Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26334
Title: Performance Impact on Neural Network with Partitioned Convolution Implemented with GPU Programming
Other Titles: Partitioned Convolution in Neuron Network
Authors: Lee, Bill
Advisor: Wassyng, Alan
Lawford, Mark
Department: Computing and Software
Keywords: convolutional neural network;parallel programming;partitioned
Publication Date: 2021
Abstract: For input data of homogenous type, the standard form of convolutional neural network is normally constructed with universally applied filters to identify global patterns. However, for certain datasets, there are identifiable trends and patterns within subgroups of input data. This research proposes a convolutional neural network that deliberately partitions input data into groups to be processed with unique sets of convolutional layers, thus identifying the underlying features of individual data groups. Training and testing data are built from historical prices of stock market and preprocessed so that the generated datasets are suitable for both standard and the proposed convolutional neural network. The author of this research also developed a software framework that can construct neural networks to perform necessary testing. The calculation logic was implemented using parallel programming and executed on a Nvidia graphic processing unit, thus allowing tests to be executed without expensive hardware. Tests were executed for 134 sets of datasets to benchmark the performance between standard and the proposed convolutional neural network. Test results show that the partitioned convolution method is capable of performance that rivals its standard counterpart. Further analysis indicates that more sophisticated method of building datasets, larger sets of training data, or more training epochs can further improve the performance of the partitioned neural network. For suitable datasets, the proposed method could be a viable replacement or supplement to the standard convolutional neural network structure.
URI: http://hdl.handle.net/11375/26334
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
lee_bill_202004_master.pdf
Open Access
Thesis for master degree of applied science in software engineering1.89 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue