tests comprised charging the batteries 

from 0 to 80% SOC with no CV phase to balance the electrodes. The novel had 

some surprising outcomes, such as the poor performance of the CD protocol that 

had its end-of-life earlier than any profile tested and the best being profiles with all 

four algorithms applied together, depicting more than double the CD method 

lifespan. Other conclusions were that the OPR show itself as the most effective in 

preserving the cell aging as the best results came from profiles containing the 

(a) (b) 
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method. Moreover, making a rank out of the four pure superimposed charging 

profiles, the best was the OPR, followed by AC, CI, and CD. 

The linear current decay (LCD) protocol was explored in [35] and asserted to 

charge the battery 2.5 times faster than the constant current profile. The protocol 

that follows the equation 𝐼𝑐ℎ(𝑡) = 𝐼0 − 𝑘𝑡, where 𝐼0 and 𝑘 are arbitrary values for 

initial current and slope of the diminisinh curve, respectively, was later analyzed in 

[12] and considered a not worthy approach to fast charging due to some downsides 

such as the inability of the algorithm to take the battery to its full capacity utilization 

and a lower lifespan. To overcome LCD limitations, they proposed an algorithm 

so-called varying current decay (VCD) that was able to charge the battery to about 

98% capacity, the same capacity as its contestants CCCV and CV profiles.  The 

algorithm comprised a first 3.57C CC short phase up to the point the cell hit a cut-

off voltage followed by the varying current decay dictated by the equation 𝐼𝑐ℎ(𝑡) =

(𝐼0 − 𝑘1𝑡
1

2)/(𝑘2𝑡
1

2 + 𝑘3𝑡). The comparison showed the proposed protocol was able 

to charge the battery from 0 to 80% SOC about fifteen percent faster than the CV  

methods and still have a slower capacity fade after 150 cycles. 

A study conducted in [36] compared the proposed sinusoidal ripple current 

(SRC) and CCCV concerning capacity charged, efficiency, temperature rise, 

charging time and cycle life. The latest two were improved around 17% and 16% 

compared to the standard CCCV, respectively. The work also matched PC with rest 

period to SRC, indicating in their findings that both protocols presented a similar 
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performance on the frequencies tested, except for the cycle life not performed in 

PC profile. 

2.8 Concluding Remarks 

The literature shows controversy in the consensus of an optimal charging 

protocol to prevent the battery from aging. It also exposes the particular behaviour 

to charging algorithms of each energy storage device that can not be freely extended 

to others due to design characteristics that influence different phenomena, such as 

the stress in electrodes and temperature gradient. Moreover, most of the research 

focuses on the “standard” temperature of 25 degrees Celsius, contrary to the EV 

market that concentrates in North America, Europe and China, cold regions of the 

planet. Hence, there should be more effort to understand the influence of charging 

protocols to overcome the conditions and obstacles faced in these markets 

effectively. Nevertheless, considering the results presented, pulse charging 

protocols show an overall good outcome in most of the studies it is implemented 

and should be considered a candidate for battery aging minimization. 
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Chapter 3          

Battery State of Charge and Health 

Estimation: State of the Art 

 

The growing market of electrified vehicles requires efforts from car manufacturers 

to build robust systems to deal with all types of situations their products will face 

in customers’ hands. A major system of electrified vehicles is the energy storage 

unit [37]. The complexity of batteries lies in their nonlinear behaviour that is highly 

dependent on external components such as temperature and dynamic load required 

from it. For a good estimation of these behaviours, the battery management system 

relies on estimation algorithms that inform the states of the storage unit, such: State 

of charge (SOC), state of health (SOH), and state of power (SOP). Widely studied 

in the industry and academia, SOC estimation is commonly considered one of the 

most significant functions in a BMS [38]. Still,  SOH is attracting more interest 

because of its importance in the automotive application for supporting a more 

consistent SOC and SOP estimation. 

State estimation is characterized by the indirect extraction of hidden states 

from uncertain and inaccurate measurements [39]. The literature contains many 

techniques to estimate the states and parameters of linear and nonlinear systems. 
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Generally, the accuracy of these methods is directly related to their complexity. 

Electrochemical models, for instance, provide the lowest errors yet with the cost of 

being the most computationally expensive [38]. Open circuit voltage based models 

offer the lowest implementation difficulty along with a good result; however, their 

applications are limited to the usage of the device it is implemented. Figure 3.1 

illustrates the normalized range of errors and implementation complexity of the 

SOC estimation methods where the top of the chart means a higher degree. 

 

Figure 3.1: Normalized range of the complexity and error for battery SOC estimation 

methods, adapted from [38]. 

This chapter explores some of the states of charge and health methods studied 

in the literature that could contribute to a reliable BMS design. Machine learning 

techniques are not addressed in this work. However, a great review of the method 

applied to battery state of charge and health estimation is found in [40]. 
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3.1 Battery State of Charge Estimation Methods 

Described as the battery's available capacity concerning its rated capacity [3], 

[41], hence, expressed in percentage, the state of charge estimation plays a key 

whole in the BMS. An accurate SOC estimation is a complex assignment given not 

only by the fact that direct measurement of the parameter is not possible with the 

device being used, but batteries of different chemistries have divergence in 

behaviour, present different features as they age and are temperature-dependent, 

and the diversity of applications they are submitted. The concept is directly related 

to range anxiety, and much effort has been put into it for a reliable estimation [42], 

[43], [44], [45], [46], [47], by the employment of a variety of estimation methods 

as shown in Figure 3.2 and Table 3.1, and reviewed in the following topics. 

 

Figure 3.2: State of charge estimation methods. 
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Table 3.1: Battery SOC estimation methods results. 

Work Method Data Profile Error [%] 

[42]* 

EKF 

UKF 

CKF 

UDDS 

0.15 (RMSE) 

0.12 (RMSE) 

0.11 (RMSE) 

[46] 
EKF 

UKF 
BJDC 

1.5 (RMSE) 

1.3 (RMSE) 

[48] AEKF UDDS ~1.0 (RMSE) 

[49] 
EKF 

AEKF 
UDDS 

3.2 (Mean) 

1.0 (Mean) 

[50] UKF DST 3.1 (RMSE) 

    [51]** 
SVSF 

EKF 
UDDS 

2.4 (RMSE) 

2.7 (RMSE) 

[52] 

EKF 

SVSF 

VBL-SVSF 

UDDS 

4.7 (RMSE) 

3.6 (RMSE) 

2.6 (RMSE) 

*80% initial SOC offset 

**15% initial SOC offset 

3.1.1 Coulomb Counting 

Coulomb counting is a widely used method for state of charging estimation 

that involves integrating the current flow through the battery in a time interval.  

Hence, error in current measurement is one of the sources that could make the 

method inaccurate. Additionally, it is highly dependent on an accurate initial SOC 

and battery capacity, as demonstrated in the following equation 3.1. 

 

𝑆𝑂𝐶 = 𝑆𝑂𝐶(𝑡0) + ∫
𝜂 ∙ 𝑖(𝑡)

𝐶𝑛

𝑡

𝑡0

𝑑𝑡 3.1 

where 𝑆𝑂𝐶(𝑡0) is the initial SOC, 𝜂 is the Coulombic efficiency, 𝑖(𝑡) stands for the 

current at instant 𝑡, and 𝐶𝑛 is the nominal capacity of the batter.  



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

34 

 

According to [53], besides the uncertainty of the battery’s nominal capacity 

dictated by battery state of health and the initial SOC, current integration thought 

time, current measurement, and timing oscillator would also affect the SOC 

estimation with coulomb counting. [38] adds the self-discharging as an error input 

into the method. With all cons, it is computationally inexpensive for its low 

complexity [38].  

3.1.2 Open Circuit Voltage (OCV) Based 

This SOC estimation method involves measuring the battery voltage in an 

open-circuit state (no load) and posteriorly transforming the voltage to SOC 

through the SOC-OCV relationship curve acquired with extensive testing at 

different temperatures and states of health [38]. This is because the SOC-OCV 

relationship changes over temperature [54], [55] and cycle life [56]. The method 

presents some obstacles that make it unfeasible in certain conditions once it needs 

a rest period of about three for the battery relaxation, as exhibited in [57] and when 

applied on batteries with flat SOC-OVC curves as produced by LiFePO4 battery 

type demonstrated in [58]. However, in electric vehicles, this method can be 

employed whenever the system is powered up, which would give a reasonably close 

SOC value of the pack if the rest period for battery relaxation has not reached the 

OCV state. Furthermore, the technique requires low computational effort [59]. 
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3.1.3 Equivalent Circuit Model (ECM) 

ECM based SOC estimation is currently the most used SOC estimation 

method in online applications [59], [60]. The model lies on arrangements of 

resistances and capacitances, such as the most common internal resistance (Rint) 

model [61] and n-resistor-capacitor (nRC) models [62], Table 3.2, to capture the 

battery dynamics under charge/discharge current. With the model, the OVC can be 

estimated and posteriorly, the SOC-OCV relationship is applied to acquire the 

battery state of charge. [38] refers to a second tactic that utilizes a predefined SOC 

to calculate the cell terminal voltage that is matched with the measurement. This 

approach entails the use of other SOC estimation algorithms such as Extended 

Kalman Filter (EKF) to calculate the final SOC. 

Table 3.2: Equivalent Circuit Models example. 

ECM Schematic Equation 

Rint [61] 

 

𝑉𝑡𝑘 =  𝑉𝑜𝑐𝑣,𝑘 − 𝑅0𝐼𝑘  

  

Second-order 

R-2RC [63]  

 

𝑉1,𝑘+1 =  1 −
𝛥𝑡

𝑅1𝐶1
𝑉1,𝑘 +

𝛥𝑡

𝐶1
𝐼𝑘   

𝑉2,𝑘+1 =  1 −
𝛥𝑡

𝑅2𝐶2
𝑉1,𝑘 +

𝛥𝑡

𝐶2
𝐼𝑘   

𝑉𝑡𝑘 = 𝑉𝑜𝑐𝑣,𝑘 − 𝑉1,𝑘 − 𝑉2,𝑘 − 𝑅0𝐼𝑘    
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3.1.4 Electrochemical Model 

Because of the capability of modelling the lithium diffusion in the electrolyte 

and electrodes, electrochemical models have been broadly studied in the literature 

[9]. The method’s approach is a set of partial differential equations [60] to simulate 

the mass transfer, the thermodynamics and the chemical dynamics of the battery 

[38]. Although it has a higher accuracy when compared to ECM models, it also 

requires a more robust computational capacity and has parameters that are generally 

not given by the battery producer [60]. 

3.1.5 Kalman Filter based 

The method was first introduced in 1960 as a new approach to linear filtering 

[64] but not referred to as “Kalman filter” (KF) at the time. KF has been extensively 

studied and appears as the most utilized state estimation method [65], [66]. The 

method works in a predictor-corrector mode. The prediction phase, also named a 

priori, uses a model to predict the current state, then a posteriori phase refines the 

states through a gain calculated with the a priori covariance estimate 𝑃𝑘|𝑘−1 and 

the measurement covariance 𝑆𝑘. 

When weel-defined, KF provides the most accurate estimation for a linear 

system with Gaussian white noise  [66]. The method is characterized by the process 

and measurement noise that directly influences the stability and performance of the 

estimation. Its tuning is obtained through the covariance matrices, where the 

measurement noise “R” can be simply attained with the sensor used in the 
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experiment. In contrast, the process noise covariance “Q” has to be attributed by 

trial and error.  

Kalman filter has many variants like the most spread extended Kalman filter 

(EKF), unscented Kalman filter (UKF) [67], cubature Kalman Filter (CKF) [68],  

quadrature Kalman filter [69], adaptive extended and unscented Kalman filters [70], 

[71], created for nonlinear systems estimation as the original algorithm is limited 

to linear systems. These extensions have been vastly studied in the literature for 

SOC estimation. [72] used hardware in the loop to validate the battery SOC 

estimation of a 2nd R-2RC model coupled with EKF. [46] used a Beijing Driving 

Cycle (BJDC) to validate a cubature Kalman Filter showing its superiority in 

Battery SOC estimation over the EKF algorithm. [48] developed a 1st order R-RC 

model with an adaptive extended Kalman filter (AEKF) for battery SOC estimation 

reaching RMSE under 1% for UDDS and a maximum error of 2%. An AEKF was 

also developed in [49] and compared with the standard version EKF. However, 

differently from [48], this work combined a 2nd order R-2RC ECM  with the 

algorithms to estimate the battery SOC ran in the federal urban driving schedule. 

The results exhibited 3.2% and 1% mean SOC error for the EKF and AEKF, 

respectively. 

A UKF was employed with a simple R model for SOC estimation in [50]. The 

algorithm gave a reasonably good estimation given the limited battery model and 

the flat OCV-SOC curve from the LiFeO4 battery, under 3% RMSE, for all cases 

tested with an initial SOC offset. The work in [42] compared the SOC estimation 
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performance of the EKF, CKF and sigma-point Kalman filter (SPKF) for a 1st order 

R-RC ECM. The study concluded that EKF has the poorest convergence results to 

true value when an offset is applied to the initial SOC and the highest RMSE. SPKF 

showed similar SOC RMSE and computation time to the CKF; however, 

convergence time was close to EKF. CKF was considered the fittest regarding the 

trade-off it offers with respect to the computation time and estimation accuracy of 

around 0.1% RMSE for the UDDS drive cycle. EKF and UKF had their 

performance matched in the battery SOC estimation under CC discharge and CC 

charge/discharge cycles in [45] work. UKF presented lower errors in both 

scenarios. 

3.1.5.1 Extended Kalman Filter (EKF) 

Created from KF, the extended Kalman filter addresses nonlinear systems 

[39]. The standard Kalman filter discussed previously assumes the linear form 

shown in equations 3.2 and 3.3 

�̂�𝑘|𝑘−1 = 𝐹�̂�𝑘−1|𝑘−1 + 𝐺𝑢𝑘−1 + 𝑤𝑘−1 3.2 

�̂�𝑘|𝑘−1 = 𝐻𝑥𝑘|𝑘−1 + 𝑣𝑘−1 3.3 

Where 𝑥𝑘|𝑘−1 stands for the state estimate,  𝐹 is the system matrix, 𝐺 is the input matrix, 

𝑢𝑘−1 the input, �̂�𝑘|𝑘−1, the measurement estimate, 𝐻 is the output matrix and, the 

𝑤𝑘−1 and 𝑣𝑘−1 are the system and measurement noise, respectively. 

The battery SOC estimation configures a nonlinear system; therefore, KF 

cannot address it. For that matter, the extended Kalman filter should be employed 
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instead. The method works very similarly to the KF,  except for the fact that the 

system matrix 𝐹 and the output matrix 𝐻 are time-varying based on the state estimate 

[73]. For the computation of the functions 𝑓 and ℎ they must be linearized after their 

Jacobian’s as demonstrated in equations 3.4 and 3.5 [45]. This linearization around 

the state estimate makes EKF sub-optimal and creates uncertainties that could lead 

to the instability of the filter [74], limiting the use of the filter in several real world 

applications [75].   

𝐹𝑘−1 =
𝜕𝑓

𝜕𝑥
|
�̂�𝑘−1|𝑘−1,𝑢𝑘−1

  3.4 

𝐻𝑘 =
𝜕ℎ

𝜕𝑥
|
�̂�𝑘|𝑘−1,𝑢𝑘

 3.5 

The EKF process is illustrated in Table 3.3 where the state estimate 𝑥𝑘|𝑘−1, 

the measurement vector �̂�𝑘|𝑘−1 and covariance estimate 𝑃𝑘|𝑘−1 are computed in the 

prediction step. Posteriorly, in the second step, the gain 𝐾𝑘, the refinement of the 

predicted state estimate 𝑥𝑘|𝑘−1 and covariance estimate 𝑃𝑘|𝑘−1 are processed.  
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Table 3.3: Extended Kalman filter algorithm. 

Prediction (A priori) 

State estimate 𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) 

Measurement vector �̂�𝑘|𝑘−1 = ℎ(�̂�𝑘|𝑘−1, 𝑢𝑘, 𝑣𝑘) 

Covariance estimate 𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1 

Correction (A posteriori) 

Kalman gain 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1 

State estimate �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹𝑘(𝑧𝑘 − ℎ(�̂�𝑘|𝑘−1)) 

Covariance estimate 𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑘𝑃𝑘|𝑘−1 

 

3.1.5.2 Unscented Kalman Filter (UKF) 

The UKF is another variant of KF employed in nonlinear systems. UKF is a 

type of sigma point Kalman filter (SPKF) among other UKF variants like the 

general, simplex, and spherical unscented [39], [76].  Instead of linearizing the state 

space equations through the Taylor-series expansion, SPKF approaches the 

linearization by a weighted statistical linear regression producing a few numbers 

designated as sigma points [76]. Subsequently, these sigma points are used to 

determine the a posteriori estimate for the probability distribution.  

UKF works similarly to Monte Carlo methods, except that it employs a much 

smaller number of points to estimate the mean and covariance of the system [39]. 
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In UKF, a minimal number of points around the mean are selected utilizing a 

deterministic sampling strategy called unscented transform (UT). This tactic makes 

the UKF more accurate than EKF that has errors introduced into the mean and 

covariance through the linearization [42]. A schematic of the difference between 

the linearization and UT is illustrated in Figure 3.3. 

 

Figure 3.3: EKF Linearization (a) and UKF unscented transform (b), adapted from [74]. 

As in the KF and EKF, UKF also works in a predictor-correction way and has 

as a first step the calculation of the sigma points shown in equation 3.6 [39]. 

 {

𝒳𝑘−1|𝑘−1
0 = �̅�𝑘−1|𝑘−1                                     𝑖 = 0          

𝒳𝑘−1|𝑘−1
𝑖 = �̅�𝑘−1|𝑘−1 + (𝛾√𝑃𝑘−1|𝑘−1)𝑖     𝑖 = 1,… , 𝑛

𝒳𝑘−1|𝑘−1
𝑖+𝑛 = �̅�𝑘−1|𝑘−1 − (𝛾√𝑃𝑘−1|𝑘−1)𝑖     𝑖 = 1,… , 𝑛

 3.6 

where the 𝑥𝑘−1|𝑘−1is an n-dimensional state, �̅�𝑘−1|𝑘−1 is an approximated mean, 

𝑃𝑘−1|𝑘−1 is an approximated covariance. The parameter  𝛾 is √𝑛 + 𝑘.  

The weight coefficients are computed next with the scaling factor 𝑘, equation 

3.7.  
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{
𝑤0 = 𝑘 (𝑛 + 𝑘)⁄ ,               𝑖 = 0              

𝑤𝑖 = 1 2(𝑛 + 𝑘)⁄ ,             𝑖 = 1, … , 2𝑛 
 3.7 

The rest of the method process is described in the following Table 3.4 [39]. 

Table 3.4: Unscented Kalman filter algorithm. 

Prediction (A priori) 

State model sigma 

point propagation 
𝒳𝑘|𝑘−1
𝑖 = 𝑓(𝒳𝑘−1|𝑘−1

𝑖 )  

State mean 𝑥𝑘|𝑘−1 =∑𝑤𝑖

2𝑛

𝑖=0

𝒳𝑘|𝑘−1
𝑖  

State error 

covariance 
𝑃𝑘|𝑘−1 =∑𝑤𝑖

2𝑛

𝑖=0

[𝒳𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1][𝒳𝑘|𝑘−1

𝑖 − �̂�𝑘|𝑘−1]
𝑇
 

Measurement 

sigma point 

propagation 

Υ𝑘|𝑘−1
𝑖 = ℎ(𝒳𝑘|𝑘−1

𝑖 ) 

Measurement mean �̂�𝑘|𝑘−1 =∑𝑤𝑖

2𝑛

𝑖=0

Υ𝑘|𝑘−1
𝑖

 

Correction (A posteriori) 

Measurement 

covariance 
𝑃𝑦𝑦,𝑘|𝑘−1 =∑𝑤𝑖

2𝑛

𝑖=0

[Υ𝑘|𝑘−1
𝑖 − �̂�

𝑘|𝑘−1
][Υ𝑘|𝑘−1

𝑖 − �̂�
𝑘|𝑘−1

]
𝑇
 

Cross-covariance 𝑃𝑥𝑦,𝑘|𝑘−1 =∑𝑤𝑖

2𝑛

𝑖=0

[𝒳𝑘|𝑘−1
𝑖 − �̂�𝑘|𝑘−1][Υ𝑘|𝑘−1

𝑖 − �̂�
𝑘|𝑘−1

]
𝑇
 

Kalman gain 𝐾𝑘 = 𝑃𝑥𝑦,𝑘|𝑘−1𝑃𝑦𝑦,𝑘|𝑘−1
𝑇  

State estimate �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − �̂�
𝑘|𝑘−1

) 

Covariance 

estimate 
𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝑃𝑦𝑦,𝑘|𝑘−1𝑘𝑘

𝑇 
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3.1.6 Variable Structure Filter-based 

In 2003, Saeid Habibi introduced the variable structure filter (VSF) concept 

developed for linear applications [65]. Later in 2006, the author proposed a new 

formulation of the methods named extended variable structure filter (EVSF) to 

estimate nonlinear systems [77]. In the subsequent year, the smooth variable 

structure filter (SVSF) concept was introduced in [78] to eliminate the chattering 

effect that can reduce the estimation efficiency [39].  

The algorithm has been implemented and benchmarked against other 

estimation techniques applied for SOC estimation. SVSF and EKF were applied in 

six different battery models, a combined model, a simple model, zero-state and one-

state hysteresis models, and enhanced self-correcting models of two and four states 

to benchmark their accuracy in the SOC estimation [79]. The work showed through 

UDDS cycle that enhanced self-correcting model (four-state) delivered the best 

terminal voltage among all six models and concluded that SVSF provides superior 

estimation accuracy than EKF when combined with the same battery model.  

In [51], SVSF was implemented for SOC estimation along with a fast upper-

triangular and diagonal recursive least squares (FUDRLS) and recursive total least 

squares (RTLS) algorithms, processing parameter identification and capacity, 

respectively, and benchmarked against a dual extended Kalman filter model. The 

simulations demonstrated that the model offered a slightly higher SOC estimation 

precision than the DEKF and stated to be computationally more efficient. The 

algorithm had its robustness tested in [80]. The work approach was based on an 
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offline parameter estimation by a genetic algorithm (GA) of a new and aged cell 

providing just one set of a first-order R-RC ECM for the entire SOC range. 

Providing the limited ECM model, SVSF could quickly converge to the true value, 

initial SOC set in 80 and 50% for the new and aged cell, respectively, in the mix of 

UDDS, HWFET, and US06, up to about 50% SOC when it diverged. A higher-

order ECM and sets of parameters for different SOC levels would probably solve 

the issue.  

A new variant of the SVSF was presented, namely SVSF with a variable 

boundary layer (SVSF-VBL) [66]. Its capability was later explored in [52] against 

the SVSF and EKF in estimating a simulated vehicle’s battery SOC and terminal 

voltage in AVL CRUISE software. SVSF-VBL outperformed the two other 

estimators, with EKF offering the least reliable estimation.  

3.1.6.1 Variable Structure Filter (VSF) 

The VSF is a state estimation strategy that can be employed in linear systems. 

The method, which operates in a predictor-corrector mode, works with a gain that 

directs the state towards the true value switching it back and forth, resulting in a 

discontinuous corrective action within an existence space β of unknown width, 

Figure 3.4. Different from the Kalman filter, the strategy eases the trial error tuning 

[65]. The concept aims at the stability and convergence of the state in high 

modelling uncertainties where Kalman filter-based algorithms may have the 

estimation compromised [39]. 
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The estimation process is given in Table 3.5 [65].  Where, as a first step, the 

state estimate prediction �̂�𝑘|𝑘−1 is calculated by means of the system matrix Φ, the 

previous a posteriori state �̂�𝑘−1|𝑘−1, the control matrix 𝐺, and the input/control 

vector 𝑢𝑘−1. The measurement estimate and error are computed terminating the 

prediction phase. In the method correction phase the VSF gain is computed with 

the equation described in Table 3.5. Where the  𝐻+stands for the pseudoinverse of 

the output matrix, the Υ is the constant diagonal gain matrix with elements ≤ 1, ∘ is 

the Schur product,  𝑉𝑚𝑎𝑥 and 𝑊𝑚𝑎𝑥 are the measurement and system noise upper 

bounds, respectively. 𝜉𝑚𝑎𝑥, 𝛿𝑚𝑎𝑥, and �̃�𝑚𝑎𝑥 indicate the upper bounds for 

uncertainties. Finally, the state updated �̂�𝑘|𝑘 is calculated.  

Table 3.5: Variable structure filter algorithm. 

Prediction (A priori) 

State estimate �̂�𝑘|𝑘−1 = Φ�̂�𝑘−1|𝑘−1 + 𝐺𝑢𝑘−1 

Measurement estimate �̂�𝑘|𝑘−1 = 𝐻𝑥𝑘|𝑘−1  

Measurement error 𝑒𝑧𝑘|𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1 

Correction (A posteriori) 

VSF gain 

𝐾𝑉𝑆𝐹 = Φ−1𝐻+(||𝐻Φ|𝐴𝐵𝑆{Υ|𝐻
+|𝐴𝐵𝑆|𝑒𝑧𝑘|𝑘−1|𝐴𝐵𝑆   

+ |Φ−1𝐻+𝜉𝑚𝑎𝑥𝑧𝑘|𝐴𝐵𝑆 + [|𝐻
+|𝐴𝐵𝑆

+ |Φ−1𝐻+|𝐴𝐵𝑆(𝜉𝑚𝑎𝑥 + 𝐼)]𝑉𝑚𝑎𝑥
+ |Φ−1𝐻+𝛿𝑚𝑎𝑥𝑢𝑘|𝐴𝐵𝑆 + (|Φ

−1|𝐴𝐵𝑆
+ |Φ−1𝐻+�̃�𝑚𝑎𝑥|𝐴𝐵𝑆)𝑊𝑚𝑎𝑥}|𝐴𝐵𝑆
∘ 𝑆𝑔𝑛(𝑒𝑧𝑘|𝑘−1) 

Estimate update �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑉𝑆𝐹 
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3.1.6.2 Smooth Variable Structure Filter (SVSF) 

The SVSF surged as an improved version of the VSF that can be employed 

in nonlinear systems [39]. The method is considered to be robust to model 

uncertainties [66], providing some features described as follows [78]: SVSF 

performance is improved when the upper bounds are well defined, offering the 

robustness from the variable structure control concept; the trial and error tuning is 

alleviated due to the possibility of recognizing the uncertainty source and 

specifying a bound to it; it has a second performance indicator other filters such  

Kalman-based, and particle filters are not elaborated with that can measure the 

degree of modelling uncertainty.  

In the strategy concept, the estimated state is directed to the existence space 

β that varies over time and contains the true state trajectory. The state estimation is 

then forced to remain within β generating a discontinuous corrective action of high-

frequency, chattering effect, bringing degradation to the estimation [39]. To 

overcome this detrimental effect, a smooth function called smooth boundary layer 

𝛹, illustrated in Figure 3.4 (b), of known width can be incorporated into the gain 

depicted in Table 3.6 through a saturation function equation 3.8. However, the state 

smoothing is only provided if 𝛹>β, otherwise the chattering effect persists within 

the existence space β [78]. The filter convergence is dictated by the value of γ 

(diagonal gain, coefficient matrix) that is set to be between zero and one.  
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Figure 3.4: VSF (a) and SVSF (b) state estimation concepts, adapted from [78]. 

𝑠𝑎𝑡(𝜓𝑖
−1𝑒𝑧𝑘|𝑘−1) = {

1,       𝑒𝑧𝑘|𝑘−1/𝜓𝑖 > 1

𝑒𝑧𝑘|𝑘−1/𝜓𝑖  − 1 ≤ 𝑒𝑧𝑘|𝑘−1/𝜓𝑖 ≤ 1

−1,     𝑒𝑧𝑘|𝑘−1/𝜓𝑖 ≤ −1

 3.8 

SVSF  process presented in Table 3.6 [78] starts with the nonlinear function 

composed of a posteriori states estimate 𝑥𝑘−1|𝑘−1  of previous step and the input 

vector 𝑢𝑘−1 to obtain the prediction of the state estimate 𝑥𝑘|𝑘−1. Measurement 

estimate and error are calculated as in VSF. The correction phase counts on the SVSF gain 

obtained using the predicted measurement error 𝑒𝑧𝑘|𝑘−1 , a prosteriori error 𝑒𝑧𝑘−1|𝑘−1  from 

last step and, the smooth boundary layer 𝛹 and coefficient matrix γ tuned for chattering 

effect diminishing and ensure stability, respectively. Finally, measurement estimate 

and error are computed for the next step calculation. 

  

(a) (b) 
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Table 3.6: Smooth variable structure filter algorithm. 

Prediction (A priori) 

State estimate 𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1, 𝑢𝑘−1) 

Measurement 

estimate 
�̂�𝑘|𝑘−1 = 𝐻𝑥𝑘|𝑘−1  

Measurement error 𝑒𝑧𝑘|𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1 

Correction (A posteriori) 

SVSF gain 
𝐾𝑆𝑉𝑆𝐹𝑘 = 𝐻+𝑑𝑖𝑎𝑔 [(|𝑒𝑧𝑘|𝑘−1| + 𝛾 |𝑒𝑧𝑘−1|𝑘−1|)

∘ 𝑠𝑎𝑡(𝜓−1𝑒𝑧𝑘|𝑘−1)] 𝑑𝑖𝑎𝑔(𝑒𝑧𝑘|𝑘−1)
−1 

Estimate update �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑆𝑉𝑆𝐹𝑘𝑒𝑧𝑘|𝑘−1 

Measurement 

estimate 
�̂�𝑘|𝑘 = 𝐻𝑘�̂�𝑘|𝑘 

Measurement error 𝑒𝑧𝑘|𝑘 = 𝑧𝑘 − �̂�𝑘|𝑘 

 

3.1.6.3 Smooth Variable Structure Filter with Variable Boundary 

Layer (SVSF-VBL) 

The standard SVSF considers a constant smooth boundary layer set based on 

the knowledge of the system covering the model uncertainties and the upper limit 

of measurement noise [39]. This approach can lead to a conservative choice of the 

boundary layer preventing the algorithm from reaching optimal estimation. The 

SVSF-VBL was proposed in [66] to address this conservative boundary setting 

through a partial derivative of the a posteriori covariance matrix concerning the 

smooth boundary layer, equation 3.9, to obtain the time-varying smooth boundary 
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layer 𝜓𝑘 , leading to an optimal state estimation as in the Kalman filter. The 𝜓𝑘is 

denoted as the upper and lower optimal boundery layers depicted in Figure 3.5.  

𝜕(𝑡𝑟𝑎𝑐𝑒[𝑃𝑘|𝑘])

𝜕𝜓
= 0 3.9 

 

Figure 3.5: SVSF-VBL well-defined case, adapted from [66]. 

The method offers an optimal state estimation from KF and the robustness 

imposed by the SVSF algorithm through a saturation function illustrated in Figure 

3.6 that verifies the width of the time-varying smooth boundary layer 𝜓𝑘 against 

the constant smooth boundary layer, here referred to as Upper and lower limit for 

boundary layer 𝜓𝑙𝑖𝑚, employed in the standard SVSF. Note in Figure 3.5 the 𝜓𝑘 

amplitude varies over time in relation to the system state trajectory and remains 

within upper and lower 𝜓𝑙𝑖𝑚. This scenario means the model had the case well-

designed not presenting any fault that requires the standard SVSF gain to take over 

to maintain stability.  
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Figure 3.6: Summary of the SVSF-VBL strategy for state estimation stability, adapted 

from [66]. 

The algorithm process has the exact prediction stage calculations found in the 

EKF when treating a nonlinear system with the state estimate and covariance 

matrix. The correction phase of the method begins with the calculation of the 

smooth boundary layer according to the combined error and the 

measurement/measurement covariance 𝑆𝑘 that is illustrated as (𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 +

𝑅𝑘)
−1 , Table 3.7. At this point, the saturation function, equation 3.10, is applied to 

verify the gain to be used at the step. Posteriorly, the state and covariance estimates 

are updated. 

𝑠𝑎𝑡( 𝐺𝑎𝑖𝑛) = {
𝑆𝑉𝑆𝐹 − 𝑉𝐵𝐿 𝑔𝑎𝑖𝑛,        𝜓𝑘 < 𝜓𝑙𝑖𝑚
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑉𝑆𝐹 𝑔𝑎𝑖𝑛,  𝜓𝑘 ≥ 𝜓𝑙𝑖𝑚

 3.10 
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Table 3.7: SVSF with variable boundary layer algorithm. 

Prediction (A priori) 

State estimate 𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) 

Measurement estimate �̂�𝑘|𝑘−1 = 𝐻𝑥𝑘|𝑘−1  

  Measurement error 𝑒𝑧𝑘|𝑘−1 = 𝑧𝑘 − �̂�𝑘|𝑘−1 

Covariance estimate 𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1|𝑘−1𝐹𝑘−1
𝑇 + 𝑄𝑘−1 

Correction (A posteriori) 

Combined error  𝐸𝑘 = |𝑒𝑧𝑘|𝑘−1| + 𝛾 |𝑒𝑧𝑘−1|𝑘−1|  

Smoothing boundary 

layer 
𝜓𝑘 = (𝐸𝑘

−1𝐻𝑃𝑘|𝑘−1𝐻
𝑇(𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘)
−1)−1 

VBL gain 𝐾𝑉𝐵𝐿𝑘 = 𝐻
−1𝐸𝑘𝜓𝑘

−1 

Estimate update �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑉𝐵𝐿𝑘𝑒𝑧𝑘|𝑘−1 

Covariance estimate 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1(𝐼 − 𝐾𝑘𝐻𝑘)
𝑇(𝐾𝑘𝑅𝑘𝐾𝑘

𝑇) 

Measurement estimate �̂�𝑘|𝑘 = 𝐻𝑘𝑥𝑘|𝑘  

Measurement error 𝑒𝑧𝑘|𝑘 = 𝑧𝑘 − �̂�𝑘|𝑘 

 

3.1.7 Particle Filter (PF) 

Particle filter is employed to estimate states of nonlinear systems with non-

Gaussian noise distribution [39], [81]. The approximation of the probability density 

function or nonlinear characteristics is achieved by applying the Monte Carlo 
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technique with a random set of particles [81]. That makes PF a method that works 

in a global approach, which brings a higher computational cost, making the method 

impractical for certain online applications. Nevertheless, it has attracted more 

attention in the past decade due to improvements in computational power [39]. 

3.1.8 H∞ Filter 

The H-infinity filter theory was introduced in [82]. The technique is a robust 

filter that is not affected by the process and measurement noises at specific 

conditions. However, its performance might be impacted by battery aging and 

temperature [81]. Contrarily to Kalman based filters, H∞ filter can handle nonzero 

mean uncertainties. 

3.2 Battery State of Health Estimation Methods 

To ensure a safe operation and provide accurate information about the battery 

states of electric vehicles, battery management systems (BMSs) are required. One 

of the challenges BMS faces is delivering the battery state of health (SOH) that is 

essential for energy management and vehicle performance. SOH estimation uses 

some indicators to describe the state, and two of the most used are the battery 

capacity and the internal resistance [83]. While the capacity is related to the energy 

stored in the battery and the vehicle's driving range, the internal resistance impacts 

the power delivered by the storage system. Along the time, internal resistance 

increases and capacity decreases. For vehicle purposes, the end of life (EoF) is 
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considered when the energy storage unit delivers 80% of its initial capacity [3], 

[84], [85]. 

According to [37], there are basically three SOH estimation methods: 

Experimental methods, Model-based methods (including adaptive filtering) and 

Machine Learning methods. Figure 3.7 displays the model-based methods explored 

in this section and others not surveyed but worth mentioning.  

 

Figure 3.7: State of health estimation methods. 

3.2.1 Recursive Least Square based Methods 

Recursive least square based algorithms to estimate battery parameters have 

been vastly studied in the literature [86], [87], [88], [89]. Approaching the 

parameter estimation with the method has advantages like only one tuning 
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parameter to be dealt with, the forgetting factor λ that is typically between 0.95 and 

1 [86], [90], and its low computational complexity [89].  

A combination of the RLS outfitted with multiple fixed forgetting factors 

optimized by particle swarm optimization (PSO) was proposed and compared to an 

RLS optimized by a single objective genetic algorithm (SOGA) and a third RLS 

optimized by multi-objective genetic algorithm for parameter estimation in [87]. 

The proposed model obtained success over the two others presenting lower OCV 

mean square error. In [89], a square-root recursive least squares (SR-RLS) was 

employed to provide the battery parameters estimation for SOC estimation 

estimated by an SVSF algorithm. In [91], an adaptive forgetting factor recursive 

least square (AFFRLS) method was proposed to identify the ECM parameters and 

feed the online voltage predictor mode. The method presented superiority compared 

with forgetting factor recursive least square (FFRLS) and variable forgetting factor 

recursive least square (VFFRLS) in terms of precision and time processing. 

3.2.1.1 Recursive Least Square 

RLS parameter estimation uses a recursive implementation and is represented 

by the regressed form shown in equation 3.11. 

𝑦𝑘 = 𝜃
𝑇𝜑𝑘  3.11 

where 𝑦𝑘 is the measured voltage, 𝜃𝑇 stands for the desired parameters to be 

estimated, and 𝜑𝑘 is the regressor comprised of known parameters.  

The set of equations composing the algorithm is displayed as described and 

demonstrated in Table 3.8. First, a Kalman gain is calculated with the previous 
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covariance matrix 𝑃𝑘−1 and the forgetting factor λ. A second step is the update o 

the covariance matrix, and finally, the estimate update is computed.  

Table 3.8: Recursive least square algorithm. 

Kalman gain 𝐾𝑘 = 𝑃𝑘−1𝜑𝑘(𝜆 + 𝜑𝑘
𝑇𝑃𝑘−1𝜑𝑘)

−1 

Covariance matrix 𝑃𝑘 =
1

𝜆
(𝐼 − 𝐾𝑘𝜑𝑘

𝑇)𝑃𝑘−1 

Estimate update 𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘(𝑦𝑘 − 𝜃𝑘−1
𝑇 𝜑𝑘 ) 

 

3.2.2 Kalman Filter Based Methods 

As mentioned in topic 3.1.5,  Kalman filter is extensively employed for SOC 

estimation in the literature. Likewise, it is vastly employed in parameter estimation 

[37]. [92] imployed a dual extended Kalman filter (DEKF) algorithm to estimate 

the battery parameters parallelly with the states. The work revealed that using the 

DEKF improved the SOC estimation as the battery aged compared with a plain 

EKF without parameter update. Nevertheless, admitted the algorithm needed 

improvements for real-world application. Another approach was carried with an 

adaptive extended Kalman filter (MAEKF) created to estimate the SOC of aged 

cells in [70]. The author showed the method was able to estimate the battery SOC 

with a maximum of 4% error in a constant current discharge, while an EKF model 

had an error close to 30%. However, the method requires a constant current 
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discharge to update the ECM model, making it unfeasible in the automotive 

application.  

A dual adaptive extended Kalman filter is proposed and matched with a 

recursive least square extended Kalman filter (RLS-EKF) model and a simple EKF 

under the dynamic stress test (DST) conditions and Beijing Dynamic Pressure Test 

Conditions (BJDST) [93]. The developed algorithm improved the SOC estimation 

compared to the other two in both conditions tested, and the work demonstrated 

joint model could enhance the estimation by three times compared to a single 

model. Recently, an improved extended Kalman filter (IEKF) equipped with 

concepts from noise adaptation, a fading filter and linear‑nonlinear filtering was 

developed in [94]. In [95], a double extended Kalman filter for SOC and parameter 

estimation was presented and validated through a new and aged battery submitted 

to UDDS drive cycles. The authors compared the influence of neglecting the battery 

capacity, parameters and SOC-OCV curve update in the SOC estimation and 

concluded the last impacted the most.  

3.2.3 Smooth Variable Structure Filter 

The Smooth variable filter is applicable in SOH estimation as Kalman filter 

variants. In [96], a chattering indicator was proposed to address the health regarding 

the battery capacity fade. As SVSF inhibits the chattering effect, the author 

attributes a smoothing layer Ψ width lower than the existence layer β and hence 

creates a chattering effect with mean and standard deviation calculated along with 

the battery aging that can be applied for monitoring the capacity degradation. In the 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

57 

 

same work, pure SVSF and EKF models are employed to estimate the battery SOC 

in new and aged cells (80% SOH). The outcome was similar to the two methods for 

the new cell SOC estimation, RMSE around 1% for both, and the advantage of 

SVSF presenting 1.9% SOC RMSE while EKF had 2.8% for the aged cell. 

3.3 Concluding Remarks 

There is a vast number of estimation algorithms. Through Figure 3.1, the 

developer can have a lead on what path to take.  ECM based method combined with 

an adaptive filter shows a good relationship between implementation complexity 

and error, having the potential to achieve low errors similar to the electrochemical 

models but with less complexity. Smooth variable structure filter depicts good 

results in estimating the battery SOC and robustness to modelling uncertainties. 

This robustness is attractive as in a real application, especially because of noise and 

perturbations present in the instrument measurement and external factors. Also, it 

permits less accurate pieces of equipment to be installed onboard a vehicle, 

consequently contributing to a more affordable final product. The extended Kalman 

filter is a more spread and well-known estimation method that offers an optimal 

estimation, and working together with other estimation models such as SOH 

resistance and SOH capacity could provide very good results. Hence, the 

application of the estimation algorithm is a developers’ choice based on his affinity 

with the method and scenario to be implemented.  
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Chapter 4              

Fast Charging Aging Test: Design of 

Experiment 

 

The strong impact charging has on battery aging could be better investigated by 

controlling the anode voltage and preventing it from reaching negative values; 

however, this strategy would require prepared cells with a third terminal placed in 

the electrolyte. Therefore, an empirical aging test was developed. This chapter 

explores a design of experiment contemplating four charging profiles assumed in 

the literature to have some beneficial effect on the battery’s lifespan. These tests 

took place in the the Battery Laboratory facility in Centre for Mechatronics and 

Hybrid Technologies at McMaster Automotive Resource Centre. 

4.1 Design of experiment 

4.1.1 Lithium-ion Cell Specifications 

The Li-ion battery tested is a cylindrical cell model INR21700-30T, Figure 

4.1, manufactured by Samsung SDI Co., Ltd. Its specifications considered for test 

design is described in Table 4.1. 
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Figure 4.1: INR21700-30T Samsung cell. 

Table 4.1: Cell main specifications [97]. 

Parameter Specification 

Discharge capacity at 1C [mAh] 3000 

Nominal voltage [V] 3.6 

Maximum voltage [V] 4.2 

Discharge cut-off voltage [V] 2.5 

Maximum current discharge [A] 35 A (at 25°C) 

Standard charge CCCV, 1.5 A, 4.2 V, 150 mA cut-off 

Fast charge CCCV, 4A, 4.2V, 100mA cut-off 

Charge operating temperature [°C] 0 to 50 

Discharge operating temperature [°C] -20 to50 

 

4.1.2 Experimental Setup 

The Samsung 30T cells were tested in an eight cubic feet Envirotronics 

thermal chamber with a -63 to 177°C temperature range, Figure 4.2, capable of 

fitting the four Arbin 60A cell holders used in the test, Figure 4.3. A 60 amperes/5 

volts Arbin Battery Tester channel, Figure 4.2, of voltage and current accuracy of 

0.04% of full scale (+/-2mV and +/-24mA) provided with an auxiliary temperature 
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module of +/-1°C accuracy was employed to power the batteries and data 

acquisition. 

 

Figure 4.2: Environmental Chamber (left) and battery tester (right) utilized in the test. 

 

Figure 4.3: Cylindrical cells fixed on the cell holders inside the environmental chamber. 
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A computer equipped with the Arbin software MITS Pro was employed for 

the controlling and data analysis. The schematic of the test setup is presented in 

Figure 4.4. A CAN-bus communication between the battery tester thermal chamber 

is not depicted in the image once the temperature remained constant at 25°C the 

whole test; hence the communication between the equipment was eliminated. 

 

Figure 4.4: Battery test setup. 

4.1.3 Test Limits definition 

Test constraints are dictated by the cell and battery cycler specifications. The 

chamber does not impose any restrictions once the test is run at 25°C the whole 

time. Table 4.2 reveals the safe limits imposed by the Samsung cell and the Arbin 

battery cycler considered in the characterization tests and fast charging protocols 

design. It is noticeable the battery cycler is not the limiting variable in the test, 

hence the battery cell parameters are considered for safe control. 
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Table 4.2: Test safe limits. 

Limited by Parameter Value  

Cell 

Maximum temperature on the cell surface [°C] 50 

Maximum voltage [V] 4.2 

Minimum voltage [V] 2.5 

Maximum current [A] 35 

Minimum current [A] -35 

Cycler 
Maximum voltage [V] 5 

Maximum current [A] 60 

 

4.1.4 Current Protocol Design 

In the published literature, many authors present charging protocols claimed 

to impact positively in battery life. However, the variation of experiment design 

among the works and even different approaches in the same work inhibits a direct 

and fair comparison of charging protocols. For instance, some apply different mean 

currents leading to different charging times and compare the life cycle results; 

others test the cells submitting them to the same charging time but not the same 

mean current, which causes discrepancies in the depth-of-discharge. The designed 

protocols presented in this chapter had these issues considered for fair comparison 

at the end of life. Hence, all profiles were designed to have the same mean current 

and charging time. 

The parameters considered for the design of the charging protocols are the 

limitations of the battery, the SOC range desired, equipment employed for the test 
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and the recent fast charging time of vehicles. Considerations made, the parameters 

shown in Table 4.3 were set for the profiles. 

Table 4.3: Profile parameters. 

SOC range [%] 10 to 80 

Charging time [min] 15 

Mean current [C-rate] 2.8 

 

4.1.4.1 Constant Current (CC) 

As mentioned in topic 2.2, the CCCV protocol is a benchmark for other 

designed charging algorithms in the literature. Therefore, it is the first of the four 

protocols created. The CV phase is only used in case the resistance increases and, 

consequently, the charging voltage 𝑉𝑐ℎ surpasses the maximum voltage of the cell  

𝑉𝑚𝑎𝑥 before it reaches 80% SOC. The 2.8C CC charging follows the parameters in 

Table 4.3 and is illustrated in Figure 4.5.  

 

Figure 4.5: Designed Constant Current protocol. 
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4.1.4.2 Boost Charging (BC) 

Boost charging comes as the second designed profile. As aforementioned, the 

strategy offers faster charging with no degradation to the battery. Also, it is 

appealing to customers as in a very short period, the battery can be charged from a 

low SOC to levels that would be enough to have a reasonable amount of the vehicle 

driving range. The profile was calculated to charge the first 33.3% SOC, starting 

from 10%, within five minutes, then a second phase charges up to 80%, totalizing 

the fifteen minutes fast charging. As a starting point, the boost phase is set to be a 

constant current phase and lasts five minutes. Consequently, the protocol configures 

a 4C CC followed by a 2.2C CC phase, Figure 4.6. 

 
Figure 4.6: Designed boost charging protocol. 
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4.1.4.3 Boost Charging with Negative Pulse (BCNP) 

Pulse charging has been investigated in the literature in many ways. PC with 

lower current protocols of different frequencies were compared, PC with negative 

pulse and current interrupt profiles were matched with same mean current, yet 

different frequency and duty cycle. Most of the works described in 2.5.1 do not 

study one variable only, maintaining other variables steady to conclude the 

influence this variable offers the battery. Therefore, the two last designed profiles 

were explicitly built to observe the influence of the negative pulses and rest periods 

in charging profiles. The third profile designed is the boost charging with negative 

pulse, Figure 4.7. The protocol features the parameters in Table 4.3, shares the same 

phase triggers exposed for BC, has 0.5Hz frequency and duty cycle of 95%. 

 

Figure 4.7: Designed boost charging with negative pulse protocol. 
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4.1.4.4 Boost Charging with Rest (BCR) 

The last protocol is boost charging with rest, Figure 4.8. It shares all 

characteristics as BCNP except for the current amplitude of the positive pulses that 

is a little smaller in consequence of the rest instead of the negative pulses BCNP 

has. A summary of the profiles’ parameters is portrayed in Table 4.4. 

 

Figure 4.8: Designed boost charging with rest. 
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Table 4.4: Designed charging protocols summary. 

  CC BC BCNP BCR 

  Step 1  Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 

Profile Step 
Constant 

Current 

Constant 

Current 

Constant 

Current 

PC with 

negative 

Pulse 

PC with 

negative 

Pulse 

PC with 

Rest 

PC with 

Rest 

Transition Trigger  
> 80% 

SOC or 

>4.2V 

> 43.3% 

SOC 

> 80% 

SOC or 

>4.2V 

> 43.3% 

SOC 

> 80% 

SOC or 

>4.2V 

> 43.3% 

SOC 

> 80% 

SOC or 

>4.2V 

Charging current [C-rate] 2.80 4.00 2.20 4.32 2.38 4.21 2.32 

Negative pulse current [C-rate] - - - 2.16 1.19 - - 

Step length [min] 15 5 10 5 10 5 10 

Charging Pulse width [s] - - - 1.9 1.9 1.9 1.9 

Negative Pulse width [s] - - - 0.1 0.1 - - 

Rest time width [s] - - - - - 0.1 0.1 
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4.1.5 Cell Characterization 

In the experiment, cell characterization is performed every thirty fast charges 

to track the capacity retention and internal resistance of the batteries. The tests 

utilized for this aging test are explained as follows: 

• Open-Circuit-Voltage (OCV) Test: Consists of discharging and 

charging the battery at a C/20 rate. It is employed every two 

schedules, or seventy-five cycles and is the first characterization test 

performed. 

• 0.5C discharge: It is a discharge at half a C-rate that is used in fast 

charges (FCs) and drive cycles (DCs) calculations. The schedule 

contains two 0.5C discharges at the beginning, and two additional 

ones after the first fifteen drive cycles of each schedule to update the 

battery capacity for the next fifteen FCs and  DCs. The option of two 

discharges in a row is to provide a consistent value and not be 

influenced by the previous profiles the battery has been submitted to. 

So, the second 0.5C discharge is the one that feeds the inputs for the 

DCs and FCs triggers. 

• 1C and 2C discharges: These two tests keep tracking the battery’s 

capability at higher depleting rates. 

• Hybrid pulse power characterization (HPPC):   HPPC, described 

in [98], is employed every schedule to track the battery’s internal 
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resistance over its SOC range throughout the aging test. Similarly, the 

measured data in the test supports battery modelling. 

• Master Charge: Before all characterization tests described above, a 

CCCV,  3 A, 4.2 V, 150 mA cut-off charging is performed to fully 

charge the cell. 

• 0.33C 10% capacity charge: This procedure is applied to prepare the 

battery for the first of the fast charges after either HPPC and 0.5C 

discharge procedures so that the SOC will be at 10%. 

4.1.6 Cycle Discharging 

Discharges post fast charging profiles are drive cycles calculated through a 

backward-looking EV model to simulate the use of the cell in the Pacifica Plug-in 

Hybrid (Chrysler) and be explored in the development of battery state estimation 

models. A power simulation generated for a cell is scaled as demonstrated in 

equation 4.1. 

𝑃𝑐𝑒𝑙𝑙(𝑡) =
𝑃𝑑,𝑖𝑛(𝑡) + 𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑖𝑒𝑠
𝑁𝑐𝑒𝑙𝑙,𝑝 + 𝑁𝑐𝑒𝑙𝑙,𝑠

 4.1 

Where 𝑃𝑑,𝑖𝑛(𝑡) is the power requested by the drive at the instant 𝑡, 𝑃𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑖𝑒𝑠 is 

the power consumed by the vehicle electrical accessories and is assumed to be 

constant at 350 W, 𝑁𝑐𝑒𝑙𝑙,𝑝 and 𝑁𝑐𝑒𝑙𝑙,𝑠 are the number of cells in parallel and series 

necessary to compose the 16.6KW Pacifica Plug-in Hybrid (Chrysler) battery pack. 

The fifteen drive cycles deplete the battery from 80 to 10% SOC and are 

assigned in the aging schedule in the following sequence: UDDS, HWFET, LA92, 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

70 

 

US06, WLTP and Reordered_1 up to Reordered_9 and Reordered_US06.  

Reordered drive cycles are created from random small pieces chopped at every stop 

in the first four cited drive cycles listed, except for the Reordered_US06 that 

contains only random pieces of the US06 itself. 

4.1.7 Test Procedure 

At the test start, the chamber is set to 25°C, and a resting period of three hours 

is set to accommodate the cell’s temperature. Additionally, the full schedule is 

manually selected to run, and the physical setup is verified through the temperature 

and voltage parameters reading in MITS Pro program.  

The test is conducted with two alternating schedules that differ whether the 

OCV procedure is applied or not. Consequently, the lasting time of the schedules is 

6.2 and 4.5 days with (full schedule) and without OCV, respectively. The test 

procedures durations are cell aging dependable and decrease as the cell ages.  

Table 4.5 depicts the test steps ordered as they occur within the schedule.  
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Table 4.5: Aging test full schedule procedure. 

Procedure Duration Time [hours] 

Master Charge 1.2 

Open-circuit-voltage 41.3 

0.5C discharge + master charge 3.2 

0.5C discharge + master charge 3.2 

1C discharge + master charge 2.2 

2C discharge + master charge 1.7 

Hybrid pulse power characterization  30 

0.33C 10% capacity charge 0.3 

Fast charging + drive cycles  29.6 

Master charge + 0.5C discharge 3.2 

Master charge + 0.5C discharge 3.2 

0.33C 10% capacity charge 0.3 

Fast charging + drive cycles  29.6 

Master Charge 1.2 

 

The end of the test is due when both the 0.5C discharging capacity reaches 

below eighty percent of the first capacity measurement and the cell internal 

resistance surpasses a rise of fifty percent of its original value. Figure 4.9 shows the 

sequence of actions taken along the battery aging test. 
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Figure 4.9: Aging test flowchart. 
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Chapter 5  

Dual State Estimation Algorithm  

 

State estimation methods are presented in Chapter 3. In this section, the dual state 

estimation algorithm (EKF/SVSF) created in MATLAB/Simulink has its 

development described from the choices concerning the type of battery modelling 

to the final tuning of the EKF/SVSF model. 

5.1 Dual State Estimation Modelling 

Chapter 3 presented various candidates for the state of charge and health 

estimation. The dual state estimation model is formed by an EKF to estimate the 

state of charge and an SVSF for capacity estimation. The combination of the two 

algorithms is illustrated in the following Figure 5.1. It requires voltage, current and 

temperature to process the calculations. Although it runs on symmetric parameters, 

the model is prepared to receive both charging and discharging ECM parameters. 
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Figure 5.1: Dual state estimation algorithm. 

For the initial SOC, the open circuit voltage based strategy presented in 3.1.2 

is applied with the first voltage measurement considered as the OCV. The strategy 

eliminates the need for an initial SOC guess every time the algorithm starts. 

Additionally, this first measured voltage value is close to the actual OCV, even if 

there is a load from the low-voltage system, avoiding a large offset between the 

guess and actual SOC. 
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5.1.1 State of Charge Estimation Model 

5.1.1.1 Battery Modelling 

Battery modelling requires a series of characterization tests such as capacity 

discharges, open-circuit-voltage to obtain the SOC-OCV relationship, and hybrid 

pulse power characterization described in section 4.1.5. For its development, there 

are several approaches such as electrochemical models that describe the chemical 

reactions inside the battery, stochastic models that are supported on discrete-time 

Markov chains, analytical models that use empirical formulas to illustrate a battery 

characteristic, and the equivalent circuit models (ECM) that simulate the internal 

behaviour of the battery [99]. The latter is the method applied in this work’s 

estimation model. 

ECMs use compositions of resistances, capacitors and sometimes impedances 

to model the different behaviours happening inside the battery under 

charge/discharge currents. The approach has the advantage of delivering a 

reasonable performance for real-time applications. However, it lacks the ability to 

predict other battery states like aging, power and capacity losses. 

The work in [63] compared the performance in the terminal voltage 

calculation of twelve types of ECM among combined,  enhanced self-correcting of 

two and four-state low pass filters, RC models with and without hysteresis up to 

three branches. They show that the RC models present the lowest RMSE and that 

the use of hysteresis or the addition of RC branches can improve the accuracy of 

the voltage estimation. Nevertheless, RC with higher order than the second does 
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not decrease the error proportionally to increasing implementation complexity. 

[100] also demonstrated in his study that the second-order R-2RC model depicts a 

good trade-off between accuracy and implementation complexity. 

Given the evidence shown by the previous works [63] and [100], and the 

circumstances of the proposed design of the experiment performed only at 25°C, a 

reasonable choice with a good trade-off between accuracy and model complexity is 

the 2nd order R-2RC equivalent circuit model, Figure 5.2. 

 

Figure 5.2: Second-order equivalent circuit model [63]. 

5.1.1.1.1 Second-order R-2RC model 

Consider the Figure 5.2. 𝑅0 represents the ohmic resistance of the battery 

concerning its internal components that is translated in the instantaneous drop in 

the terminal voltage of the battery at discharging. The branches containing the R’s 

and C’s describe the charge transfer resistance and the double layer capacitance of 

the cell,  respectively, or in other words, the dynamics of the battery. 𝑉𝑜𝑐 stands for 

the open-circuit-voltage that is transformed from the state of charge through the 

SOC-OCV relationship curve, Figure 5.3. 𝑉𝑡 is the output of the model that can be 

measured in the terminals of the cell. 
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Figure 5.3: Samsung 30T SOC-OCV relationship curve calculated from the average C/20 

charge/discharge curves (BCR protocol test). 

The second-order R-2RC ECM is described in the discrete time domain in 

equations 5.1, 5.2 and 5.3. 

𝑉𝑖,𝑘 = 1 −
𝛥𝑡

𝑅𝑖𝐶𝑖
𝑉𝑖,𝑘−1 +

𝛥𝑡

𝐶𝑖
𝐼𝑘−1 5.1 

𝑆𝑂𝐶𝑘 = 𝑆𝑂𝐶𝑘−1 −
𝜂𝛥𝑡

𝑄
𝐼𝑘−1 5.2 

𝑉𝑡𝑘 = 𝑂𝐶𝑉(𝑧𝑘) − 𝑉1,𝑘 − 𝑉2,𝑘 − 𝑅0𝐼𝑘 5.3 

where 𝑉𝑖,𝑘 denotes the states 𝑉1,𝑘 and 𝑉2,𝑘 that are the voltages of the RC elements, 

being 𝑖 the number of the RC. 𝑅𝑖 and 𝐶𝑖 are the resistance and capacitance, 𝛥𝑡 is 

the sampling period, and 𝐼𝑘−1 stands for the current input. The state of charge 𝑆𝑂𝐶𝑘  

is computed with the previous 𝑆𝑂𝐶𝑘−1, the Columbic efficiency of the cell 𝜂, the 

battery capacity 𝑄. The calculation of the output 𝑉𝑡𝑘 is through the OCV achieved 
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as a function of the SOC calculated, the other states and the internal resistance 

multiplied by the current passing through the battery.  

The designed model counts on symmetric parameters for charging and 

discharging. Consequently, for a 2nd-order R-2RC ECM, five parameters 𝑅0, 𝑅1, 

𝑅2,  𝐶1, and 𝐶2 are estimated for each SOC level in the HPPC curve, forming a 

lookup table (LUT) as a function of the SOC. The obtainment of these parameters 

is described in the following topic. 

5.1.1.1.2 Parameter Estimation 

The ECM parameter estimation task is performed using optimization 

methods/tools that input random values for the parameters to be estimated and 

compare the output with a measurement until either the minimum cost function is 

reached, the parameters change by less than the indicated tolerance between 

successive iterations, or the number of iterations set is achieved. This work 

employed an existing MATLAB/Simulink tool created by MathWorks employee 

Javier Gazzarri [101], capable of simulating first to fifth-order battery models. The 

tool receives raw time series current and voltage data collected during battery 

testing and outputs terminal voltage and SOC. For the estimation of the parameters, 

the HPPC curve served as the input data, and as a response, the estimation tool gave 

the curve illustrated in Figure 5.4.  
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Figure 5.4: Hybrid pulse power characterization test input and response from estimation 

tool (BCR protocol test). 

A set of optimized ECM parameters were generated for each step of the HPPC 

test, forming a row vector. This way, the voltage estimation is better provided over 

the SOC range. In order to have a model and results closer to the real application, 

parameters for the surrounding temperatures have to be estimated and included in 

the model, as the cell temperature is variable during the tests. Once the test did not 

count on an environment different from the 25°C, these surrounding temperature 

characterizations of the cell were attained from tests performed by Dr. Kollmeyer 

and Michael Skells at McMaster University that are available as open-source on 

Mendeley [102]. The HPPC tests performed at 10°C and 40°C were input into the 

parameter estimation tool, and their estimated parameters used to create a 2-D LUT 

with SOC and temperature as breakpoints. 
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Besides the data acquired in tests, the parameter estimation tool needs other 

inputs such as the initial guess for all parameters to be estimated, the battery 

capacity and others depending on the objective. As aforementioned, five parameters 

of the second-order R-2RC have to be estimated to satisfy equation 5.1. The 

MATLAB/Simulink tool requires the time constants 𝜏𝑖 (𝜏𝑖 = 𝑅𝑖𝐶𝑖) instead of the 

capacitances 𝐶𝑖, so the estimated parameters given by the tool are 𝑅0, 𝑅1, 𝑅2,  𝜏1, 

and 𝜏2, last point of Figure 5.5 repesenting the estimation after 41 iterations, and 

equation 5.1 is rewritten in equation 5.4 for the modelling. 

𝑉𝑖,𝑘 = 1 −
𝛥𝑡

𝜏𝑖
𝑉𝑖,𝑘−1 +

𝛥𝑡𝑅𝑖
𝜏𝑖

𝐼𝑘−1 5.4 

 

Figure 5.5: Estimated parameters over the iterations for the 25°C (𝑅1,2,3 depicted in Ohms 

and  𝜏1,2 in seconds). 

The test data provided for the battery modelling came from the boost charging 

with rest protocol aging test presented in 4.1.4.4, and the parameters estimated are 

found in Appendix A. 
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5.1.1.2 Extended Kalman Filter State of Charge Estimation Modelling 

(EKFsoc) 

The state of charge estimation algorithm was modelled on the second-order 

R-2RC ECM; hence, three states are estimated. The state-space for the battery in 

the state estimate and measurement estimate is illustrated as follows: 

𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) =  𝐹�̂�𝑘−1|𝑘−1 +𝐺𝑢𝑘−1 +𝑤𝑘−1 5.5 

�̂�𝑘|𝑘−1 = ℎ(�̂�𝑘|𝑘−1,𝑢𝑘, 𝑣𝑘) = 𝐻�̂�𝑘|𝑘−1 + 𝐷𝑢𝑘 + 𝑣𝑘 5.6 

where,  

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝐹 =

[
 
 
 
 
1 0 0

0 1 −
𝛥𝑡

𝜏1
0

0 0 1 −
𝛥𝑡

𝜏2]
 
 
 
 

          

�̂�𝑘−1|𝑘−1 = [

𝑆𝑂𝐶𝑘−1|𝑘−1
𝑉1,𝑘−1|𝑘−1
𝑉2,𝑘−1|𝑘−1

]           

𝐺 =

[
 
 
 
 
 
 −
𝜂𝛥𝑡

𝑄
𝛥𝑡𝑅1
𝜏1
𝛥𝑡𝑅2
𝜏2 ]

 
 
 
 
 
 

                                   

𝐻 =  
𝜕ℎ

𝜕𝑥
|
�̂�𝑘|𝑘−1,𝑢𝑘

= [1 − 1 − 1]

𝐷 = 𝑅0                                             

 5.7 

𝑢𝑘 is the input and represents the current through the battery. Note that the 

state estimate 𝑥𝑘|𝑘−1 is modelled with the Coulomb Counting, so for the output 

�̂�𝑘|𝑘−1 calculation, the SOC is transformed to OCV by the employment of the curve 
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shown in Figure 5.3 in the form of a LUT, and the calculated state estimate 

becomes:  

�̂�𝑘|𝑘−1 = [

𝑂𝐶𝑉𝑘|𝑘−1
𝑉1,𝑘|𝑘−1
𝑉2,𝑘|𝑘−1

] 5.8 

The initialization of the algorithm is given in the following Table 5.1. Note 

that the SOC depends on the first voltage measurement, so a value is not attributed 

to it. The computation of the algorithm at each time step is illustrated in Table 3.3. 

Values attributed to the process noise covariance matrix Q are addressed in 6.2.1. 

Table 5.1: EKF SOC estimation initialization. 

Initial State  𝑥0 = [𝑆𝑂𝐶 0 0]
𝑇 

Initial Covariance 𝑃0 = [
8.0𝑒 − 08 0 0

0 8.0𝑒 − 08 0
0 0 8.0𝑒 − 08

] 

Measurement Noise Covariance 𝑅 = 4𝑥10−6 

 

5.1.2 State of Health Model 

5.1.2.1 Capacity Estimation Modelling Based on Normalized 

Resistance Increase 

The battery capacity state of health (SOHcap) was modelled using the vast 

data collected across the aging test. It is based on the resistance increase captured 

in the HPPC test. So, a so-called dynamic model and the modelling of the 
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relationship between the normalized resistance increase and capacity fading were 

designed as described in the following topics. 

5.1.2.1.1 Dynamic Model 

The dynamic model has the voltage drop as an output (𝑉𝑑𝑟𝑜𝑝). It utilizes the 

resistance calculated, the internal resistance plus charge-transfer resistance (𝑅𝑑𝑦), 

from the four pulses of the HPPC test performed on the fresh battery submitted to 

the aging test to create a 2D-LUT of C-rate and SOC breakpoints. The data 

interpolated in the LUT is then multiplied by the current in the battery to provide 

the voltage drop of a new cell at each time step, Figure 5.6, for the normalized 

resistance rise θ estimation by the SVSF algorithm. 

 

Figure 5.6:  Ten seconds 8C discharge pulse at 50% SOC (BCR protocol test). 

Vdrop 

𝑉𝑑𝑟𝑜𝑝 = 𝑅𝑑𝑦𝐼𝑘 
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5.1.2.1.2 Normalized Resistance Increase - Capacity Fading 

Relationship (NRI-CF) 

After the computation of the SVSF algorithm, Table 3.6, the updated estimate 

𝜃𝑘|𝑘 is transformed into the capacity fading through the 1D-LUT created each time 

step through a process. The LUT created has the capacity fading as table data, and 

varying breakpoints computed from the interpolation of fitted curves calculated 

every 10% SOC step performed in the HPPC test. These normalized fitted curves 

were designed to ensure the breakpoints are consistently monotonically increasing 

to be implemented into LUTs, once the measurement of resistance can be 

influenced by external variables like the temperature and result in a lower value of 

subsequent data such as pointed out in Figure 5.7. 

 

Figure 5.7: Normalized resistance increase–capacity fading relationship fitted curve at 

50% SOC (BCR protocol test). 
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The process starts with selecting the upper and lower boundary curves from 

the direct LUTs dependent on the SOC presented by the battery. These curves, 

Figure 5.8, contain the normalized resistance increase calculated from the 

resistances retrieved from the HPPC test across the entire aging test. 

 

Figure 5.8: Normalized resistance increase–capacity fading relationship at different SOC 

levels (BCR protocol test). 

Once both curves are selected, a new curve corresponding to the battery SOC 

is generated by interpolating the upper and lower curves, Figure 5.9, and used as 

breakpoints in a final LUT containing the capacity fading as table data. The capacity 

fading is then applied in the calculation of the battery capacity to feed the EKF 

model for the SOC estimation. 
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Figure 5.9: Illustration of an NRI-CF curve generated at 73.3% SOC (BCR protocol test). 

5.1.2.2 Smooth Variable Structure Filter Parameter Estimation 

Modelling (SVSFcap) 

The SVSF model was built to support the EKF SOC estimation model with 

the estimated battery capacity. As there is not a direct measurement of the voltage 

drop, it considers the delta between the measured terminal voltage and the open 

circuit voltage estimated by EKF as the measurement. The initialization of the 

model is with the last SOH value recorded. Hence, for simplification purposes, the 

initialization in the simulations presented in Chapter 6 will be the true SOH of the 

cell. 

 

 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

87 

 

The a priori calculations are presented as follows: 

1. The state estimate 𝜃𝑘|𝑘−1 is considered as the estimated update from 

the previous time step. 

𝜃𝑘|𝑘−1 = 𝜃𝑘−1|𝑘−1 5.9 

2. Measurement estimate is calculated with the voltage drop from the 

dynamic model that assumes:   

�̂�𝑘|𝑘−1 = 𝐻𝑘𝜃𝑘|𝑘−1 = 𝑉𝑑𝑟𝑜𝑝𝜃𝑘|𝑘−1 = 𝑅𝑑𝑦𝐼𝑘𝜃𝑘|𝑘−1 5.10 

3. The measurement error is computed as illustrated in 5.11. 

𝑒𝑦𝑘|𝑘−1 = 𝑦𝑘 − �̂�𝑘|𝑘−1 = 𝑧𝑘 − 𝑂𝐶𝑉𝑘|𝑘 − �̂�𝑘|𝑘−1 5.11 

where 𝑧𝑘 is the battery terminal voltage and 𝑂𝐶𝑉𝑘|𝑘 the estimate update. 

The a posteriori phase of SVSF is computed according to the following Table 

5.2. 

Table 5.2: SVSF capacity estimation a posterori phase algorithm. 

SVSF gain 
𝐾𝑆𝑉𝑆𝐹𝑘 = 𝐻

+𝑑𝑖𝑎𝑔 [(|𝑒𝑦𝑘|𝑘−1| + 𝛾 |𝑒𝑦𝑘−1|𝑘−1|)

∘ 𝑠𝑎𝑡(𝜓−1𝑒𝑦𝑘|𝑘−1)] 𝑑𝑖𝑎𝑔(𝑒𝑦𝑘|𝑘−1)
−1 

Estimate update 𝜃𝑘|𝑘 = 𝜃𝑘|𝑘 + 𝐾𝑆𝑉𝑆𝐹𝑘𝑒𝑦𝑘|𝑘−1 

Measurement 

estimate 
𝜃𝑘|𝑘 = 𝐻𝑘𝜃𝑘|𝑘−1 

Measurement error 𝑒𝑦𝑘|𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

88 

 

Chapter 6             

Aging Test Measurements and Dual State 

Estimation Modelling Validation 

 

This section depicts the outcomes from both the extensive fast charging aging test 

performed in the Battery Laboratory facility in the Centre for Mechatronics and 

Hybrid Technologies at McMaster Automotive Resource Centre defined in Chapter 

4 and the performance of the dual estimation model described in Chapter 5 for the 

battery state of charge and health estimation. 

6.1 Fast Charging Aging Test Results 

In section 4.1.7, the aging test procedure describes two battery parameters 

considered as the battery end of life (EOL), the capacity fading higher than 20% of 

the initial battery capacity, and the rise in internal resistance surpassing 50% of its 

original value. These data are acquired at every schedule’s start (every 37 cycles) 

with a run of the characterization test. For the initial 1C discharge capacity, 

3000mAh (min 2900mAh) [97], and the 0.5C discharge, the four cells presented 

the following numbers in Table 6.1. 
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Table 6.1: Four cells' capacities at the beginning of testing. 

  Cell Capacity [Ah] 

Discharge 

Test  
# 1 (CC) # 2 (BC) # 3 (BCNP) # 4 (BCR) 

0.5C 2.972 2.991 2.976 2.964 

1C 2.949 2.969 2.951 2.949 

 

This first 1C discharge was performed to verify if the samples were within 

specifications, whereas the 0.5C discharge was employed as a starting point for the 

capacity state of health (100% SOH). Regarding the second metric for comparison, 

the rise in internal resistance, data analyzed is collected from the HPPC test 1C 

pulse discharge at 50% battery SOC. 

6.1.1 Capacity Retention 

The capacity state of health after more than six months of testing is presented 

in Figure 6.1. It can be noticed that the four protocols had similar capacity fading 

up to a little over cycle 100 when they started to diverge, with both profiles featured 

with 1.9-second pulse depicting a higher capacity fading rate. Boost charging with 

rest (BCR) protocol had the fastest degradation of all, hitting the end of life around 

cycle 780. Boost charging with negative pulse (BCNP) reached 82.0% SOH 

capacity at cycle 970, the latest measurement, whereas, Constant current (CC) 

protocol presented the best capacity retention followed by the boost charging (BC) 

protocol with 87.7% and 87.0%, respectively. 
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Figure 6.1: Capacity retention over the cycles. 

Considering the maintenance of their capacity fading rate of around 0.39% 

every 37 cycles after cycle 500, the projected EOL of CC charging protocol will 

occur around cycle 1500 and BC a little after 1400. On the other hand, BCNP profile 

is due to reach 80% SOH around cycle 1050. 

6.1.2 Internal Resistance Rise 

Internal resistance (IR) rise, the second metric to decide the EOL, is 

illustrated in Figure 6.2. The BCR protocol displays a higher internal resistance 

over the cycles, followed by the BCNP, BC and CC protocols. Examining Figure 

6.1, it can be concluded that there is a relationship between the two metrics 
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employed in verifying the battery EOF; nevertheless, it does not display the 

influence of the fast charging protocol in the resistance rise. 

 

Figure 6.2: Discharge resistance increase at 50% SOC over the test cycles. 

Figure 6.3 demonstrates the discharge resistance as a function of the capacity 

fading. Through the trendline up to 10% capacity fading, the image reveals the 

battery resistance increase to be similar for all four charging algorithms with a 

percentual increase of around 23% for BCNP, 24% for CC and BC, and 25% for 

the BCR after half of the batteries life. Therefore, up to half of the test, one can 

assume the battery does not increase its internal resistance as a function of the 

charging profile type. Nevertheless, past ten percent of the capacity fading, both 

protocols equipped with constant currents show a higher internal resistance increase 

than those with pulses. The increasing rate exhibited by CC and BC up to the latest 

SOHcap 80% 

SOHcap 82% 

SOHcap 87% 

SOHcap 87.7% 
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measurements indicates that both cells will reach 50% capacity rise before the cell 

age below 86% of capacity retention, while the BCNP and BCR protocols hit the 

50% resistance raise mark at 84% and 82.5% SOH, respectively. 

 

Figure 6.3: Discharge resistance increase in function of the capacity fading. 

6.1.3 Fast Charge Temperature 

Temperature is a key point in battery aging. A low temperature leads to 

lithium plating triggering loss of lithium inventory and active anode material. On 

the other hand, a high temperature could cause the solid electrolyte interphase (SEI) 

growth, SEI and electrolyte decomposition degradation mechanisms affecting the 

lithium inventory, or binder decomposition leading to loss of both anode and 

cathode active materials [103]. The concern in the designed aging test performed in 
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this work regarding the temperature is restricted to the rise that occurs during the 

fast charge that could favour the occurrence of the aforementioned degradations 

mechanisms at high temperature. Lithium plating could still be a problem, but the 

cause would be the current load on the battery and not the temperature. 

The increase in the temperature during the fast charge is displayed in Figure 

6.4. CC protocol depicts almost a linear rise in the temperature reaching about 5°C 

at the end of the 15 minutes charge, while BC, BCNP and BCR present a more steep 

increase until the boost phase terminates and the second phase of lower current 

mean starts. These three charging algorithms show comparable temperature profiles 

with the delta temperature hitting close to 5.5°C in BC and BCR cases and a little 

over 6°C for the BCNP. 

 

Figure 6.4: Temperature rise across fast charging (cycle 5). 
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Analyzing the similarity of the temperature measured in the three charging 

profiles featuring a boost charging phase and even a noticeable higher raise in BC 

and BCNP profiles compared to BCR, there is no correlation of the capacity fading 

shown in Figure 6.1 and delta temperature in Figure 6.4. That establishes that the 

temperature did not play a role in the faster aging presented in the BCR test.  

The average temperature increase in the fast charge across the aging test up 

to almost 1000 cycles is presented in Figure 6.5. The image demonstrates that the 

average temperature rise in the fast charge remained unaltered over the test 

sustaining the statement that temperature rise as a consequence of the charging 

algorithm is not an influencing variable of the different aging rates presented by the 

four protocols.  

  

Figure 6.5: Average temperature rise in the fast charging across aging test. 
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6.1.4 Open Circuit Voltage Across the Battery Aging 

Estimation models functioning with SOC-OCV curves are vastly used in the 

literature. The employment of this relationship can introduce error into the model 

when estimating the states of an aged battery. This is because the SOC-OCV 

relationship changes throughout the cell life [38], [104]. The change in the OCV 

curve is also different depending on the battery chemistry and shifts from a positive 

to a negative difference and vice versa over the entire SOC range, as demonstrated 

in [38]. So, tracking the behaviour of the SOC-OCV relationship over the battery 

life is important to minimize errors in modelling. 

The OCV test is performed every 75 cycles in the aging test. Results show 

that the Samsung 30T cell submitted to the test also suffers a drift in the OCV curve 

as it ages, Figure 6.6. From 65% SOC down to about 7.5%, the curve drifts upwards, 

reaching a delta in the voltage of around 44mV at the battery’s end of life. On the 

other hand, the curve presents a negative offset within about 75% and 95% SOC 

range. These values indicate that the SOC-OCV curve could introduce an error in 

the SOC estimation of around 4.5% when the OCV of an aged cell is at a value of 

3.75V, for example. Figure 6.7 depicts the development of the OCV difference from 

the new and aged cell over its lifespan.  
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Figure 6.6: BCR protocol SOC-OCV relationship curves at different SOHs (zoom at 50% 

SOC). 

 

Figure 6.7: BCR protocol OCV difference evolution across the battery lifespan. 
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An analysis comparing the OCV curve drift across the four tested batteries’ 

lifespans reveals that the charging protocol employed on fast charging directly 

affects the OCV curve drift behaviour. At a similar SOHcap, Figure 6.8, it can be 

observed that the charging protocols with pulse cause a higher OCV offset 

amplitude compared to the ones equipped with a constant current. The highest 

offset is close to zero SOC, where the CC and BC OCV curves drift towards 60mV,  

while with the pulse protocols, this number goes up to over 100mA.  

  
Figure 6.8: OCV difference between the new and aged cells (~ SOHcap 89%). 

Another point to highlight is the similarity of the CC and BC curves, 

demonstrating that the higher current within the first five minutes of BC did not 

affect the OCV curve drift enough to present discrepancies as shown by BCNP and 

BCR protocols. When compared with similar discharge resistance increase, Figure 

6.9, the CC and BC curves maintain the similarity shown in Figure 6.8, however, 
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with a more pronounced divergence within the range of 10% and 20% SOC. With 

respect to BCNP and BCR curves, the plot indicates a divergence between the 

curves. 

 

Figure 6.9: OCV difference between the new and aged cells (~ 32% IR rise). 

6.2 Dual State Estimation Modelling Validation 

All simulations and analyses presented in this topic were performed using the 

BCR protocol aging test data.  

6.2.1 Model Tuning 

The dual state estimation algorithm (EKF/SVSF) tuning was divided into two 

phases: A single EKF SOC estimation model tuned to attain good performance on 

robustness to sensor error and a posterior tuning of the SVSF SOHcap model 

coupled on the already tuned EKF.  
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6.2.1.1 Extended Kalman Filter State of Charge Model Tuning 

As cited in topic 3.1.5, the model tuning is performed by trial and error. The 

process adopted in the EKF SOC estimation model followed the trial and error, 

running random drive cycles to find a good set of values, and a refinement of the 

tuning with five numbers within a range (from 2x10-12 to 1x10-11) established based 

on the trial and error tuning. The model counts on a second-order R-2RC equivalent 

circuit model; hence, the three process noise covariances “Q” together made 125 

tuning combinations to be swept with the measurement noise covariance “R” fixed 

to 4x10-6 (0.04% of full scale (+/-2mV ) of the battery tester). 

The cost function utilized in the refinement sweep code was the average SOC 

RMSE of the following drive cycles run in a fresh battery: UDDS, HWFET, LA92, 

US06, and WLTP. The job was performed using two tactics to select the best tuning. 

The first employed the raw data of the drive cycles with no error input into the 

model. A second approach was taken in an attempt to improve the robustness of the 

model to sensor error by inputting a positive and negative current bias of 300mA 

(0.1C of the cell), making the cost function an average SOC RMSE of ten drive 

cycles simulated. The tuned parameter result of both approaches is given in Table 

6.2. 

Table 6.2: Final EKF SOC estimation model tuning values.  

Approach Q11 Q22 Q33 

No Error input 2x10-12 1x10-11 1x10-11 

+-300mA bias input 1x10-11 2x10-12 2x10-12 
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6.2.1.2 Smooth Variable Structure Filter State of Health Model Tuning 

SVSF relies on the smoothing boundary layer 𝛹 and convergence rate 𝛾 

tuning parameters to direct the state estimate to the true value. For the capacity state 

of the health estimation model, the tuning values were obtained by the same 

methodology presented in the EKF model, except that the metric used was the 

average SOHcap RMSE  achieved in the five drive cycles performed on the new 

cell. The best tuning for the range of values swept from 0.3 to 1 (steps of 0.1 ) for 

𝛾, and 1 to 10 (steps of 0.5) for 𝛹 were 1 and 6, respectively. 

6.2.2 Model Robustness to Sensor Error 

Measurements are susceptible to errors introduced as noise or bias [38]. 

Sensors used on an online application can introduce an error of up to 1% of the 

current in a battery pack [105] and up to 5mV bias and values surpassing 5mV in 

the noise [38]. The estimation algorithms should absorb these measurement errors 

to avoid drifts in the estimated states. For instance, a positive current bias of 3% of 

the cell C-rate, +90mA in the Samsung 30T cell case, would diverge the SOC 

calculated through Coulomb counting from the true SOC value by 7.5% at the end 

of the over 9000 seconds of the successive UDDS power profiles employed in the 

aging tests, Figure 6.10. So, eight test cases were designed to verify the robustness 

of the model estimation to sensor errors, as displayed in Figure 6.11. The magnitude 

of the sensor error for each measurement was set reasonably high to push the model, 

being the current error gain 3%, current bias 300mA (0.1C), temperature 5°C and 

voltage 5mV.    
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Figure 6.10: SOC estimated by Coulomb counting and the EKF/SVSF model (“+-

300mA” tuning set) simulating a current sensor bias of +90mA at the UDDS drive cycle. 

 

Figure 6.11: Model robustness to sensor error averaged over fifteen drive cycles. 

The chart exhibits the averaged SOC RMSE and maximum absolute error 

over fifteen drive cycles of the eight cases plus the raw data (first bar) comparing 

the two tuning approaches described in 6.2.1.1. It can be noted that the “+-300mA” 
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biases tuning strategy could select a set of tuning parameter values that decreases 

the average SOC RMSE of both “+300mA” and “-300mA” bias cases compared to 

the “No Error” tuning without jeopardizing the other cases results.  

Figure 6.12 illustrates the SOC estimation of both tunings for UDDS 

simulated with +300mA bias input, the highest RMSE (3.3%) and maximum 

absolute error (5.1%) found within all test cases. It is valid to mention that a bias of 

+300mA would lead to a 25% drift in the SOC by the end of the drive cycle, 

meaning that both tunings are doing a good job filtering the error input.  The overall 

average SOC RMSE and absolute maximum error of all cases for the “No error” 

tuning were 1.1 and  2.1%, respectively. These numbers were 1.1 and 2.4% for the 

”+-300mA” tuning approach.  

 

Figure 6.12: State of charge for both tunings approaches with an input bias in the current 

measurement of +300mA at UDDS (highest error of all scenarios). 
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All results displayed in the following topics are from the EKF/SVSF model 

trained with the ”+-300mA” tuning approach. 

6.2.3 Model Robustness to Initial SOC Offset 

As addressed in topic 5.1, the model counts on a strategy that considers the 

first measured voltage value as the OCV transformed and considered the initial 

SOC. However, the approach is not immune to an offset of the initial SOC due to 

the relaxation of the battery. Therefore, initial SOC offsets were set up to 50% error 

to verify the model’s behaviour to such a situation. A 2% SOC absolute error is 

used as the metric to determine the convergence of the estimation illustrated in 

Figure 6.13 and Table 6.3. 

 

Figure 6.13: Model robustness to initial SOC error at UDDS for a new battery. 
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Table 6.3: Model performance to initial SOC error. 

  Initial SOC Error 

  +10%  -10%  -20%  -30%  -40%  -50%  

SOC RMSE [%] 1.2 1.1 1.6 2.3 3.0 3.4 

SOC RMSE After 

Convergence [%] 
1.0 0.9 0.9 0.9 1.0 1.0 

Convergence Time [s] 240 159 272 455 679 874 

 

6.2.4 Model State Estimation Performance Over Battery 

Lifespan 

The core of the modelling presented in this work is to accurately estimate the 

battery state of charge of an aged battery with the auxiliary of a state of health 

model. The performance of a single EKF model, the EKF/SVSF model, and the 

EKF/SVSF model equipped with multiple OVC curves (OCVc) calculated from the 

average C/20 charge and discharge characterization test over the battery aging 

process are compared, Figure 6.14. Also, the real capacity is input into the EKF 

model and the EKF model equipped with the OCVc to simulate a “perfect” SOH 

model and be a benchmark for the SOH model performance. 

The average error of simulations performed on fifteen drive cycles show 

certain robustness from the EKF model that keeps the SOC RMSE under 2% even 

with the battery at lower SOH, but still with a rise in the error as the battery ages. 

The model with true battery capacity simulating a “perfect” SOH model (EKF 

[Meas. CAP]) justifies that the use of a SOH capacity model can improve the EKF 
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performance, keeping the error close to 1% almost the entire battery lifespan. The 

EKF/SVSF model presented a similar performance to the EKF [Meas. CAP] over 

the battery lifespan, demonstrating it accomplished its purpose supporting the SOC 

estimation.   

 

Figure 6.14: State of charge RMSE comparison of models at different states of health 

(average of fifteen drive cycles). 

The employment of multiple OCV curves to the model was not effective in 

improving the SOC estimation. The fact happened even with the true capacity input 

into the model. As described in 6.1.4, the OCV curve is drifting upwards over most 

of its SOC range below 75% SOC. The unexpected performance may be explained 

by an overprediction of the EKF model, where the OCV estimation is lower than 

the true value, favouring the estimation from the model equipped with the OCV 
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curve from the new battery. The maintenance of the performance of both models 

using the multiple OCVc up to 90.2% SOH might be clarified by the fact that the 

OCV curve drifts up considerably at all the extension from 60% to 10% SOC 

beyond this point of the battery SOH. The results for maximum absolute error 

followed the same pattern displayed for the RMSE, Figure 6.15. 

 

Figure 6.15: State of charge maximum absolute error comparison of models at different 

states of health (average of fifteen drive cycles). 

The performance from the capacity estimation for the EKF/SVSF model is 

illustrated in Figure 6.16. The SVSFcap model, although it did not present a 

satisfactory performance in providing the SOH estimation close to the true value at 

earlier stages of the cell aging, still has an important role in the EKF/SVSF model 

supporting the EKF improving the SOC estimation. The poor performance of the 
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SVSFcap is mainly due to the attempted modelling approach. Two main error 

sources are identified to diminish the model’s performance. The first is the 

measurement considered to be the delta between the voltage measured and updated 

estimate OCV, making the value susceptible to the SOC estimation error. A second 

error introduced into the model, the cause for the higher error for new battery SOH 

estimation, is the curve fitting to make the normalized resistance increase (see 

Figure 5.8), which converts the theta (normalized resistance increase) into capacity 

fading. 

 

Figure 6.16: EKF/SVSF model state of health estimation over aging. 

The overall SOHcap RMSE is 2.6% across the battery life. Figure 6.17 

illustrates the capacity estimation of the best and worst cases for the new and aged 

battery. 
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Figure 6.17: Capacity state of health estimation of new (a) and aged cell (b). 

The states of estimation displayed previously were achieved with the initial 

SOH set to be the true SOH for simplification. In order to simulate a more realistic 

scenario, sets of fifteen subsequent drive cycles at different states of health were 

(a) 

(b) 
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employed. Figure 6.18 exhibits the mean SOH estimated for the set of fifteen drive 

cycles at different stages of aging. The plot depicts the influence of the initial SOH 

in the average estimated SOH, especially after cycle 500 when compared to the 

average shown in Figure 6.16. The lower values are explained by Figure 6.19 and 

Figure 6.20, which show a drop in the estimated SOH every charging period. 

Despite a reasonable overall average SOC RMSE, Table 6.4, a rise in the SOC 

estimation error can also be observed every time the battery is submitted to 

charging, revealing the necessity of a set of tuning parameters dedicated to the 

event. 

 

Figure 6.18: Mean SOH estimated for sets of fifteen subsequent drive cycles at different 

SOH stages. 

Table 6.4: SOC and SOH average overall errors for the fifteen drive cycles simulated at 

once. 

  Overall Average Error [%] 

  Mean RMS Max. Abs. 

SOC 1.6 2.0 5.9 

SOH 3.4 4.0 10.3 
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Figure 6.19: SOC and SOH estimation over fifteen drive cycles for a new cell. 
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Figure 6.20: SOC and SOH estimation over fifteen drive cycles for an aged cell (80% SOH). 

 



M.A.Sc. Thesis – Josimar da S. Duque McMaster – Mechanical Engineering 

112 

 

6.2.5 Model Robustness to Sensor Error on Aged Battery. 

The robustnesses of the tuning approaches were compared in topic 6.2.2 for 

a new cell, where the decision of utilizing the “+-300mA” tuning to proceed with 

the model validation was taken. Figure 6.21 reveals the model still presenting good 

robustness to sensor error for a battery at its end of life. The overall SOC RMSE of 

the nine cases simulated had an increase from 1.1% presented in a new battery to 

1.5% for an aged battery; however, no discrepancy occurred in any of the cases. 

The maximum absolute error was held within 3.5% on both SOHs. 

 

Figure 6.21: Model robustness to sensor error averaged over fifteen drive cycles for a 

new and aged battery (80% SOH). 

Note: The charts presented in this chapter were created from the data displayed in 

Appendix B. 
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Chapter 7       

Conclusion and Future Work 

 

7.1 Summary and Conclusions 

An extensive battery aging test performed in the battery laboratory facility in the 

Centre for Mechatronics and Hybrid Technologies at McMaster Automotive 

Resource Centre has been presented, along with a dual state estimation algorithm 

built to estimate the state of charge and capacity state of health. The test submitted 

four Samsung 30T cells of 3000mAh capacity to carefully designed fast charging 

protocols using constant currents or pulses ascribed to have benefits in either 

minimizing battery aging or maximizing the charging time with no further 

degradation to the battery. These charging profiles were employed to charge the 

battery from 10% to 80% SOC within fifteen minutes (2.8 charging C-rate), and 

fifteen drive cycles depleted the battery within the same SOC range. 

The results gathered to date show a higher capacity fading on the cells tested 

with pulse current profiles. The cells tested with BCNP and BCR protocols hit the 

half-life mark with 400 and 525 cycles, respectively. The best capacity retention 

was observed on the constant current protocol, used as a benchmark in the study, 

that reached half of its life around cycle 750, followed closely by the boost charging 
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profile with 700 cycles at the same SOH. The charging algorithms designed with 

pulse charging were expected to have better or similar performance to CC protocol. 

That is because protocols equipped with pulses are described to ease the 

concentration polarization resistance or diffusion process[23], [24], enabling a 

higher power transfer rate and speeding up the battery charging. The result might 

be explained by the fact that pulse charging profiles could be detrimental to the 

battery due to higher strain throughout the cycles, causing cracks of electrode 

particles affecting material utilization [106]. The assumption for the results in the 

tests is that the benefits in preventing lithium plating did not occur because the cells 

did not reach their limits having the anode voltage going below 0V. The linear 

capacity fading over the entire lifespan of the cell tested with the BCR indicates the 

charging profile did not present the lithium plating as a consequence of the high 

current load or at least did not trigger the degradation mechanism up to the state of 

health it was tested. Studies attribute the primary degradation in linear capacity 

fading to be the solid electrolyte interphase (SEI) growth, and a sudden change in 

the slope featuring a nonlinear capacity loss would be led by a secondary 

degradation mechanism, the lithium plating [33], [107], [108]. 

The internal resistance raises the concern of the instant power capability of 

the cell. The internal resistance rise per cycle showed the same trend as depicted by 

capacity fading. The CC and BC protocols presented a lower internal resistance rise 

than the boost charging with negative pulse and boost charging with rest protocols. 

In topic 6.1.2, both cells tested with CC and BC charging protocols showed a 
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change in the increase of the internal resistance after 90% SOH, half of their 

capacity lifespan. Although CC and BC present a lower increase in the resistance 

raise per cycle, the projection of their trendlines in Figure 6.3 suggests that the 

internal resistance rise shall achieve the magnitude around 120%, against 74% of 

BCNP protocol when they reach the end of life. For the cell tested with the BCR 

protocol, the measured resistance rise was  61% at 80% SOH. Hence, studies in the 

product's power delivery capability designed with CC and BC fast charging past 

half their battery life should be verified more in-depth. 

The aging tests showed the already known drift of the OCV curve over the 

battery lifespan. The OVC drift over the BCR protocol cell lifespan revealed the 

difference of the SOC-OCV curve for a new and aged cell could reach peaks of 

around 44mV across SOCs higher than 7.5%. The curves in Figure 6.7 also 

demonstrate the OCV difference is not exclusively positive or negative and 

switches signs over the SOC range. As examined in topic 6.1.4, the four protocols 

affect the OCV curve drift over the battery lifespan differently. The results showed 

that independent if the SOH or the resistances increase are equal, the curves are still 

depicting different amplitudes, with the cells tested with pulse protocols presenting 

higher values. This finding indicates that SOC estimation modelling should be 

individualized for each protocol if multiple SOC-OCV curves are to be 

implemented. 

The data collected in the fast charging aging tests were utilized to validate the 

dual state estimation algorithm built to estimate the SOC and capacity SOH. An 
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EKF algorithm was employed to estimate the SOC, while an SVSF was applied in 

the capacity tracking. This EKF/SVSF model was then tuned to offer robustness to 

sensor error and initial SOC errors. Posteriorly, its performance in estimating the 

SOC across the battery cycle life was evaluated along with other approaches that 

would improve the model's error.   

The EKF/SVSF model showed a good result to sensor error, presenting most 

of the cases with an average SOC RMSE close to 1% and not surpassing 1.5% in 

the worst-case simulated. The verification of robustness to initial SOC error showed 

the model could converge relatively quickly to the true value. The convergency of 

the estimation for a -50% in the initial SOC is almost fifteen minutes, which is a 

high period. However, the model does not use the initial SOC guess strategy but the 

initial value of the terminal voltage, which through a simulation of a 6C load 

demanded from the Samsung 30T cell at 50% SOC level, would have a value 

representing a SOC close to 5% error from the true initial SOC just after three 

seconds the load release. Therefore, it can be assured that the initial SOC offset will 

be close to the true value in normal use, less than 5% SOC, even if the battery has 

not reached full relaxation. 

The different simulations of the model with aged battery data showed the 

approaches presented the average SOC RMSE of the fifteen drive cycles fairly well. 

The EKF model by itself maintained the SOC RMSE within 2% in the different 

stages of age demonstrated. The EKF with true capacity input simulating a 

“perfect” capacity SOH model (EKF [Meas. CAP]) demonstrated improvements in 
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the error, justifying the need of having a model to feed it with an estimated capacity. 

EKF SOC estimation, along with the SVSF SOHcap estimation, showed similar 

performance to the EKF [Meas. CAP]. 

The use of multiple OCV curves in the models to adequate the SOC-OCV 

relationship to the battery aging did not present improvements as expected. As 

discussed in 6.2.4, the reason for the unexpected outcome might be related to the 

model over prediction, which pushes the estimation of the OCV downwards, 

benefiting the lower curve measured for the new battery. Further investigation on 

the issue shall be performed. 

7.2 Recommendation for Future Work 

The work presented in this thesis reveals many exciting results from the fast 

aging tests that could contribute to the better performance of state estimation 

models. However, the experimental test in this work can not yet be considered 

statistically expressive due to the need to verify the repeatability of the charging 

profiles' results. Consequently, for future work, more cells shall be submitted to the 

same profiles. 

The outcome in which the speed the cells aged is still unclear, although some 

leads on the causes were raised. Therefore, variation of the charging profiles with 

pulses, like different cycle frequencies of the pulse maintaining the duty cycle or 

employing the same tests in colder temperatures forcing a lithium plating, shall be 

performed for more details of the results found with the BCR and BCNP protocols. 

Another approach that might expose order conclusions is to use higher charging 
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rates to push the cells even further. In addition, based on the result of the boost 

charging protocol, the cell lifespan might benefit from the design of a multistage 

constant current protocol to ease the current load at the beginning and end of the 

fast charge. Alternatively, there might be room to push the charging time down with 

an additional intermediate current level step between the existing 4C and 2.2C 

steps. 

The current model built for this thesis has some points that one could address 

to improve the errors found. For instance, it is currently working with symmetric 

resistance and capacitances modelled with discharging data, so a battery model with 

asymmetric resistances and capacitance shall bring more accuracy in the SOC 

estimation and also benefit the charging period that shows a poor SOC estimation. 

Aligned with asymmetric resistances and capacitances, the estimation would be 

improved by developing a set of tuning parameters for a charging mode. Of course, 

the tuning of the model in a more sophisticated way, such as using a genetic 

algorithm, might also offer enhancements. The SOHcap modelling methodology 

showed to be effective in supporting the SOC estimation; however, its accuracy is 

far from ideal at the early stages of the SOH. Besides the way the measurement was 

considered and the fact that the normalized resistance increase had the curves fitted, 

where errors were introduced, the approach with the capacity model does not 

consider the battery relaxation. In an eventual improvement of the model, battery 

relaxation should be considered. Finally, there is a need to investigate why the 
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models equipped with the multiple OCV curves failed in improving the SOC 

estimation on an aged battery. 

Results from the literature, Table 3.1, showed an improvement in the SOC 

estimation when SVSF and VBL-SVSF were used instead of EKF. Therefore, it is 

also of interest to build a dual smooth variable structure filter to verify the 

algorithm's performance. 
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Appendix A  

 



M.A.Sc. Thesis – Josimar da S. Duque  McMaster – Mechanical Engineering 

121 

 

Table A. 1: Estimated equivalent circuit model parameters for different SOC levels at 10°C. 

    State of Charge [%] 

    0 5 10 15 20 30 40 50 60 70 80 90 95 100 

E
C

M
 P

a
re

m
et

er
 

R0 [Ω] 15.64 15.64 14.96 14.36 13.97 13.22 12.99 12.87 12.93 12.88 13.21 13.66 13.77 14.56 

R1 [Ω] 20.61 20.61 14.95 14.34 13.94 13.21 12.99 12.87 12.93 12.87 13.21 13.65 13.76 14.55 

R2 [Ω] 17.86 17.09 13.78 12.80 12.54 11.91 11.70 11.61 11.66 11.61 11.90 12.31 12.40 13.10 

Tau 1 [s] 12.82 12.82 9.98 9.99 9.99 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 

Tau 2 [s] 3493 3493 2836 2999 2995 2994 2995 3000 2997 2994 2996 2999 2990 3001 

 

Table A. 2: Estimated equivalent circuit model parameters for different SOC levels at 25°C. 

    State of Charge [%] 

    0 5 10 15 20 30 40 50 60 70 80 90 95 100 

E
C

M
 P

a
re

m
et

er
 

R0 [Ω] 11.78 11.78 9.88 9.64 9.42 9.02 8.97 9.23 9.36 9.22 9.20 9.40 9.47 9.75 

R1 [Ω] 6.49 6.49 3.07 3.80 4.18 3.18 2.96 3.83 2.97 3.90 3.77 3.96 3.17 3.37 

R2 [Ω] 3.70 3.70 3.07 6.64 9.05 10.77 5.67 5.96 5.81 12.58 3.79 5.17 9.88 7.83 

Tau 1 [s] 6.49 6.49 9.81 11.62 15.56 9.25 8.80 13.00 12.33 13.02 11.70 13.12 8.91 10.71 

Tau 2 [s] 124 124 48 239 4473 76 331 899 659 315 202 703 940 32 
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 Table A. 3: Estimated equivalent circuit model parameters for different SOC levels at 40°C. 

    State of Charge [%] 

    0 5 10 15 20 30 40 50 60 70 80 90 95 100 

E
C

M
 P

a
re

m
et

er
 

R0 [Ω] 9.72 7.49 8.03 8.68 8.12 8.28 7.97 7.75 8.08 8.20 8.25 8.22 8.07 8.40 

R1 [Ω] 5.46 4.99 3.01 3.12 2.33 3.85 3.36 2.92 2.51 3.12 4.34 3.06 2.51 2.48 

R2 [Ω] 4.58 3.24 4.04 5.40 9.71 9.98 5.04 2.93 5.79 4.71 10.30 5.18 8.55 8.91 

Tau 1 [s] 10.00 10.00 0.20 4.52 3.63 11.21 8.53 6.03 6.73 10.27 10.47 8.34 6.32 5.37 

Tau 2 [s] 400 400 30 43 190 305 182 460 151 87 174 403 336 59 
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Table B. 1: EKF SOC RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 0.68 1.29 0.67 2.34 0.88 0.93 0.95 0.77 0.77 0.82 0.85 1.15 0.72 1.16 1.88 1.06 

99.4% 0.67 1.18 0.66 2.23 0.80 0.89 0.86 0.77 0.83 0.82 0.86 1.09 0.68 1.21 1.82 1.03 

99.0% 0.70 1.14 0.67 2.17 0.79 0.80 0.82 0.79 0.87 0.82 0.85 1.10 0.71 1.23 1.70 1.01 

97.8% 0.56 1.22 0.71 2.47 0.88 0.90 0.89 0.76 0.70 0.75 0.85 1.02 0.71 1.13 1.89 1.03 

96.8% 0.55 1.35 0.74 2.66 0.93 1.04 1.04 0.78 0.70 0.71 0.92 1.09 0.68 1.20 2.00 1.09 

95.8% 0.63 1.41 0.80 2.72 1.04 1.06 1.08 0.83 0.70 0.74 1.03 1.11 0.74 1.19 2.12 1.15 

94.8% 0.76 1.54 0.91 3.02 1.18 1.21 1.20 0.91 0.80 0.74 1.09 1.11 0.85 1.25 2.46 1.27 

93.8% 0.89 1.64 0.98 2.94 1.26 1.29 1.34 1.06 0.88 0.87 1.22 1.28 0.96 1.25 2.41 1.35 

93.2% 0.96 1.56 1.01 3.06 1.30 1.29 1.33 1.09 0.84 0.83 1.23 1.10 0.96 1.17 2.24 1.33 

92.3% 1.09 1.46 0.97 2.83 1.24 1.30 1.38 0.99 0.96 0.81 1.20 1.07 1.00 1.19 2.10 1.31 

91.4% 1.24 1.64 1.07 2.88 1.49 1.39 1.45 1.15 1.04 0.90 1.27 1.20 1.06 1.23 2.29 1.42 

90.2% 1.41 1.70 1.40 2.90 1.74 1.55 1.64 1.48 1.31 1.20 1.29 1.26 1.15 1.18 2.24 1.56 

89.1% 1.71 1.78 1.43 3.07 1.90 1.50 1.65 1.60 1.45 1.37 1.31 1.37 1.27 1.20 2.46 1.67 

86.7% 2.39 2.66 2.18 3.84 2.64 2.15 2.40 2.28 2.23 2.26 1.99 2.09 1.98 1.87 3.27 2.41 

86.1% 2.39 2.16 1.94 3.30 2.30 1.92 2.16 1.98 1.98 1.91 1.68 1.68 1.60 1.54 2.57 2.07 

85.3% 2.36 2.11 1.98 3.21 2.23 1.87 2.01 1.87 1.90 1.85 1.66 1.71 1.58 1.58 2.56 2.03 

84.3% 2.40 1.86 1.83 2.88 1.97 1.65 1.83 1.77 1.75 1.74 1.47 1.49 1.45 1.41 2.11 1.84 

83.3% 2.52 1.95 1.92 3.01 2.00 1.77 1.92 1.88 2.10 1.82 1.58 1.87 1.60 1.66 2.23 1.99 

82.1% 2.68 1.93 2.00 2.87 2.11 1.62 1.88 1.98 1.66 1.61 1.59 1.58 1.54 1.61 1.94 1.91 

81.2% 2.69 2.00 1.86 2.82 2.09 1.60 1.79 2.07 1.87 2.04 1.65 1.58 1.71 1.37 2.01 1.94 

79.9% 2.69 1.82 1.70 2.47 1.83 1.56 1.67 1.94 1.65 1.85 1.39 1.31 1.51 1.18 1.71 1.75 
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Table B. 2: EKF SOC maximum absolute error over the battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 1.26 3.05 2.20 3.58 3.21 2.93 2.90 1.78 2.08 2.38 2.92 3.41 2.48 3.20 3.50 2.72 

99.4% 1.25 2.80 1.98 3.54 3.08 3.05 2.75 1.59 1.80 2.13 2.77 3.20 2.01 3.17 3.46 2.57 

99.0% 1.31 2.64 1.88 3.54 3.02 2.70 2.70 1.74 1.75 1.89 2.69 3.01 1.62 2.83 3.34 2.44 

97.8% 1.01 2.76 2.47 4.00 3.26 2.90 2.82 1.51 1.58 2.14 2.72 3.15 1.89 3.14 3.50 2.59 

96.8% 1.20 2.91 2.59 4.57 3.34 2.99 3.18 2.05 2.06 2.26 2.99 3.46 1.66 3.31 3.51 2.81 

95.8% 1.54 2.90 2.66 4.81 3.45 2.81 3.08 2.01 2.02 2.22 3.14 3.49 1.67 3.17 3.61 2.84 

94.8% 1.86 3.11 2.86 5.27 3.48 2.90 3.05 1.87 1.95 2.31 3.10 3.53 1.92 3.34 4.17 2.98 

93.8% 2.14 3.13 2.74 5.33 3.51 2.89 3.28 2.23 2.15 2.20 3.09 3.77 2.21 3.35 3.99 3.07 

93.2% 2.21 2.95 2.70 5.36 3.43 2.88 3.08 2.11 1.75 2.16 3.08 3.28 1.97 2.96 3.71 2.91 

92.3% 2.50 2.71 2.46 5.12 3.22 2.80 3.04 1.92 1.66 1.95 2.83 3.06 2.24 2.80 3.74 2.80 

91.4% 2.72 2.90 2.49 5.24 3.39 2.98 3.13 2.19 1.69 2.11 2.84 3.34 2.24 2.91 4.07 2.95 

90.2% 3.25 2.93 2.65 4.92 3.65 3.06 3.19 2.64 2.07 2.59 2.65 3.09 2.72 2.88 4.05 3.09 

89.1% 3.68 3.04 2.71 5.20 4.45 3.59 3.48 2.95 2.74 2.62 2.99 2.79 2.68 3.08 4.50 3.37 

86.7% 4.55 4.19 3.65 6.29 5.46 4.56 4.43 3.61 3.15 3.78 3.80 3.88 3.80 3.71 5.56 4.29 

86.1% 4.38 3.57 3.34 5.56 4.94 4.20 4.13 3.22 2.87 3.29 3.22 3.31 3.08 3.08 4.58 3.78 

85.3% 4.13 3.65 3.39 5.41 4.94 4.10 3.98 2.97 2.71 2.86 3.26 3.11 2.88 3.17 4.45 3.67 

84.3% 3.99 3.31 3.13 4.79 4.46 3.58 3.55 2.80 2.61 2.53 2.79 2.62 2.60 2.78 3.73 3.29 

83.3% 3.88 3.31 3.49 4.85 4.36 3.66 3.57 2.96 3.15 2.67 3.10 3.19 2.94 3.18 3.95 3.48 

82.1% 4.03 3.17 3.85 4.56 4.43 3.44 3.44 3.07 2.54 2.45 3.03 2.89 2.73 3.24 3.24 3.34 

81.2% 4.12 3.20 3.72 4.46 4.20 3.50 3.45 3.19 2.80 2.94 3.32 2.90 3.27 2.70 3.33 3.41 

79.9% 4.07 2.91 3.15 3.99 3.72 3.60 3.35 3.10 2.53 2.74 2.96 2.70 2.90 2.48 3.26 3.16 
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Table B. 3: EKF [Meas. CAP] SOC RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 0.68 1.29 0.67 2.34 0.88 0.93 0.95 0.77 0.77 0.82 0.85 1.15 0.72 1.16 1.88 1.06 

99.4% 0.70 1.11 0.67 2.13 0.78 0.85 0.84 0.78 0.85 0.84 0.86 1.09 0.68 1.20 1.73 1.01 

99.0% 0.74 1.03 0.69 2.02 0.77 0.74 0.79 0.81 0.91 0.86 0.85 1.11 0.74 1.24 1.56 0.99 

97.8% 0.63 0.98 0.70 2.12 0.78 0.76 0.80 0.80 0.77 0.83 0.85 1.00 0.77 1.12 1.55 0.96 

96.8% 0.61 0.99 0.67 2.17 0.75 0.81 0.89 0.74 0.72 0.69 0.81 1.02 0.71 1.16 1.52 0.95 

95.8% 0.63 0.93 0.66 2.06 0.78 0.78 0.86 0.73 0.68 0.63 0.82 0.99 0.77 1.10 1.48 0.93 

94.8% 0.70 0.95 0.67 2.19 0.82 0.82 0.88 0.73 0.68 0.67 0.87 0.92 0.84 1.06 1.66 0.96 

93.8% 0.77 0.92 0.67 1.95 0.83 0.87 0.92 0.76 0.72 0.67 0.88 0.91 0.80 0.99 1.48 0.94 

93.2% 0.82 0.81 0.67 1.95 0.82 0.87 0.88 0.74 0.70 0.67 0.95 0.88 0.92 1.04 1.24 0.93 

92.3% 0.88 0.70 0.66 1.55 0.76 0.86 0.83 0.73 0.73 0.75 0.99 0.81 1.04 1.05 1.01 0.89 

91.4% 0.98 0.74 0.67 1.47 0.86 0.91 0.86 0.75 0.80 0.78 1.08 0.80 1.07 1.00 1.07 0.92 

90.2% 1.05 0.69 0.79 1.26 0.97 0.85 0.83 0.82 0.85 0.72 0.97 0.71 0.94 0.82 0.87 0.88 

89.1% 1.21 0.81 0.77 1.34 0.92 0.82 0.79 0.82 0.87 0.70 0.96 0.71 0.85 0.87 0.90 0.89 

86.7% 1.71 0.97 1.19 1.57 1.38 1.00 1.10 1.18 1.33 1.27 1.02 0.94 1.04 0.94 1.17 1.19 

86.1% 1.68 0.75 0.99 1.06 1.07 0.95 0.91 0.89 1.11 1.00 1.19 0.75 1.14 1.02 1.00 1.03 

85.3% 1.63 0.80 0.95 0.93 0.88 0.94 0.81 0.72 0.97 0.92 1.20 0.71 1.09 1.02 1.01 0.97 

84.3% 1.63 1.05 0.86 0.87 0.89 1.14 0.86 0.66 0.89 0.88 1.54 0.81 1.29 1.23 1.51 1.07 

83.3% 1.70 1.16 0.83 0.95 0.93 1.05 0.85 0.65 0.96 0.86 1.45 0.72 1.18 1.16 1.57 1.07 

82.1% 1.77 1.36 0.82 1.08 0.92 1.29 0.95 0.63 0.88 0.88 1.58 0.88 1.31 1.20 2.13 1.18 

81.2% 1.74 1.52 0.90 1.28 1.01 1.44 1.11 0.61 0.87 0.95 1.51 0.94 1.28 1.59 2.20 1.26 

79.9% 1.65 1.95 1.15 1.89 1.34 1.60 1.39 0.71 0.98 0.99 2.01 1.34 1.59 1.99 2.87 1.56 
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Table B. 4: EKF [Meas. CAP] SOC maximum absolute error over the battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 1.26 3.05 2.20 3.58 3.21 2.93 2.90 1.78 2.08 2.38 2.92 3.41 2.48 3.20 3.50 2.72 

99.4% 1.30 2.68 1.91 3.43 2.98 2.93 2.67 1.52 1.75 2.05 2.66 3.09 1.90 3.07 3.35 2.49 

99.0% 1.37 2.45 1.77 3.36 2.86 2.51 2.57 1.63 1.72 1.76 2.51 2.82 1.50 2.65 3.15 2.31 

97.8% 1.18 2.30 2.20 3.58 2.88 2.47 2.50 1.69 1.52 1.82 2.31 2.74 1.53 2.76 3.07 2.30 

96.8% 1.08 2.28 2.17 3.90 2.77 2.40 2.69 1.69 1.78 1.76 2.39 2.87 1.22 2.78 2.89 2.31 

95.8% 1.28 2.07 2.04 3.84 2.70 2.03 2.42 1.53 1.65 1.67 2.31 2.69 1.22 2.53 2.69 2.18 

94.8% 1.53 2.10 2.07 4.06 2.53 1.95 2.21 1.32 1.48 1.64 2.07 2.64 1.28 2.53 3.03 2.16 

93.8% 1.72 1.98 1.85 3.76 2.34 1.94 2.25 1.54 1.62 1.59 1.87 2.67 1.51 2.38 2.64 2.11 

93.2% 1.74 1.68 1.76 3.67 2.14 1.84 1.94 1.39 1.29 1.30 1.74 2.10 1.40 1.95 2.28 1.88 

92.3% 1.97 1.38 1.49 3.08 1.72 1.52 1.72 1.32 1.18 1.47 1.55 1.78 1.59 1.68 1.93 1.69 

91.4% 2.08 1.46 1.39 2.94 1.70 1.58 1.67 1.24 1.25 1.40 1.76 1.97 1.67 1.79 2.05 1.73 

90.2% 2.38 1.24 1.62 2.23 1.89 1.51 1.53 1.58 1.39 1.45 1.64 1.49 1.57 1.44 1.63 1.64 

89.1% 2.65 1.35 1.47 2.60 2.23 1.69 1.75 1.58 1.69 1.29 1.62 1.41 1.50 1.66 1.75 1.75 

86.7% 3.27 1.90 2.16 2.90 2.77 2.29 2.44 2.07 2.19 2.12 1.98 2.13 1.82 1.88 2.15 2.27 

86.1% 3.06 1.46 1.69 2.09 2.11 1.63 1.89 1.84 2.10 1.72 1.97 1.66 1.94 1.97 2.25 1.96 

85.3% 2.92 1.50 1.63 1.89 1.65 1.66 1.72 1.40 1.90 1.83 1.99 1.62 1.96 1.93 2.31 1.86 

84.3% 2.89 1.83 1.84 1.79 1.67 1.82 1.88 1.62 2.37 2.24 2.29 1.95 2.28 2.17 2.88 2.10 

83.3% 2.86 2.31 1.81 1.68 1.67 1.73 1.83 1.60 2.14 2.31 2.17 1.75 2.18 2.04 2.99 2.07 

82.1% 2.84 2.71 1.82 2.08 1.65 1.94 1.96 1.65 2.82 2.64 2.31 2.04 2.38 2.11 3.38 2.29 

81.2% 2.57 3.28 1.99 2.33 2.05 2.02 2.04 1.76 2.86 2.77 2.33 2.17 2.38 2.49 3.58 2.44 

79.9% 2.40 4.23 2.32 3.60 3.11 2.57 2.39 1.88 3.24 3.08 2.85 2.36 2.57 3.18 4.04 2.92 

 

  



M.A.Sc. Thesis – Josimar da S. Duque  McMaster – Mechanical Engineering 

128 

 

Table B. 5: EKF [Meas. CAP and OCVc] SOC RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 0.69 1.28 0.67 2.33 0.87 0.92 0.95 0.76 0.76 0.81 0.85 1.15 0.72 1.17 1.87 1.05 

99.4% 0.89 0.98 0.77 1.94 0.79 0.82 0.83 0.87 0.96 0.97 0.92 1.17 0.80 1.29 1.56 1.04 

99.0% 1.05 0.84 0.89 1.73 0.85 0.75 0.86 0.97 1.11 1.10 1.00 1.29 1.00 1.41 1.30 1.08 

97.8% 0.96 0.80 0.88 1.81 0.81 0.82 0.87 1.03 0.99 1.12 1.04 1.19 1.01 1.30 1.27 1.06 

96.8% 0.93 0.80 0.84 1.82 0.81 0.85 0.95 0.87 0.89 0.93 0.93 1.21 0.95 1.35 1.23 1.02 

95.8% 0.91 0.74 0.85 1.67 0.81 0.87 0.94 0.87 0.86 0.84 0.92 1.19 1.03 1.29 1.16 1.00 

94.8% 0.94 0.76 0.82 1.75 0.83 0.90 0.96 0.84 0.82 0.97 1.02 1.12 1.09 1.23 1.28 1.02 

93.8% 0.93 0.70 0.82 1.48 0.84 0.94 0.94 0.80 0.84 0.91 0.95 1.01 0.96 1.15 1.10 0.96 

93.2% 0.95 0.68 0.83 1.43 0.82 0.97 0.95 0.78 0.91 0.97 1.09 1.18 1.15 1.30 0.93 1.00 

92.3% 0.92 0.80 0.95 1.00 0.93 1.01 0.93 1.03 0.90 1.20 1.21 1.20 1.32 1.34 0.85 1.04 

91.4% 0.95 0.80 0.95 0.91 0.87 1.08 1.03 1.00 1.02 1.26 1.34 1.16 1.36 1.33 0.84 1.06 

90.2% 0.98 0.98 0.93 0.65 0.88 1.04 0.98 0.92 1.02 1.13 1.29 1.24 1.37 1.28 1.04 1.05 

89.1% 0.84 1.19 1.13 0.81 0.96 1.25 1.17 1.07 1.15 1.14 1.38 1.31 1.37 1.49 1.14 1.16 

86.7% 0.87 1.10 1.14 0.74 0.97 1.26 1.14 1.12 1.13 1.03 1.37 1.27 1.27 1.41 1.11 1.13 

86.1% 0.91 1.71 1.47 1.09 1.35 1.54 1.42 1.46 1.48 1.53 1.86 1.76 1.88 1.88 1.85 1.54 

85.3% 1.02 1.93 1.57 1.33 1.53 1.74 1.70 1.74 1.71 1.75 1.97 1.88 2.02 1.98 2.04 1.73 

84.3% 1.18 2.46 1.94 1.87 1.92 2.15 2.05 2.07 2.15 2.17 2.48 2.35 2.50 2.43 2.80 2.17 

83.3% 1.22 2.60 2.03 2.01 2.05 2.14 2.12 2.20 2.02 2.35 2.45 2.15 2.50 2.32 2.94 2.21 

82.1% 1.34 2.93 2.24 2.49 2.15 2.55 2.41 2.37 2.83 2.94 2.72 2.77 2.92 2.66 3.63 2.60 

81.2% 1.51 3.07 2.60 2.79 2.35 2.79 2.73 2.53 2.87 2.74 2.77 2.98 2.90 3.20 3.78 2.77 

79.9% 1.73 3.61 3.01 3.42 2.85 3.10 3.11 2.97 3.46 3.32 3.46 3.62 3.46 3.69 4.48 3.28 
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Table B. 6: EKF [Meas. CAP and OCVc] SOC maximum absolute error over the battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 1.27 3.04 2.18 3.57 3.18 2.92 2.88 1.76 2.05 2.36 2.89 3.40 2.47 3.19 3.48 2.71 

99.4% 1.56 2.54 1.84 3.19 2.73 2.65 2.43 1.74 1.73 1.95 2.37 2.96 1.77 2.96 3.10 2.37 

99.0% 1.78 2.22 1.73 3.04 2.48 2.06 2.20 1.96 2.07 2.04 2.07 2.62 1.78 2.49 2.71 2.22 

97.8% 1.60 2.09 2.11 3.38 2.48 2.00 2.10 2.07 1.89 2.00 1.87 2.57 1.75 2.64 2.58 2.21 

96.8% 1.52 2.07 2.09 3.65 2.34 1.91 2.25 1.66 1.70 1.68 1.90 2.74 1.55 2.72 2.38 2.15 

95.8% 1.41 1.82 1.92 3.54 2.21 1.55 1.91 1.62 1.65 1.55 1.76 2.60 1.56 2.52 2.32 2.00 

94.8% 1.54 1.80 1.90 3.72 2.00 1.67 1.66 1.53 1.60 1.70 1.57 2.53 1.61 2.52 2.53 1.99 

93.8% 1.68 1.56 1.57 3.36 1.81 1.71 1.70 1.46 1.62 1.69 1.70 2.54 1.46 2.30 2.27 1.90 

93.2% 1.71 1.22 1.52 3.22 1.62 1.59 1.54 1.44 1.82 1.81 1.70 1.95 1.75 1.91 1.86 1.78 

92.3% 1.86 1.49 1.73 2.48 1.79 1.60 1.57 1.91 1.73 2.18 1.80 1.83 2.16 2.05 1.71 1.86 

91.4% 1.83 1.50 1.71 2.25 1.64 1.69 1.80 1.84 1.91 2.23 1.97 1.75 2.21 2.03 1.68 1.87 

90.2% 1.72 1.82 1.56 1.34 1.63 1.61 1.63 1.59 1.96 2.01 1.79 2.01 2.50 2.08 1.91 1.81 

89.1% 1.44 2.12 1.91 1.87 1.86 1.96 1.95 1.90 2.16 1.99 2.05 2.11 2.32 2.40 2.09 2.01 

86.7% 1.47 1.96 1.87 1.47 1.80 1.92 1.81 1.99 2.11 1.84 1.90 2.13 2.02 2.36 1.91 1.90 

86.1% 1.53 2.72 2.25 2.02 2.38 2.41 2.26 2.38 2.49 2.40 2.56 2.76 2.92 3.02 2.96 2.47 

85.3% 1.66 2.98 2.37 2.27 2.47 2.70 2.52 2.65 2.72 2.65 2.73 2.87 3.15 3.18 3.12 2.67 

84.3% 1.78 3.85 2.83 2.97 2.93 3.38 2.85 3.08 3.17 3.06 3.53 3.48 3.80 3.81 4.09 3.24 

83.3% 1.79 4.23 2.96 3.33 3.36 3.41 3.23 3.16 2.98 3.33 3.61 3.21 3.81 3.65 4.39 3.36 

82.1% 1.87 4.67 3.34 4.00 3.62 4.22 3.70 3.41 3.94 4.07 4.06 3.99 4.52 4.03 5.01 3.90 

81.2% 2.08 5.33 3.93 4.54 4.32 4.58 4.42 3.57 3.86 3.62 4.08 4.23 4.62 4.71 5.13 4.20 

79.9% 2.37 6.17 4.77 5.71 5.29 5.08 5.05 4.10 4.50 4.47 5.04 4.90 5.51 5.42 6.37 4.98 
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Table B. 7: EKF/SVSF SOC RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 0.84 0.81 0.78 1.39 0.87 0.71 1.02 1.02 1.04 1.03 0.98 1.27 0.80 1.28 1.04 0.99 

99.4% 0.84 0.81 0.85 1.28 0.91 0.79 0.94 1.08 1.20 1.11 1.08 1.24 0.86 1.36 0.96 1.02 

99.0% 0.89 0.79 0.89 1.21 0.95 0.72 0.97 1.14 1.27 1.17 1.10 1.30 1.00 1.47 0.89 1.05 

97.8% 0.73 0.76 0.79 1.37 0.83 0.75 0.91 1.07 1.06 1.07 1.06 1.12 0.97 1.27 0.94 0.98 

96.8% 0.67 0.73 0.70 1.45 0.77 0.73 0.94 0.90 0.93 0.84 0.91 1.09 0.84 1.28 0.93 0.91 

95.8% 0.65 0.68 0.67 1.38 0.75 0.71 0.88 0.85 0.85 0.71 0.86 1.05 0.88 1.20 0.96 0.87 

94.8% 0.71 0.70 0.64 1.54 0.75 0.74 0.86 0.79 0.78 0.75 0.91 0.94 0.91 1.12 1.14 0.88 

93.8% 0.77 0.67 0.64 1.40 0.75 0.79 0.87 0.78 0.79 0.71 0.87 0.88 0.81 1.03 1.00 0.85 

93.2% 0.82 0.66 0.65 1.42 0.74 0.82 0.84 0.75 0.79 0.73 0.99 0.94 0.96 1.12 0.88 0.87 

92.3% 0.88 0.70 0.68 1.10 0.71 0.85 0.78 0.79 0.78 0.84 1.04 0.87 1.11 1.16 0.79 0.87 

91.4% 0.99 0.67 0.67 1.09 0.78 0.89 0.82 0.77 0.84 0.85 1.12 0.82 1.13 1.09 0.83 0.89 

90.2% 1.06 0.67 0.79 1.06 0.87 0.84 0.79 0.79 0.85 0.73 1.02 0.75 1.00 0.92 0.84 0.87 

89.1% 1.25 0.89 0.78 1.21 0.84 0.84 0.78 0.80 0.87 0.68 1.01 0.75 0.89 0.95 0.91 0.90 

86.7% 1.82 0.91 1.29 1.59 1.41 1.05 1.18 1.21 1.34 1.33 1.07 0.98 1.09 0.97 1.17 1.23 

86.1% 1.79 0.77 1.07 1.06 1.06 0.97 0.94 0.92 1.14 1.04 1.17 0.77 1.14 1.05 1.02 1.06 

85.3% 1.74 0.84 1.05 0.96 0.89 0.95 0.83 0.74 1.00 0.96 1.17 0.73 1.10 1.05 1.03 1.00 

84.3% 1.75 1.12 0.93 0.88 0.91 1.11 0.85 0.67 0.92 0.92 1.50 0.82 1.29 1.27 1.53 1.10 

83.3% 1.84 1.19 0.91 0.94 0.95 1.01 0.83 0.66 1.01 0.92 1.37 0.74 1.18 1.18 1.52 1.08 

82.1% 1.94 1.35 0.90 1.00 0.92 1.23 0.90 0.66 0.90 0.90 1.47 0.86 1.30 1.22 1.99 1.17 

81.2% 1.92 1.47 0.91 1.10 0.99 1.36 1.01 0.66 0.89 1.02 1.39 0.89 1.26 1.60 2.03 1.23 

79.9% 1.86 1.86 1.07 1.65 1.24 1.47 1.26 0.64 0.94 1.00 1.87 1.24 1.55 1.95 2.67 1.48 
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Table B. 8: EKF/SVSF SOC maximum absolute error over the battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 1.63 1.60 1.63 2.69 2.88 2.45 2.58 2.07 1.84 1.95 2.52 2.26 1.78 2.14 2.67 2.18 

99.4% 1.62 1.79 1.92 2.67 2.75 2.55 2.45 2.22 2.13 2.19 2.35 2.26 1.93 2.36 2.64 2.26 

99.0% 1.69 1.72 1.98 2.60 2.67 2.20 2.38 2.33 2.35 2.31 2.27 2.42 2.16 2.62 2.33 2.27 

97.8% 1.45 1.72 1.70 2.84 2.75 2.26 2.41 2.29 2.05 2.15 2.21 2.15 2.08 2.16 2.54 2.18 

96.8% 1.30 1.51 1.62 2.78 2.67 2.25 2.56 1.87 1.80 1.79 2.25 1.96 1.75 2.16 2.37 2.04 

95.8% 1.16 1.44 1.52 2.71 2.58 1.95 2.34 1.78 1.69 1.52 2.21 1.92 1.72 2.00 2.33 1.92 

94.8% 1.41 1.50 1.66 2.79 2.45 1.93 2.14 1.60 1.50 1.61 2.03 1.99 1.62 1.96 2.64 1.92 

93.8% 1.63 1.47 1.56 2.58 2.26 1.74 2.18 1.47 1.55 1.45 1.86 2.04 1.35 1.91 2.24 1.82 

93.2% 1.65 1.36 1.49 2.70 2.09 1.63 1.87 1.36 1.62 1.51 1.73 1.76 1.57 1.84 1.96 1.74 

92.3% 1.90 1.43 1.27 2.31 1.62 1.38 1.66 1.63 1.43 1.75 1.65 1.68 1.90 1.97 1.55 1.68 

91.4% 2.04 1.23 1.20 2.30 1.67 1.34 1.58 1.44 1.53 1.63 1.76 1.59 1.80 1.80 1.70 1.64 

90.2% 2.36 1.18 1.57 2.13 1.43 1.39 1.39 1.43 1.34 1.29 1.66 1.32 1.75 1.59 1.63 1.56 

89.1% 2.73 1.75 1.53 2.52 1.81 1.49 1.52 1.52 1.54 1.24 1.63 1.33 1.50 1.68 1.73 1.70 

86.7% 3.48 1.69 2.29 2.86 2.76 2.39 2.55 2.13 2.26 2.24 2.11 2.20 1.90 2.01 2.10 2.33 

86.1% 3.26 1.48 1.80 2.18 2.05 1.72 1.93 1.89 2.17 1.75 1.95 1.63 1.92 1.98 2.24 2.00 

85.3% 3.11 1.52 1.68 1.94 1.61 1.66 1.72 1.38 1.91 1.86 1.96 1.60 1.96 1.95 2.30 1.88 

84.3% 3.03 1.95 1.86 1.78 1.68 1.82 1.88 1.61 2.40 2.29 2.28 1.93 2.27 2.19 2.88 2.12 

83.3% 3.04 2.37 1.83 1.67 1.68 1.72 1.82 1.58 2.17 2.34 2.15 1.71 2.17 2.04 2.98 2.08 

82.1% 3.03 2.66 1.83 2.07 1.65 1.85 1.95 1.64 2.85 2.69 2.28 2.02 2.36 2.11 3.37 2.29 

81.2% 2.79 3.19 2.00 2.12 1.94 2.00 2.03 1.73 2.86 2.80 2.33 2.16 2.36 2.54 3.58 2.43 

79.9% 2.65 4.05 2.27 3.14 2.83 2.29 2.20 1.85 3.27 3.11 2.71 2.35 2.55 3.17 3.95 2.83 
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Table B. 9: EKF/SVSF [OCVc] SOC RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 1.32 1.27 1.18 1.05 1.31 0.86 1.69 1.65 1.71 1.66 1.45 1.92 1.08 1.83 0.95 1.40 

99.4% 1.31 1.37 1.27 1.01 1.45 1.06 1.59 1.72 1.91 1.75 1.60 1.92 1.22 1.97 1.00 1.48 

99.0% 1.38 1.33 1.34 1.03 1.53 1.01 1.66 1.81 1.95 1.84 1.66 2.00 1.37 2.15 1.20 1.55 

97.8% 1.23 1.40 1.21 1.01 1.33 1.13 1.51 1.70 1.77 1.74 1.68 1.78 1.38 1.93 1.04 1.46 

96.8% 1.14 1.37 1.13 1.01 1.26 1.07 1.62 1.53 1.64 1.52 1.46 1.74 1.23 1.93 1.08 1.38 

95.8% 1.08 1.31 1.13 0.99 1.25 1.05 1.46 1.50 1.62 1.33 1.40 1.74 1.30 1.87 1.00 1.34 

94.8% 1.07 1.38 1.04 1.00 1.16 1.00 1.42 1.36 1.49 1.43 1.46 1.60 1.34 1.79 1.08 1.31 

93.8% 1.05 1.32 1.05 0.96 1.26 1.11 1.46 1.33 1.61 1.40 1.32 1.50 1.15 1.74 1.18 1.30 

93.2% 1.06 1.50 1.07 0.92 1.23 1.19 1.52 1.32 1.63 1.40 1.68 1.77 1.38 1.91 1.33 1.39 

92.3% 1.01 1.82 1.23 0.98 1.56 1.38 1.55 1.71 1.59 1.71 1.81 1.83 1.68 2.19 1.50 1.57 

91.4% 1.05 1.76 1.27 1.10 1.36 1.44 1.77 1.61 1.74 1.71 1.91 1.75 1.73 2.12 1.40 1.58 

90.2% 1.12 1.86 1.12 0.94 1.40 1.31 1.56 1.48 1.77 1.72 1.87 2.03 1.81 2.13 1.82 1.60 

89.1% 0.94 2.09 1.39 1.36 1.45 1.56 1.75 1.69 1.84 1.65 1.86 2.00 1.65 2.14 1.91 1.69 

86.7% 0.96 1.46 1.10 0.92 1.07 1.31 1.28 1.31 1.35 1.07 1.47 1.47 1.17 1.70 1.40 1.27 

86.1% 0.95 2.15 1.44 1.38 1.61 1.66 1.69 1.66 1.67 1.58 2.05 2.02 1.95 2.25 2.25 1.75 

85.3% 1.00 2.37 1.51 1.61 1.80 1.85 1.98 1.94 1.88 1.81 2.18 2.13 2.09 2.38 2.42 1.93 

84.3% 1.09 2.89 1.90 2.15 2.27 2.30 2.40 2.30 2.30 2.22 2.75 2.67 2.60 2.89 3.21 2.40 

83.3% 1.08 2.96 1.92 2.18 2.34 2.19 2.39 2.39 2.07 2.34 2.59 2.36 2.55 2.68 3.24 2.35 

82.1% 1.16 3.21 2.06 2.56 2.39 2.68 2.67 2.55 2.93 2.85 2.80 3.00 2.92 2.98 3.82 2.71 

81.2% 1.26 3.27 2.42 2.74 2.50 2.86 2.86 2.54 2.85 2.66 2.84 3.15 2.84 3.50 3.92 2.81 

79.9% 1.46 3.75 2.90 3.38 2.95 3.09 3.23 2.99 3.44 3.23 3.52 3.74 3.46 3.90 4.60 3.31 
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Table B. 10: EKF/SVSF [OCVc] maximum absolute error over the battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 2.36 2.84 2.49 2.14 2.98 2.08 3.54 3.10 3.07 3.00 2.91 3.13 2.28 3.14 2.07 2.74 

99.4% 2.33 3.01 2.63 2.00 3.21 2.51 3.24 3.21 3.43 3.15 3.19 3.11 2.39 3.45 2.20 2.87 

99.0% 2.35 2.86 2.70 1.92 3.29 2.37 3.36 3.35 3.44 3.34 3.17 3.23 2.62 3.75 2.60 2.96 

97.8% 2.13 3.01 2.48 2.04 2.86 2.42 3.01 3.21 3.19 3.12 3.15 2.95 2.63 3.37 2.18 2.78 

96.8% 1.96 2.93 2.38 2.01 2.73 2.30 3.30 2.85 3.17 2.82 2.79 2.79 2.34 3.26 2.39 2.67 

95.8% 1.85 2.77 2.38 1.88 2.75 2.12 2.92 2.86 3.10 2.53 2.69 2.83 2.39 3.16 2.05 2.55 

94.8% 1.79 2.89 2.08 1.90 2.52 1.93 2.83 2.60 2.88 2.68 2.70 2.57 2.43 2.99 2.13 2.46 

93.8% 1.70 2.73 2.13 1.74 2.75 2.19 2.93 2.53 3.16 2.63 2.52 2.44 2.20 2.94 2.31 2.46 

93.2% 1.71 2.95 2.18 1.68 2.65 2.33 2.99 2.52 3.09 2.65 2.99 2.83 2.52 3.17 2.59 2.59 

92.3% 1.76 3.34 2.38 1.98 3.19 2.69 2.99 3.09 3.03 3.09 3.13 2.91 3.12 3.69 2.81 2.88 

91.4% 1.80 3.22 2.43 2.26 2.85 2.68 3.40 2.91 3.33 3.04 3.19 2.72 3.14 3.56 2.52 2.87 

90.2% 1.74 3.30 2.04 1.99 2.88 2.31 2.89 2.59 3.33 3.06 2.97 3.34 3.50 3.88 3.24 2.87 

89.1% 1.71 3.59 2.50 2.55 2.85 2.75 3.02 2.99 3.48 2.87 3.04 3.25 2.94 3.84 3.49 2.99 

86.7% 2.19 2.68 1.89 1.81 2.11 2.21 2.21 2.42 2.65 1.97 2.27 2.53 1.99 3.18 2.64 2.32 

86.1% 1.70 3.52 2.33 2.70 2.90 2.83 2.82 2.82 3.01 2.59 3.10 3.25 3.20 4.01 3.84 2.97 

85.3% 1.68 3.75 2.41 2.95 2.99 3.13 3.06 3.12 3.25 2.82 3.29 3.37 3.34 4.26 3.97 3.16 

84.3% 1.81 4.36 2.91 3.66 3.57 3.88 3.57 3.61 3.67 3.21 4.17 4.10 4.05 5.07 5.04 3.78 

83.3% 1.81 4.58 2.95 3.56 3.78 3.75 3.48 3.70 3.37 3.22 4.00 3.77 3.99 4.72 5.16 3.72 

82.1% 1.90 4.85 3.16 3.88 3.88 4.69 3.87 3.96 4.40 3.97 4.41 4.59 4.61 5.00 5.63 4.19 

81.2% 2.00 5.49 3.62 4.20 4.44 4.75 4.24 3.85 4.05 3.52 4.41 4.72 4.54 5.68 5.66 4.34 

79.9% 2.09 6.20 4.43 5.34 5.26 5.15 4.90 4.33 4.72 4.10 5.33 5.34 5.43 6.14 6.38 5.01 
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Table B. 11: EKF/SVSF capacity SOH RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 3.94 7.02 4.52 6.78 5.69 5.36 6.07 6.02 5.76 5.28 6.34 6.12 4.87 5.58 6.73 5.74 

99.4% 3.28 6.79 4.28 6.59 5.39 5.24 5.45 5.52 5.42 4.78 5.94 5.75 4.82 5.47 6.58 5.42 

99.0% 3.31 6.41 4.21 6.61 5.19 4.97 5.35 5.59 5.17 4.76 5.84 5.61 4.58 5.59 6.68 5.32 

97.8% 2.63 5.89 3.51 5.84 4.53 4.29 4.43 4.47 4.47 4.01 4.99 4.73 4.02 4.73 5.96 4.57 

96.8% 2.11 5.37 2.97 5.19 3.77 3.95 4.29 4.13 3.72 3.60 4.49 4.17 3.55 4.16 5.48 4.06 

95.8% 1.84 4.67 2.64 4.79 3.46 3.23 3.49 3.66 3.52 2.97 3.98 3.90 3.23 3.67 4.67 3.58 

94.8% 1.44 4.23 2.09 4.45 2.83 2.58 2.91 3.00 2.90 2.55 3.27 3.10 2.88 3.23 4.66 3.07 

93.8% 1.12 3.67 1.76 3.77 2.57 2.43 2.58 2.51 2.67 2.34 2.75 2.88 2.41 2.79 4.25 2.70 

93.2% 0.96 3.44 1.59 3.66 2.20 2.10 2.34 2.26 2.36 1.88 2.94 2.61 2.24 2.38 3.81 2.45 

92.3% 0.77 3.23 1.38 3.42 2.21 2.00 2.02 2.27 1.99 1.93 2.41 2.29 2.40 2.61 3.24 2.28 

91.4% 0.68 2.81 1.31 3.06 1.67 1.75 1.92 1.78 1.89 1.63 2.02 1.93 2.14 2.18 2.94 1.98 

90.2% 0.68 2.19 0.79 1.56 1.40 1.29 1.21 1.26 1.63 1.56 1.87 2.03 2.07 2.08 2.30 1.59 

89.1% 0.89 2.30 0.73 2.52 1.42 1.37 1.07 1.23 1.62 0.99 1.51 1.56 1.79 1.38 2.22 1.51 

86.7% 1.65 0.81 1.25 1.18 0.89 0.87 0.70 0.75 1.21 1.03 0.97 0.56 1.46 0.83 1.13 1.02 

86.1% 1.60 0.88 1.17 0.98 1.03 0.82 0.47 0.68 1.14 0.90 0.87 0.56 1.26 0.84 1.08 0.95 

85.3% 1.76 0.84 1.30 0.92 1.50 0.88 0.48 0.65 1.17 0.91 1.02 0.61 1.22 0.99 1.16 1.03 

84.3% 1.88 0.78 1.27 0.89 1.26 0.86 0.47 0.74 1.29 1.03 0.98 0.58 1.26 1.21 1.07 1.04 

83.3% 2.15 0.71 1.46 1.28 1.86 0.90 0.89 1.14 1.50 1.21 1.16 0.84 1.30 1.57 1.01 1.27 

82.1% 2.45 0.64 1.70 1.00 1.77 0.94 1.11 1.55 1.51 1.58 1.62 1.21 1.44 1.69 1.06 1.42 

81.2% 2.71 1.20 1.79 1.22 1.82 0.96 1.30 2.01 1.69 1.71 1.56 1.29 1.67 1.71 1.10 1.58 

79.9% 3.09 0.84 1.79 1.40 1.47 1.16 1.21 1.97 2.03 1.89 1.37 1.40 1.55 1.78 1.19 1.61 
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Table B. 12: EKF/SVSF mean capacity SOH estimation over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 96.48 93.76 96.02 93.89 95.25 95.83 94.89 94.38 94.45 94.89 94.70 94.37 96.23 95.28 94.14 94.97 

99.4% 96.55 93.39 95.73 93.58 95.04 95.56 94.94 94.30 94.19 94.79 94.62 94.16 95.81 94.90 93.78 94.76 

99.0% 96.15 93.39 95.46 93.22 94.88 95.52 94.70 93.89 94.06 94.44 94.36 93.94 95.71 94.37 93.37 94.50 

97.8% 95.48 92.59 94.78 92.70 94.17 94.79 94.29 93.70 93.47 93.92 93.83 93.53 94.95 93.86 92.91 93.93 

96.8% 94.96 92.06 94.27 92.29 93.82 93.98 93.33 93.05 93.26 93.33 93.28 93.05 94.44 93.37 92.28 93.39 

95.8% 94.21 91.70 93.58 91.65 93.06 93.54 93.02 92.51 92.45 92.96 92.70 92.31 93.68 92.78 92.02 92.81 

94.8% 93.56 91.08 93.02 90.97 92.57 93.05 92.46 92.15 92.05 92.36 92.29 92.03 92.90 92.13 91.06 92.25 

93.8% 92.97 90.65 92.44 90.62 91.83 92.18 91.81 91.69 91.41 91.64 91.76 91.31 92.42 91.57 90.41 91.65 

93.2% 92.49 90.21 91.95 90.08 91.51 91.78 91.35 91.28 91.05 91.48 90.98 90.91 91.87 91.24 90.12 91.22 

92.3% 91.80 89.44 91.19 89.42 90.52 90.90 90.67 90.30 90.53 90.50 90.48 90.26 90.72 90.10 89.69 90.43 

91.4% 91.19 88.94 90.39 88.83 90.15 90.24 89.85 89.93 89.77 89.96 89.94 89.73 90.09 89.61 89.14 89.85 

90.2% 90.06 88.35 89.88 89.05 89.16 89.64 89.36 89.34 89.03 88.91 88.91 88.41 89.01 88.52 88.42 89.07 

89.1% 89.60 87.08 88.83 87.07 88.09 88.31 88.28 88.26 88.12 88.41 88.17 87.79 88.38 88.10 87.47 88.13 

86.7% 88.09 86.15 87.71 86.27 86.77 87.13 87.25 87.07 87.12 87.35 87.19 86.88 87.36 86.92 86.45 87.05 

86.1% 87.40 85.41 86.96 85.71 85.75 86.40 86.30 86.41 86.45 86.44 86.37 86.13 86.35 86.18 85.75 86.27 

85.3% 86.75 84.64 86.32 85.03 84.86 85.59 85.56 85.67 85.73 85.70 85.71 85.47 85.63 85.49 84.93 85.54 

84.3% 85.81 83.69 85.25 84.11 84.03 84.55 84.52 84.72 84.86 84.74 84.62 84.35 84.54 84.58 84.15 84.57 

83.3% 85.11 82.91 84.52 83.16 83.09 83.75 83.71 84.13 84.30 84.05 84.12 83.88 83.79 84.14 83.62 83.88 

82.1% 84.17 81.95 83.52 82.52 82.18 82.31 82.58 83.25 83.06 83.25 83.30 82.91 82.90 82.94 82.52 82.89 

81.2% 83.58 81.03 82.70 82.00 81.60 81.63 82.16 82.95 82.55 82.48 82.40 82.23 82.26 82.09 81.82 82.23 

79.9% 82.60 80.19 81.16 80.53 80.41 80.68 80.85 81.66 81.50 81.39 80.91 81.04 80.85 80.96 80.74 81.03 
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Table B. 13: EKF/SVSF [OCVc] capacity RMSE over battery lifespan. 

SOHcap UDDS HWFET LA92 US06 WLTP Reo 1  Reo 2 Reo 3 Reo 4 Reo 5 Reo 6 Reo 7 Reo 8 Reo 9 
Reo 

US06 
Average 

100.0% 4.22 7.88 4.87 7.17 6.52 5.78 7.15 6.58 6.14 5.69 6.93 6.84 5.03 6.33 7.31 6.30 

99.4% 3.52 7.53 4.59 7.00 6.18 5.76 6.42 6.04 5.78 5.13 6.57 6.44 4.95 6.26 7.18 5.96 

99.0% 3.44 7.04 4.46 7.03 5.90 5.40 6.25 6.10 5.50 5.08 6.42 6.22 4.67 6.30 7.30 5.81 

97.8% 2.77 6.59 3.70 6.23 5.05 4.68 5.10 4.78 4.77 4.26 5.59 5.24 4.12 5.35 6.51 4.98 

96.8% 2.25 6.13 3.15 5.55 4.26 4.39 5.15 4.49 4.10 3.87 5.15 4.63 3.58 4.84 6.04 4.51 

95.8% 1.96 5.38 2.81 5.17 3.97 3.64 4.22 4.01 3.92 3.20 4.72 4.37 3.27 4.35 5.16 4.01 

94.8% 1.57 5.04 2.25 4.90 3.29 3.00 3.63 3.29 3.28 2.75 4.05 3.57 2.94 3.95 5.32 3.52 

93.8% 1.26 4.48 1.96 4.21 3.16 2.95 3.52 2.90 3.20 2.58 3.56 3.35 2.39 3.61 4.91 3.20 

93.2% 1.10 4.28 1.80 4.16 2.76 2.68 3.30 2.65 2.81 2.07 4.06 3.14 2.28 3.16 4.48 2.98 

92.3% 0.86 4.14 1.63 3.93 2.87 2.72 2.99 2.71 2.48 2.10 3.56 2.84 2.47 3.68 3.92 2.86 

91.4% 0.77 3.71 1.59 3.65 2.32 2.51 3.08 2.25 2.41 1.78 3.22 2.51 2.26 3.26 3.66 2.60 

90.2% 0.80 3.08 1.05 2.21 2.22 1.94 2.40 1.88 2.38 1.90 3.03 2.70 1.97 3.24 3.07 2.26 

89.1% 0.85 3.05 1.05 2.95 2.14 1.83 2.35 2.09 2.54 1.58 2.53 2.29 1.44 2.53 2.97 2.15 

86.7% 1.36 1.60 1.09 1.56 1.10 1.13 1.17 1.27 1.96 1.26 1.47 1.07 0.95 1.79 1.84 1.38 

86.1% 1.27 1.75 0.98 1.52 1.51 1.23 1.42 1.21 1.83 1.07 1.62 1.22 0.84 1.96 1.94 1.42 

85.3% 1.36 1.65 1.04 1.42 1.77 1.39 1.53 1.25 1.85 1.14 1.61 1.21 0.80 2.08 1.88 1.47 

84.3% 1.41 1.55 0.94 1.40 1.79 1.52 1.77 1.36 1.87 1.33 1.68 1.37 0.88 2.40 1.94 1.55 

83.3% 1.62 1.34 1.04 1.21 1.86 0.96 1.31 1.59 1.97 1.46 1.45 1.35 0.86 2.32 1.77 1.47 

82.1% 1.89 1.22 1.01 1.08 1.54 1.07 1.34 1.90 2.10 1.98 1.63 2.00 1.12 2.52 1.51 1.59 

81.2% 2.09 1.21 1.07 1.20 1.46 1.07 1.19 1.89 1.99 1.88 1.66 1.62 1.21 2.54 1.52 1.57 

79.9% 2.38 1.01 1.24 1.53 1.26 1.72 1.51 1.91 2.36 2.00 1.59 1.74 1.24 2.54 1.77 1.72 
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Table B. 14: EKF/SVSF SOC and SOH estimation results for fifteen subsequent drive cycles. 

SOHcap 

Error [%] 
 Mean SOH 

Estimated 
Mean Abs.  RMS Max. Abs.  

SOC SOH SOC SOH SOC SOH 

100.0% 1.5 6.1 2.0 6.4 6.7 11.5 93.9 

99.4% 1.4 5.8 1.9 6.2 6.8 11.5 93.6 

99.0% 1.3 5.8 1.7 6.2 6.7 11.2 93.2 

97.8% 1.6 5.1 2.0 5.4 6.3 10.7 92.7 

96.8% 1.3 4.6 1.7 5.0 6.2 10.3 92.2 

95.8% 1.2 4.3 1.6 4.6 5.8 9.5 91.5 

94.8% 1.5 3.7 1.8 4.0 5.4 9.1 91.1 

93.8% 1.2 3.5 1.5 3.8 4.8 8.6 90.4 

93.2% 1.3 3.3 1.6 3.7 4.5 8.5 89.9 

92.3% 1.4 3.3 1.6 3.7 4.2 9.1 89.0 

91.4% 1.5 3.0 1.8 3.4 4.7 8.4 88.4 

90.2% 1.1 2.6 1.4 3.0 3.4 7.2 87.7 

89.1% 1.0 3.0 1.2 3.6 4.5 9.3 86.2 

86.7% 1.7 1.6 2.0 2.1 4.6 7.2 85.8 

86.1% 2.0 1.8 2.3 2.3 5.2 6.9 84.7 

85.3% 1.7 2.0 2.0 2.7 5.1 9.0 83.8 

84.3% 2.0 2.3 2.5 3.0 6.5 11.3 82.5 

83.3% 1.9 2.6 2.4 3.7 7.9 14.8 81.4 

82.1% 2.2 2.5 2.8 3.6 8.3 14.3 80.5 

81.2% 2.1 2.5 2.8 3.6 8.4 14.4 79.7 

79.9% 2.0 2.6 2.8 3.6 8.3 13.1 78.4 
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Table B. 15: “No Error” tuning robustness to sensor error for a new battery. 

Case 
ERROR 

[%] 
UDDS HWFET LA92 US06 WLTP 

Reo 

1 

Reo 

2 

Reo 

3 

Reo 

4 

Reo 

5 

Reo 

6 

Reo 

7 

Reo 

8 

Reo 

9 

Reo 

US06 
Average 

No 

error 

RMSE 0.87 0.83 0.72 1.19 0.70 0.46 0.86 1.02 1.09 1.05 0.78 1.10 0.79 0.98 0.90 0.89 

Max Abs 1.68 1.59 1.58 2.40 1.43 1.19 1.76 1.90 1.76 1.99 1.55 2.15 1.62 1.89 2.28 1.79 

+3% 

Current 

Gain  

RMSE 1.00 1.01 0.88 1.11 0.80 0.58 0.94 1.15 1.24 1.22 0.92 1.26 1.00 1.13 0.84 1.01 

Max Abs 1.87 1.94 1.86 2.31 1.64 1.32 2.06 2.14 1.99 2.23 1.82 2.38 1.94 2.09 2.09 1.98 

-3% 

Current 

Gain  

RMSE 0.74 0.69 0.58 1.31 0.66 0.44 0.82 0.90 0.94 0.88 0.69 0.95 0.60 0.86 1.01 0.80 

Max Abs 1.48 1.23 1.29 2.57 1.78 1.50 1.91 1.65 1.79 1.72 1.50 1.92 1.30 1.68 2.47 1.72 

+300m

A Bias 

RMSE 3.33 1.71 2.44 1.17 1.96 1.90 2.06 2.62 2.88 2.63 2.47 2.71 2.37 2.68 1.03 2.26 

Max Abs 5.07 2.91 3.89 2.17 3.17 3.22 3.72 4.14 4.24 4.17 3.95 4.58 3.87 4.45 1.88 3.70 

-300mA 

Bias 

RMSE 1.50 0.82 1.40 1.74 1.44 1.48 1.55 1.36 1.46 1.08 1.41 1.08 1.05 1.27 1.43 1.34 

Max Abs 2.08 1.64 2.04 2.93 2.51 2.69 2.75 1.90 2.21 2.08 2.38 1.61 2.15 1.97 2.78 2.25 

+5°C 

bias 

RMSE 0.92 0.89 0.79 0.90 0.72 0.52 0.86 1.05 1.12 1.12 0.86 1.17 0.90 1.02 0.72 0.90 

Max Abs 1.63 1.66 1.58 1.86 1.39 1.15 1.74 1.87 1.74 1.99 1.58 2.14 1.69 1.90 1.71 1.71 

-5°C 

bias 

RMSE 0.70 0.93 0.60 1.85 0.66 0.44 0.84 1.03 1.24 1.15 0.69 1.01 0.59 0.80 1.49 0.94 

Max Abs 1.34 1.45 1.22 3.30 1.90 1.50 2.12 2.22 3.05 2.86 1.69 1.92 1.24 1.57 3.00 2.03 

+5mV 

bias 

RMSE 0.47 0.77 0.50 1.60 0.66 0.53 0.80 0.78 0.85 0.77 0.59 0.78 0.50 0.69 1.27 0.77 

Max Abs 1.01 1.48 0.96 2.94 1.93 1.75 2.07 1.77 2.20 1.82 1.75 1.50 0.97 1.45 2.80 1.76 

-5mV 

bias 

RMSE 1.38 1.17 1.18 0.91 1.04 0.86 1.18 1.45 1.52 1.51 1.23 1.58 1.30 1.46 0.78 1.24 

Max Abs 2.36 2.20 2.21 1.92 1.92 1.65 2.39 2.57 2.43 2.62 2.20 2.82 2.26 2.54 1.76 2.26 
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Table B. 16:: “+-300mA” tuning robustness to sensor error for a new battery. 

Case 
ERROR 

[%] 
UDDS HWFET LA92 US06 WLTP 

Reo 

1 

Reo 

2 

Reo 

3 

Reo 

4 

Reo 

5 

Reo 

6 

Reo 

7 

Reo 

8 

Reo 

9 

Reo 

US06 
Average 

No 

error 

RMSE 0.84 0.81 0.77 1.48 0.87 0.72 1.01 0.99 1.01 1.00 0.97 1.25 0.77 1.26 1.15 0.99 

Max Abs 1.62 1.59 1.66 2.80 2.88 2.52 2.65 2.00 1.87 1.89 2.63 2.20 1.70 2.13 2.83 2.20 

+3% 

Current 

Gain  

RMSE 0.89 0.84 0.82 1.42 0.87 0.71 1.02 1.03 1.07 1.06 0.98 1.30 0.84 1.30 1.08 1.01 

Max Abs 1.72 1.78 1.67 2.74 2.71 2.38 2.49 2.10 1.90 2.00 2.43 2.29 1.83 2.17 2.72 2.19 

-3% 

Current 

Gain  

RMSE 0.79 0.80 0.72 1.55 0.87 0.75 1.00 0.95 0.95 0.94 0.95 1.20 0.71 1.23 1.23 0.98 

Max Abs 1.53 1.49 1.67 2.90 3.06 2.69 2.80 1.88 1.89 1.76 2.77 2.16 1.57 2.24 2.95 2.22 

+300mA 

Bias 

RMSE 1.62 1.00 1.25 1.29 1.11 0.99 1.36 1.58 1.66 1.52 1.52 1.93 1.27 1.86 0.98 1.40 

Max Abs 2.95 2.31 2.56 2.59 2.49 2.28 2.96 3.08 2.94 2.85 3.11 3.40 2.63 3.23 2.57 2.80 

-300mA 

Bias 

RMSE 0.44 0.91 0.76 1.82 1.05 1.05 1.09 0.71 0.63 0.68 0.90 0.87 0.70 0.99 1.48 0.94 

Max Abs 1.10 1.77 2.08 3.14 3.39 3.11 3.16 1.87 1.96 2.15 3.16 2.60 1.98 2.62 3.15 2.48 

+5°C 

bias 

RMSE 0.85 0.70 0.73 1.03 0.77 0.59 0.90 0.97 1.01 0.99 0.94 1.17 0.79 1.14 0.77 0.89 

Max Abs 1.54 1.60 1.52 2.14 2.27 1.93 2.10 1.92 1.71 1.84 1.94 2.14 1.75 2.02 2.13 1.90 

-5°C 

bias 

RMSE 0.58 1.00 0.64 2.22 0.88 0.86 0.98 0.93 1.08 0.99 0.91 1.14 0.59 1.15 1.82 1.05 

Max Abs 1.09 1.74 1.77 3.52 3.41 3.01 3.18 2.49 3.09 2.92 3.02 2.48 1.62 2.63 3.61 2.64 

+5mV 

bias 

RMSE 0.56 1.04 0.74 1.93 0.99 0.96 1.05 0.86 0.86 0.87 0.92 1.09 0.73 1.13 1.57 1.02 

Max Abs 1.22 1.94 2.13 3.37 3.38 3.15 3.08 2.03 2.31 2.27 3.18 2.72 2.12 2.74 3.37 2.60 

-5mV 

bias 

RMSE 1.31 0.92 1.10 1.09 1.03 0.85 1.22 1.36 1.40 1.37 1.29 1.62 1.15 1.61 0.86 1.21 

Max Abs 2.34 2.20 2.20 2.27 2.37 1.91 2.65 2.69 2.48 2.57 2.58 2.91 2.35 2.77 2.29 2.44 
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Table B. 17: “+-300mA” tuning robustness to sensor error for an aged battery (80% SOH). 

Case 
ERROR 

[%] 
UDDS HWFET LA92 US06 WLTP 

Reo 

1 

Reo 

2 

Reo 

3 

Reo 

4 

Reo 

5 

Reo 

6 

Reo 

7 

Reo 

8 

Reo 

9 

Reo 

US06 
Average 

No 

error 

RMSE 1.86 1.86 1.07 1.65 1.24 1.47 1.26 0.64 0.94 1.00 1.87 1.24 1.55 1.95 2.67 1.48 

Max Abs 2.65 4.05 2.27 3.14 2.83 2.29 2.20 1.85 3.27 3.11 2.71 2.35 2.55 3.17 3.95 2.83 

+3% 

Current 

Gain  

RMSE 1.82 1.97 1.11 1.73 1.32 1.56 1.35 0.67 0.94 0.99 1.95 1.32 1.61 2.06 2.77 1.54 

Max Abs 2.58 4.20 2.33 3.27 2.95 2.37 2.29 1.96 3.21 3.10 2.76 2.46 2.63 3.32 3.92 2.89 

-3% 

Current 

Gain  

RMSE 1.90 1.75 1.04 1.58 1.16 1.39 1.16 0.61 0.94 1.02 1.80 1.17 1.49 1.83 2.58 1.43 

Max Abs 2.73 3.90 2.19 3.00 2.71 2.20 2.12 1.74 3.32 3.12 2.72 2.25 2.49 3.01 4.02 2.77 

+300mA 

Bias 

RMSE 1.46 2.38 1.56 2.01 1.88 2.06 2.05 1.21 1.34 1.18 2.44 1.94 2.04 2.65 3.08 1.95 

Max Abs 2.72 4.73 2.87 3.77 3.36 3.06 3.05 2.18 3.14 3.06 3.42 3.02 3.19 4.04 4.34 3.33 

-300mA 

Bias 

RMSE 2.78 1.43 1.16 1.29 1.04 0.87 0.76 1.08 1.27 1.57 1.27 0.74 1.23 1.20 2.28 1.33 

Max Abs 4.32 3.35 2.29 2.50 2.12 1.57 1.34 2.05 3.39 3.16 2.79 2.11 2.22 2.02 4.05 2.62 

+5°C 

bias 

RMSE 1.78 2.08 1.17 1.95 1.40 1.64 1.45 0.72 1.09 1.10 2.06 1.42 1.70 2.16 3.07 1.65 

Max Abs 2.63 4.30 2.43 3.51 3.24 2.55 2.35 2.14 3.66 3.46 2.83 2.66 2.71 3.40 4.16 3.07 

-5°C 

bias 

RMSE 2.00 1.46 0.90 1.27 0.99 1.16 0.89 0.59 0.67 0.89 1.50 0.85 1.21 1.50 2.04 1.19 

Max Abs 3.04 3.68 1.75 2.60 2.41 1.94 1.79 1.35 1.83 1.87 2.12 1.55 2.08 2.54 3.26 2.25 

+5mV 

bias 

RMSE 2.25 1.47 0.93 1.29 0.91 1.04 0.80 0.67 0.91 1.13 1.39 0.81 1.21 1.45 2.18 1.23 

Max Abs 3.29 3.53 1.76 2.56 2.20 1.69 1.70 1.47 2.88 2.72 2.30 1.95 2.05 2.57 3.46 2.41 

-5mV 

bias 

RMSE 1.58 2.29 1.43 2.05 1.68 1.95 1.78 0.99 1.24 1.15 2.37 1.74 1.96 2.46 3.17 1.86 

Max Abs 2.42 4.56 2.77 3.65 3.44 2.88 2.71 2.25 3.65 3.51 3.18 2.75 3.07 3.76 4.39 3.27 
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Appendix C   

This appendix contains screenshots of one of the fast charging aging test 

programs, boost charging protocol, created in the Arbin Instruments MITS Pro. It 

is intended to be a source for other researchers to build their test schedules or 

replicate this work. 
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