
 

 

 

 

 

 

 

 

PARTITIONED CONVOLUTION IN NEURON NETWORK 



 

 

 

 

 

PERFORMANCE IMPACT ON NEURAL NETWORK 

WITH PARTITIONED CONVOLUTION 

IMPLEMENTED WITH GPU PROGRAMMING 

 

 

By Bill Lee, B.Eng 

 

 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the 

Requirements for the Degree Master of Applied Science in Software Engineering 

 

 

 

 

 

 

 

 

 

 

McMaster University © Copyright by Bill Lee, April 2020  

 



ii 
 

 

 

MASTER OF APPLIED SCIENCE IN SOFTWARE ENGINEERING (2021) 

Department of Computing and Software, 

McMaster University, Hamilton, Ontario 

 

TITLE: Performance Impact on Neural Network with Partitioned Convolution 

Implemented with GPU Programming  

AUTHOR: Bill Lee, B.Eng. Mechatronics (McMaster University) 

SUPERVISOR: A. Wassyng and M. Lawford 

NUMBER OF PAGES: xi, 65 

  



iii 
 

Lay Abstract 

A convolutional neural network is a machine learning tool that allows complex 

patterns in datasets to be identified and modelled. For datasets with input that 

consists of the same type of data, a convolutional neural network is often 

architected to identify global patterns. This research explores the viability of 

partitioning input data into groups and processing them with separate 

convolutional layers so unique patterns associated with individual subgroups of 

input data can be identified. The author of this research built suitable test 

datasets and developed a (parallel computation enabled) framework that can 

construct both standard and proposed convolutional neural networks. The test 

results show that the proposed structure is capable of performance that matches 

its standard counterpart. Further analysis indicates that there are potential 

methods to further improve the performance of partitioned convolution, making it 

a viable replacement or supplement to standard convolution.  



iv 
 

Abstract 

For input data of homogenous type, the standard form of convolutional neural 

network is normally constructed with universally applied filters to identify global 

patterns. However, for certain datasets, there are identifiable trends and patterns 

within subgroups of input data. This research proposes a convolutional neural 

network that deliberately partitions input data into groups to be processed with 

unique sets of convolutional layers, thus identifying the underlying features of 

individual data groups. Training and testing data are built from historical prices of 

stock market and preprocessed so that the generated datasets are suitable for 

both standard and the proposed convolutional neural network. The author of this 

research also developed a software framework that can construct neural 

networks to perform necessary testing. The calculation logic was implemented 

using parallel programming and executed on a Nvidia graphic processing unit, 

thus allowing tests to be executed without expensive hardware. Tests were 

executed for 134 sets of datasets to benchmark the performance between 

standard and the proposed convolutional neural network. Test results show that 

the partitioned convolution method is capable of performance that rivals its 

standard counterpart. Further analysis indicates that more sophisticated method 

of building datasets, larger sets of training data, or more training epochs can 

further improve the performance of the partitioned neural network. For suitable 

datasets, the proposed method could be a viable replacement or supplement to 

the standard convolutional neural network structure.  



v 
 

ACKNOWLEDGEMENTS 

I would like to thank my supervisory team, Dr. Alan Wassyng, Professor, 

Department of Computing and Software and Dr. Mark Lawford, Chair, 

Department of Computing and Software, also Dr. Wenbo He, Associate 

Professor, Department of Computing and Software for their support, feedback, 

and insightful guidance throughout the writing of this thesis. 

Much appreciation to everyone who contributed to this research, including 

all those who are responsible for making vast number of resources available 

online. 

I would like to dedicate this work to my family: my wife Yvonne for her 

support and encouragement, as well as Joshua and Benjamin, my sons who 

were born during my time pursuing this degree. You have always been my 

source of motivation to go further in life. 

  



vi 
 

Table of Contents 

1 Introduction ............................................................................................................ 1 

2 Theory and Concept .............................................................................................. 2 

2.1 Convolutional Layer in Neural Network ......................................................... 2 

2.2 Convolutional Strategy ................................................................................. 3 

2.3 Prior Work .................................................................................................... 4 

2.4 Proposed Model ........................................................................................... 5 

3 Implementation ...................................................................................................... 7 

3.1 Existing Framework ...................................................................................... 7 

3.2 Calculation ................................................................................................... 8 

3.3 Features ..................................................................................................... 10 

3.4 Parallel Programming ................................................................................. 11 

3.4.1 Optimization for Hardware ........................................................................................ 11 

3.4.2 Calculation ................................................................................................................ 12 

3.4.3 Partition reduction operation .................................................................................... 13 

3.4.4 Performance ............................................................................................................. 15 

3.5 Implementation of Neural Network API ....................................................... 16 

3.5.1 Global (Enumeration) ............................................................................................... 17 

3.5.2 Cuda (module) .......................................................................................................... 17 

3.5.3 Calculation (module)................................................................................................. 18 

3.5.4 Layer (class) ............................................................................................................. 20 

3.5.5 Network (class) ......................................................................................................... 21 

4 Preliminary Test ................................................................................................... 22 

4.1 Setup.......................................................................................................... 22 

4.2 Result ......................................................................................................... 23 

5 Test Data .............................................................................................................. 25 

5.1 Existing sources ......................................................................................... 25 



vii 
 

5.2 Data Selection ............................................................................................ 26 

5.3 Data Acquisition ......................................................................................... 26 

5.4 Dataset Construction and Pre-processing .................................................. 27 

5.4.1 Predictor Stock Selection ......................................................................................... 27 

5.4.2 Representing Price Movement ................................................................................. 28 

5.4.3 Building Datasets...................................................................................................... 29 

5.4.4 Training vs Testing Datasets .................................................................................... 31 

5.4.5 Implementation ......................................................................................................... 33 

6 Test ....................................................................................................................... 33 

6.1 Setup.......................................................................................................... 33 

6.2 Initial Test Result ........................................................................................ 36 

6.3 Additional Pre-processing ........................................................................... 37 

6.4 Final Test Result ........................................................................................ 38 

7 Discussion ........................................................................................................... 39 

7.1 Dense-only Network ................................................................................... 39 

7.2 Standard CNN vs PCNN ............................................................................ 39 

7.3 Viability of PCNN ........................................................................................ 41 

7.4 Application of PCNN ................................................................................... 42 

8 Future Work.......................................................................................................... 43 

9 Conclusion ........................................................................................................... 43 

10 References ........................................................................................................... 45 

Appendix A Test Result Details ..................................................................... 49 

 

  



viii 
 

Table of Figures 

Figure 1: Convolutional Layer ............................................................................... 2 

Figure 2: Dense Layer .......................................................................................... 3 

Figure 3: Heterogenous Groups of Data ............................................................... 3 

Figure 4: Independent Data Groups of the Same Type ........................................ 4 

Figure 5: Standard Convolutional Layer ............................................................... 6 

Figure 6: Partitioned Convolutional Layer ............................................................. 6 

Figure 7: Partitioned Max Pooling ......................................................................... 6 

Figure 8: Structure of CNN (above) and PCNN (below) ....................................... 7 

Figure 9: Forward Calculation for a Single Data Row ........................................... 9 

Figure 10: Backpropagation for a Single Data Row .............................................. 9 

Figure 11: CUDA Reduction With 8 Threads ...................................................... 15 

Figure 12: Internal Structure of API .................................................................... 17 

Figure 13: CNN (left) vs PCNN (right) for image recognition .............................. 25 

Figure 14: Input #1 for PCNN ............................................................................. 26 

Figure 15: Input #2 for PCNN ............................................................................. 26 

Figure 16: Data structure of one dataset ............................................................ 29 

Figure 17: Building a dataset from SQL output matrix ........................................ 30 

Figure 18: Select latest 5% of datasets for testing .............................................. 32 

Figure 19: Randomly select 5% of datasets for testing ....................................... 32 

Figure 20: Structure of input data for CNN and PCNN ....................................... 35 

Figure 21: Output of first convolutional layer for CNN and PCNN ...................... 35 

Figure 22: Scaling Data ...................................................................................... 37 

Figure 23: Impact of scaling to the volatility difference ....................................... 38 

Figure 24: Example of Flexible PCNN Design .................................................... 43 

 

Table of Tables 

Table 1: Relevant Specifications of Lenovo Legion Y520 ................................... 11 



ix 
 

Table 2: Calculation Required in PCNN.............................................................. 13 

Table 3: Preliminary Test Result of 10,000 Datasets .......................................... 24 

Table 4: Transforming Regression-based output to Classification ...................... 31 

Table 5: Forecast Accuracy by Network of Initial Test Run ................................ 36 

Table 6: Forecast Accuracy by Network of Final Test Run ................................. 38 

Table 7: Number of Epochs to Reach Best Performance ................................... 41 



x 
 

List of Abbreviations and Symbols 

CNN  Convolutional Neural Network 

PCNN  Partitioned Convolutional Neural Network 

CPU   Central Processing Unit 

GPU   Graphics Processing Unit 

CUDA  Compute Unified Device Architecture 

ReLU  Rectified Linear Unit 

API  Application Programming Interface 

  



xi 
 

DECLARATION OF ACADEMIC ACHIEVEMENT 

I, Bill Lee, declare this thesis to be my own work. I am the sole author of 

this document. No part of this work has been published or submitted for 

publication or for a higher degree at another institution. 

To the best of my knowledge, the content of this document does not 

infringe on anyone’s copyright. 

My supervisors, Dr. Alan Wassyng and Dr. Mark Lawford, and the member 

of my supervisory committee, Dr. Wenbo He, have provided guidance and 

support for this paper. I completed all the research work.



Master’s Thesis – B. Lee; Master University – Applied Science 

1 
 

1  Introduction 

In the field of machine learning, Convolutional Neural Network (CNN) is a 

fundamental concept that enables deep learning. It is a feed-forward neural 

network with many parameters in hidden layers that typically alternate between a 

convolutional layer and a subsampling (pooling) layer (Nielsen, 2015). It has a 

wide range of applications and is practically the standard for machine learning 

operations in several industries (Serkan Kiranyaz, 2019). Naturally, there are 

ample efforts to improve its performance and broaden its applications. 

There are several variations on how convolutional layers in neural network 

can be setup. These variations generally depend on the nature of the data in the 

modelled datasets, especially the input data. This research is based on the notion 

that there could be more than one suitable neural network structure. For a set of 

datasets that can be modelled by standard CNN, the author of this document 

proposes that it may also be modelled by deliberately partitioning the convolution 

process in the neural network. This research explores the viability of this 

approach. It is theorized that for some datasets, the proposed method of 

convolution would match and, in some cases, surpass the performance of 

standard CNN. 

This document discusses in depth the underlying concepts of the 

proposed approach and its potential applications. The author designed and 

implemented a software framework to build necessary neural networks for testing 

and benchmarking. Datasets suitable for both standard and proposed 



Master’s Thesis – B. Lee; Master University – Applied Science 

2 
 

convolutional networks were constructed and properly preprocessed. This 

document includes both methodology and result of the tests performed for this 

research as well as the subsequent analysis. 

2  Theory and Concept 

2.1 Convolutional Layer in Neural Network 

Figure 1 shows a typical 2D convolutional layer in a neural network used 

for image classification (Yakura, March 2018). Output is the dot product between 

the filter values and the corresponding local values in the input map. In practice, 

multiple filters are often used to generate multiple channels (Nielsen, 2015). A 

convolutional layer has several advantages over a simple dense layer, shown in 

Figure 2 (Isaksson, 2020). Convolutional layers are inherently more resistant to 

overfitting, which means less chance of an exploding or vanishing gradient during 

backpropagation. More importantly, it can identify features formed by input data 

points while the dense layer is unable to account for the “location” of values in the 

input map (Nielsen, 2015). 

 

Figure 1: Convolutional Layer 



Master’s Thesis – B. Lee; Master University – Applied Science 

3 
 

 

Figure 2: Dense Layer 

2.2 Convolutional Strategy 

Convolutional layers need to be appropriately setup according to the 

characteristics of the modelled data, especially input. For example, for a 

convolutional layer with images as its input as shown in Figure 1, there are no 

structural limitations to the shape of the filter since all input data are completely 

homogeneous with each value representing a pixel. The convolutional filter is 

likely a square matrix so features in the images can be adequately captured. 

The convolutional layer setup would be different if the input data is 

comprised of heterogenous groups of data with no correlations to each other. 

Figure 3 represents such an example. The input data is comprised of readings 

over time from different types of sensors, which includes electrical current, 

electrical voltage, water pressure, and radiation level. In this case, each vector of 

sensor readings would need to be processed in separate 1D convolutional layers. 

𝑖0 𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 

𝑟0 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 

Figure 3: Heterogenous Groups of Data 



Master’s Thesis – B. Lee; Master University – Applied Science 

4 
 

Figure 4 shows a particularly interesting example of input data for a 

convolutional layer. There are multiple data series of the same type. There are no 

inter-row patterns to be identified since any two rows can switch and the overall 

represented data would remain the same. Therefore, the filter for convolution 

must be a vector (size 1 × 𝑛). Because all rows represent data of the same type, 

the same filter can be used for convolutional process of every row. In this case, 

global patterns and trends would be “learned” by the neural network.  

𝑖𝐴,0 𝑖𝐴,1 𝑖𝐴,2 𝑖𝐴,3 𝑖𝐴,4 𝑖𝐴,5 

𝑖𝐵,0 𝑖𝐵,1 𝑖𝐵,2 𝑖𝐵,3 𝑖𝐵,4 𝑖𝐵,5 

𝑖𝐶,0 𝑖𝐶,1 𝑖𝐶,2 𝑖𝐶,3 𝑖𝐶,4 𝑖𝐶,5 

𝑖𝐷,0 𝑖𝐷,1 𝑖𝐷,2 𝑖𝐷,3 𝑖𝐷,4 𝑖𝐷,5 

Figure 4: Independent Data Groups of the Same Type 

However, the approach proposed by this research is to separate this input 

data by row and process them with independent 1D convolutional layers in 

parallel. At the cost of increasing trainable parameters and not learning global 

patterns, this setup would allow patterns that are associated with individual 

groups of input data to be identified by the neural network. The research 

presented in this document focuses on datasets where they can be modelled by 

both standard convolutional layer with a universal filter or partitioned 

convolutional layers with individualized filters. 

2.3 Prior Work 

Processing a row (or vector) of data with 1D convolutional layer is not a 

new concept. An in-depth research survey shows that the application of 1D CNN 



Master’s Thesis – B. Lee; Master University – Applied Science 

5 
 

has seen successes in recent years (Serkan Kiranyaz, 2019). Examples of its 

applications include detection of adverse condition such as real-time motor fault 

and structural damage (Osama Abdeljaber, 2017) (Turker Ince, 2016). There has 

also been research on its application with sound event detection (Hyungui Lim, 

2017). A 1D CNN model sometimes includes a layer to fold 2D input into 1D data, 

which is often done when the model is used for natural language processing 

(Kim, 2014). 

Research related to CNN generally focuses on building a neural network 

structure that is best suited for specific datasets. There has not been much work 

on deliberately partitioning input data for separate convolutional processes, 

especially when the input data can be adequately modelled by traditional CNN. 

The convolutional structure proposed in this research also runs contrary to the 

general practice of minimizing trainable parameters. But some existing work is 

relevant to the idea of partitioning convolutional processes in a neural network. 

For example, one publication discussed the use of a neural network structure 

where results from several parallel-running CNNs are merged for downstream 

processing (Siavash Sakhavi, 2015). This suggests that for suitable datasets, 

merging the results of partitioned convolution processes, a critical characteristic 

of the method proposed in this research, is theoretically viable. 

2.4 Proposed Model 

Figure 5 and Figure 6 show the difference between a standard 

convolutional layer and the partitioned convolutional layer. Instead of using a 



Master’s Thesis – B. Lee; Master University – Applied Science 

6 
 

universal filter (vector of weights), a unique filter is used for each data row. It is 

also possible to create multiple channels of convolution by having multiple filters 

for one data row. Other aspects such as pooling layer, activation function and use 

of biases parameters do not change with the proposed partitioned convolutional 

layers. Figure 7 shows an example of a pooling layer. 

 

Figure 5: Standard Convolutional Layer 

 

Figure 6: Partitioned Convolutional Layer 

 

Figure 7: Partitioned Max Pooling 

Input Filter Output 

𝐼0,0 𝐼0,1 𝐼0,2 𝐼0,3 𝐼0,4  𝑂0,0 𝑂0,1 𝑂0,2 

𝐼1,0 𝐼1,1 𝐼1,2 𝐼1,3 𝐼1,4  𝑂1,0 𝑂1,1 𝑂1,2 

𝐼2,0 𝐼2,1 𝐼2,2 𝐼2,3 𝐼2,4 𝑤0 𝑤1 𝑤2 
 

𝑂2,0 𝑂2,1 𝑂2,2 

𝐼3,0 𝐼3,1 𝐼3,2 𝐼3,3 𝐼3,4  𝑂3,0 𝑂3,1 𝑂3,2 

𝐼4,0 𝐼4,1 𝐼4,2 𝐼4,3 𝐼4,4  𝑂4,0 𝑂4,1 𝑂4,2 

 

Input Filter Output 

𝐼0,0 𝐼0,1 𝐼0,2 𝐼0,3 𝐼0,4 𝑤0,0 𝑤0,1 𝑤0,2 
 

𝑂0,0 𝑂0,1 𝑂0,2 

𝐼1,0 𝐼1,1 𝐼1,2 𝐼1,3 𝐼1,4 𝑤1,0 𝑤1,1 𝑤1,2 
 

𝑂1,0 𝑂1,1 𝑂1,2 

𝐼2,0 𝐼2,1 𝐼2,2 𝐼2,3 𝐼2,4 𝑤2,0 𝑤2,1 𝑤2,2 
 

𝑂2,0 𝑂2,1 𝑂2,2 

𝐼3,0 𝐼3,1 𝐼3,2 𝐼3,3 𝐼3,4 𝑤3,0 𝑤3,1 𝑤3,2 
 

𝑂3,0 𝑂3,1 𝑂3,2 

𝐼4,0 𝐼4,1 𝐼4,2 𝐼4,3 𝐼4,4 𝑤4,0 𝑤4,1 𝑤4,2 
 

𝑂4,0 𝑂4,1 𝑂4,2 

 

Input  Output 

𝐼0,0 𝐼0,1 𝐼0,2 𝐼0,3 𝐼0,4 𝐼0,5  𝑂0,0 𝑂0,1 𝑂0,2 

𝐼1,0 𝐼1,1 𝐼1,2 𝐼1,3 𝐼1,4 𝐼1,5  𝑂1,0 𝑂1,1 𝑂1,2 

𝐼2,0 𝐼2,1 𝐼2,2 𝐼2,3 𝐼2,4 𝐼2,5  𝑂2,0 𝑂2,1 𝑂2,2 

𝐼3,0 𝐼3,1 𝐼3,2 𝐼3,3 𝐼3,4 𝐼3,5  𝑂3,0 𝑂3,1 𝑂3,2 

𝐼4,0 𝐼4,1 𝐼4,2 𝐼4,3 𝐼4,4 𝐼4,5  𝑂4,0 𝑂4,1 𝑂4,2 

 



Master’s Thesis – B. Lee; Master University – Applied Science 

7 
 

Figure 8 provides a comparison in structure between a standard CNN and 

the proposed structure. The proposed neural network separates input data into 

multiple data vectors. Each data group would be processed by a series of 

convolutional layers and pooling layers independently. The outputs would then be 

merged and processed by dense (fully-connected) layers to produce the final 

output. This structure is referred to as Partitioned Convolutional Neural Network 

(PCNN) in this document. 

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

Convolution and 

Max-Pooling

F
u

lly
-C

o
n

n
e

c
te

d
 L

a
y
e

r

O
u

tp
u

t

 

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

1D Convolution and Max-Pooling

1D Convolution and Max-Pooling

1D Convolution and Max-Pooling

1D Convolution and Max-Pooling

1D Convolution and Max-Pooling

F
la

tte
n

F
u

lly
-C

o
n

n
e

c
te

d
 L

a
y
e

r

O
u

tp
u

t

 

Figure 8: Structure of CNN (above) and PCNN (below) 

3  Implementation 

3.1 Existing Framework 

Several frameworks, with complete documentation and API (Application 

Programming Interface), are freely available to implement machine learning 

models. The following frameworks were investigated: 



Master’s Thesis – B. Lee; Master University – Applied Science 

8 
 

• TensorFlow (Google Brain Team, 2020) 

• Keras (Massachusetts Institute of Technology, 2020) 

• PyTorch (Torch Contributors, 2020) 

The frameworks listed above are all capable of constructing commonly 

used structures of neural networks. While modeling the partitioned convolutional 

layers would not be as straightforward, all investigated frameworks support 

modeling parallel convolutional layers. However, the unique structures of the 

proposed neural network may prevent the framework from optimizing for the best 

performance. 

In addition, there are advantages in having control and transparency on 

the details of the implementation, especially when this research is focused on the 

low-level logic of neural network. Thus, the author of this research decided to 

develop a specific API to construct neural networks and to run any necessary 

tests. 

3.2 Calculation 

Information on calculation related to neural network is readily available 

(Nielsen, 2015). PCNN proposed in this document shares many identical 

operations and processes with standard CNN. Upon input data partitioning at the 

beginning of the neural network, each partitioned group is then processed by 

unique series of layers of the same configuration. The scope of this research 

focuses on partitioned 2D input data into 1D vector groups. 



Master’s Thesis – B. Lee; Master University – Applied Science 

9 
 

Figure 9 illustrates input, filter, and output of a convolutional layer to 

process a data vector. In this example, there are three channels (or depth) for 

input data and two channels for output data. This corresponds to 3 × 2 = 6 filter 

vectors. 

 

Figure 9: Forward Calculation for a Single Data Row 

The calculation for output 𝑂0,0 (as highlighted in Figure 9) is: 

𝐼0,0 × 𝑤0,0 + 𝐼0,1 × 𝑤0,1 + 𝐼0,2 × 𝑤0,2 + 
𝐼1,0 × 𝑤1,0 + 𝐼1,1 × 𝑤1,1 + 𝐼1,2 × 𝑤1,2 + 
𝐼2,0 × 𝑤2,0 + 𝐼2,1 × 𝑤2,1 + 𝐼2,2 × 𝑤2,2 

 

Figure 10: Backpropagation for a Single Data Row 

For backpropagation, as shown in Figure 10, the calculation for 
𝜕𝐸

𝜕𝐼0,1
 is: 

Input Filter 
Pre-Activated 

Output 

𝐼0,0 𝐼0,1 𝐼0,2 𝐼0,3 𝐼0,4 𝑤0,0,0 𝑤0,0,1 𝑤0,0,2 

𝑤0,1,0 𝑤0,1,1 𝑤0,1,2 

𝑤0,2,0 𝑤0,2,1 𝑤0,2,2 
 

𝑂0,0 𝑂0,1 𝑂0,2 
 

     

𝐼1,0 𝐼1,1 𝐼1,2 𝐼1,3 𝐼1,4   

     𝑤1,0,0 𝑤1,0,1 𝑤1,0,2 

𝑤1,1,0 𝑤1,1,1 𝑤1,1,2 

𝑤1,2,0 𝑤1,2,1 𝑤1,2,2 
 

𝑂1,0 𝑂1,1 𝑂1,2 
 

𝐼2,0 𝐼2,1 𝐼2,2 𝐼2,3 𝐼2,4 

 

Input Error Signal Filter 
Derived Output 

Error Signal 
𝜕𝐸

𝜕𝐼 0,0
 

𝜕𝐸

𝜕𝐼 0,1
 

𝜕𝐸

𝜕𝐼 0,2
 

𝜕𝐸

𝜕𝐼 0,3
 

𝜕𝐸

𝜕𝐼 0,4
 𝑤0,0,0 𝑤0,0,1 𝑤0,0,2 

𝑤0,1,0 𝑤0,1,1 𝑤0,1,2 

𝑤0,2,0 𝑤0,2,1 𝑤0,2,2 
 

𝜕𝐸

𝜕𝑂0,0
 

𝜕𝐸

𝜕𝑂0,1
 

𝜕𝐸

𝜕𝑂0,2
 

      

𝜕𝐸

𝜕𝐼 1,0
 

𝜕𝐸

𝜕𝐼 1,1
 

𝜕𝐸

𝜕𝐼 1,2
 

𝜕𝐸

𝜕𝐼 1,3
 

𝜕𝐸

𝜕𝐼 1,4
  

 

     𝑤1,0,0 𝑤1,0,1 𝑤1,0,2 

𝑤1,1,0 𝑤1,1,1 𝑤1,1,2 

𝑤1,2,0 𝑤1,2,1 𝑤1,2,2 
 

𝜕𝐸

𝜕𝑂1,0
 

𝜕𝐸

𝜕𝑂1,1
 

𝜕𝐸

𝜕𝑂1,2
 

 

𝜕𝐸

𝜕𝐼 2,0
 

𝜕𝐸

𝜕𝐼 2,1
 

𝜕𝐸

𝜕𝐼 2,2
 

𝜕𝐸

𝜕𝐼 2,3
 

𝜕𝐸

𝜕𝐼 2,4
 

 



Master’s Thesis – B. Lee; Master University – Applied Science 

10 
 

𝜕𝐸

𝜕𝑂0,0
× 𝑤0,0,1 +

𝜕𝐸

𝜕𝑂0,1
× 𝑤0,0,0 +

𝜕𝐸

𝜕𝑂1,0
× 𝑤1,0,1 +

𝜕𝐸

𝜕𝑂1,1
× 𝑤1,0,0 

The calculation for gradient of 𝑤0,2,0 is: 

𝜕𝐸

𝜕𝐼0,0
×

𝜕𝐸

𝜕𝑂1,0

+
𝜕𝐸

𝜕𝐼0,1
×

𝜕𝐸

𝜕𝑂1,1

+
𝜕𝐸

𝜕𝐼0,2
×

𝜕𝐸

𝜕𝑂1,2

 

3.3 Features 

There are several factors to consider when implementing the API. A neural 

network can model output data of both regression and classification. To keep the 

implementation simple, the API focuses on modelling classification datasets. A 

regression dataset can be converted into a classification dataset (Brownlee, 

2017). This means the error function for backpropagation would be Cross 

Entropy (Nielsen, 2015). The Adam optimization algorithm is selected for its fast 

convergence and built-in regulation features (Brownlee, 2017). Training is done 

with mini-batch gradient descent to obtain balance between convergent speed, 

computation efficiency and learning noise minimization (Brownlee, 2017). 

Some features were considered but not included. Dropout can create a 

“voting” mechanism within the network while providing regulation during training 

(Nielsen, 2015). Batch normalization greatly reduces the possibility of vanishing 

or exploding gradient while preventing overfitting (Brownlee, 2019). However, 

both features would add more trainable parameters to the network and place 

higher requirements on the number of training datasets. Therefore, these two 

features were not implemented for the API. The research thus relied on 

preprocessing of input data to achieve similar benefits. 



Master’s Thesis – B. Lee; Master University – Applied Science 

11 
 

Both standard CNN and proposed PCNN are to be built with the 

developed API. This enables benchmarking between two methods of 

convolutions with the same test datasets. 

3.4 Parallel Programming 

Machine learning and especially CNN is computationally heavy. Time to 

execute tests would be significant if the implementation handles all calculations 

with a Central Processing Unit (CPU). Instead of looking for expensive hardware, 

parallel programming is utilized to take advantage of the parallelable nature of the 

calculations. 

A laptop, Lenovo Legion Y520, was available for the research. The 

relevant hardware specifications are listed in Table 1. Parallel programming with 

a Graphics Processing Unit (GPU) is enabled by Compute Unified Device 

Architecture (CUDA) framework. Documents for CUDA are readily available from 

Nvidia (NVIDIA Corporation, 2017). 

Component Specification 

Processor 
7th Generation Intel® Core™ i7-7700HQ Processor 
(2.80GHz, up to 3.80GHz with Turbo Boost, 6MB Cache) 

Operating System Windows 10 Home 

Graphics NVIDIA® GeForce® GTX 1050Ti 4 GB 

Memory 16 GB DDR4 2400 MHz 

Table 1: Relevant Specifications of Lenovo Legion Y520 

3.4.1 Optimization for Hardware 

CUDA Occupancy Calculator is available from NVIDIA to help with the 

architecture design of the implementation (NVIDIA Corporation, 2017). Though 



Master’s Thesis – B. Lee; Master University – Applied Science 

12 
 

the computation load for neural network is heavy, the calculation logic itself is 

simple and does not use a high number of registers. Thus, the thread block sizes 

of 256, 512 or 1,024 are all acceptable according to the analysis tool. A thread 

block size of 512 is chosen for the implementation. 

Another design decision is into how many threads should a calculation 

task be partitioned. It has been suggested that there should be at least 14,000 

threads running concurrently for Tesla K20X, which has 2,688 CUDA cores 

(Woolley, 2013) (NVIDIA Corporation, 2013). GTX 1050Ti GPU has 768 CUDA 

cores (NVIDIA Corporation, 2019). It is determined that the implementation would 

attempt to achieve at least 8,192 total threads. It is important to note that 

separating calculation into too many threads could hurt the performance of 

certain operations, as shown in later sections of this document. 

3.4.2 Calculation 

Table 2 shows the required calculations for both forward computation and 

backpropagation in a convolutional neural network. Some operations are simple 

to parallelize, such as: 

• Output error signal calculation 

• Parameter updates with gradients 

However, most calculations involve a reduction (by addition) operation. A 

simple approach is to have one thread handling all calculations for an element in 

the output vector or matrix. This approach has the advantage of simplicity in its 

implementation. If the output vector or matrix is large, the calculation would be 



Master’s Thesis – B. Lee; Master University – Applied Science 

13 
 

naturally partitioned into enough number of threads to achieve good parallel 

computation performance. However, some operations would not meet this 

criterion, such as the weight gradient calculation for a convolutional layer or 

calculations related to dense layers. A more dynamic method to setup threads is 

needed to better utilize the parallel computation potential of the GPU. 

Operation Calculation Required 

Forward 
Calculation 

Convolutional Layer - Matrix multiplications 

- Reduction (by addition) 

- Apply bias and activation 

Pooling Layer - Reduction 

Dense (Fully Connected) Layer - Matrix multiplications 

- Reduction (by addition) 

- Apply bias and activation 

Backpropagation Output Error Signal Calculation - N-to-N vector mapping 

Dense (Fully Connected) Layer - Derive error signals 

- Matrix multiplications 

- Reduction (by addition) 

Pooling Layer - Un-reduction 

Convolutional Layer - Derive error signals 

- Matrix multiplications 

- Reduction (by addition) 

Weight Gradient Calculation - Matrix multiplications 

- Reduction (by addition) 

Parameter Updates with 
Gradient 

- Matrix addition 

Table 2: Calculation Required in PCNN 

3.4.3 Partition reduction operation 

To reach the desired total thread count of 8,192, the process to calculate a 

single output value often need to be partitioned into multiple threads. The 



Master’s Thesis – B. Lee; Master University – Applied Science 

14 
 

implementation is heavily inspired by a guide on optimizing parallel reduction in 

CUDA (Harris, 2007). The overall principles for the implementation include: 

• Avoid writing to or reading from GPU memory except for data that 

needs to persist outside of the operation 

• Use shared memory for inter-thread communication required by 

reduction operation to minimize latency (Harris, 2013) 

• Perform part of reduction operation at thread-level since a register is 

faster than shared memory 

Figure 11 shows the thread-level logic flow when a reduction operation is 

separated into 4 threads. Assuming the logic requires preliminary calculation to 

obtain the 23 inputs for the reduction operation and post-reduction calculation to 

obtain the final output: 

• Each thread would perform pre-reduction calculation for 6 (or 5) of the 

inputs of the reduction operation 

• Each thread would perform thread-level reduction of the 6 (or 5) inputs 

it has calculated 

• The threads are synchronized for further reduction operation where 

shared memory is used to store temporary variable 

• For 4 threads, log2 4 = 2 synchronized calculations complete the 

reduction operation 

• The first (index 0) thread applies any post-reduction calculation on the 

output before storing it to GPU memory 



Master’s Thesis – B. Lee; Master University – Applied Science 

15 
 

It is worth noting that calculations should only be partitioned so the overall 

thread count could reach the desired 8,192. As seen in Figure 11, there is 

significant thread idleness after pre-reduction calculation. Shared memory also 

has higher latency than registers. Therefore, unnecessarily partitioning 

calculation into many threads would decrease performance. 

 Thread #0 Thread #1 Thread #2 Thread #3 

T
h

re
a

d
-L

e
v

e
l 

P
ro

c
e

s
s

in
g

 

Calculate then 
reduce (obtain total) 
elements of index 
8𝑛, stored to shared 
memory index 0 

Calculate then 
reduce (obtain total) 
elements of index 
8𝑛 + 1, stored to 
shared memory 
index 1 

Calculate then 
reduce (obtain total) 
elements of index 
8𝑛 + 2, stored to 
shared memory 
index 2 

Calculate then 
reduce (obtain total) 
elements of index 
8𝑛 + 3, stored to 
shared memory 
index 3 

In
te

r-
th

re
a

d
 

R
e
d

u
c

ti
o

n
 

Shared memory 
𝑒𝑙[0] += 𝑒𝑙[2] 

Shared memory 
𝑒𝑙[1] += 𝑒𝑙[3] 

  

Shared memory 
𝑒𝑙[0] += 𝑒𝑙[1] 

   

P
o

s
t-

R
e
d

u
c

ti
o

n
 

P
ro

c
e

s
s

in
g

 

Apply needed 
calculation to result 
at shared memory 
𝑒𝑙[0]  then store to 
output vector  

   

Figure 11: CUDA Reduction With 8 Threads 

3.4.4 Performance 

The performance of the GPU-based parallel-programming implementation 

was benchmarked against a CPU-based implementation. The neural network 

structure described in Section 6.1 was built with the developed GPU-based API. 

A set of the datasets described in Section 5 was used as a sample. The 

execution time of one training epoch (with approximately 6,000 training sets) for 

the sample datasets was 0.04590681 second. A simple program was written to 



Master’s Thesis – B. Lee; Master University – Applied Science 

16 
 

simulate the same amount of floating-point calculation performed by a CPU, 

which resulted in an execution time of 5.7944 second. The simulation does not 

consider the higher memory latency when using a CPU. Therefore, even 

conservatively, the CUDA implementation has a performance advantage by a 

factor of 126 over a single-CPU implementation. 

3.5 Implementation of Neural Network API 

Nvidia-provided APIs for CUDA are all module based instead of being 

class based. The API was developed to implement CUDA-based calculations 

specific to neural network calculation through C++ classes, thus enabling object-

oriented design at top level (Network class) of the API. The API allows users to 

build a neural network with standard convolutional layer, proposed partitioned 

convolutional layer, pooling layer and dense (fully-connected) layer. Figure 12 

shows the dependency graph between various components that builds the 

Network class at the top level. The entirety of source code of the API is available 

at https://github.com/BillLee-SDE/Parallel/tree/master/network_API. 

 

https://github.com/BillLee-SDE/Parallel/tree/master/network_API


Master’s Thesis – B. Lee; Master University – Applied Science 

17 
 

 

Figure 12: Internal Structure of API 

3.5.1 Global (Enumeration) 

This is a collection of enumerations used across the API. These 

enumerations are also visible to the user of the API. The code snippet below is 

one of the enumeration definitions. 

 enum ActivationFunction 
 { 
  TanH = 0, 
  Sigmoid = 1, 
  ReLu = 2, 
  LeakyReLu = 3 
 };`  

3.5.2 Cuda (module) 

This module is implemented with CUDA file types (cuda.cu and cuda.cuh). 

The module includes functions that allocate, free, and reset GPU memory. The 

code snippet below is the function to allocate memory. 



Master’s Thesis – B. Lee; Master University – Applied Science 

18 
 

 template <typename T> 
 T* CUDA_Array_Allocate(int size) 
 { 
  size_t free_t, total_t; 
  cudaMemGetInfo(&free_t, &total_t); 
 
  T* result; 
  cudaError cudaStatus = cudaMalloc((void**)&result, size * sizeof(T)); 
  if (cudaStatus != cudaSuccess) 
  { 
   int i = 0; 
   i++; 
  } 
  return result; 
 }  

There are also several utility functions to copy data between GPU memory 

and regular memory, initialize GPU memory or obtain debugging information. 

This module also defines a class that regulates the parameters of CUDA kernel 

call, so a suitable number of threads is used to maximize GPU computing 

utilization, as described in Section 3.2. Below is the declaration of the class. 

class CudaParameter 
{ 
public: 
 int CountBlock; 
 int ThreadPerResult; 
 
 CudaParameter(int countResult, int countCalculationPer); 
};  

3.5.3 Calculation (module) 

This module is implemented with CUDA file types (calculation.cu and 

calculation.cuh) and include all the CUDA logic related to calculations for neural 

network. This includes functions that handle both forward and backpropagation of 

dense layer, partitioned convolutional layer, standard convolutional layer, and 

pooling layer. Most of the complexity in the API is implemented in this module. 

The code snippet below is the function that handles inter-threaded reduction 

shown in Figure 11. It is executed and invoked at GPU level. 



Master’s Thesis – B. Lee; Master University – Applied Science 

19 
 

__device__ void cuda_Reduce( 
 double* buffer, double input, int threadID, int count, double* result) 
{ 
 int id = threadID % count; 
 
 if (count <= 1) 
 { 
  *result = input; 
  return; 
 } 
 
 buffer[id] = input; 
 
 if (count > 128) 
 { 
  __syncthreads(); 
  if (id >= 128 && id < 256) { buffer[id - 128] += buffer[id]; } 
 } 
 
 if (count > 64) 
 { 
  __syncthreads(); 
  if (id >= 64 && id < 128) { buffer[id - 64] += buffer[id]; } 
 } 
 
 if (count > 32) 
 { 
  __syncthreads(); 
  if (id >= 32 && id < 64) { buffer[id - 32] += buffer[id]; } 
 } 
 
 if (count > 16) 
 { 
  __syncthreads(); 
  if (id >= 16 && id < 32) { buffer[id - 16] += buffer[id]; } 
 } 
 
 if (count > 8) 
 { 
  __syncthreads(); 
  if (id >= 8 && id < 16) { buffer[id - 8] += buffer[id]; } 
 } 
 
 if (count > 4) 
 { 
  __syncthreads(); 
  if (id >= 4 && id < 8) { buffer[id - 4] += buffer[id]; } 
 } 
 
 if (count > 2) 
 { 
  __syncthreads(); 
  if (id >= 2 && id < 4) { buffer[id - 2] += buffer[id]; } 
 } 
 
 if (count > 1) 
 { 
  __syncthreads(); 
  if (id >= 1 && id < 2) { buffer[id - 1] += buffer[id]; } 
 } 
 
 __syncthreads(); 
 if (id == 0) { *result = buffer[0]; } 
}  

Below is the kernel function that handles forward calculate of a fully 

connected layer. The function is invoked at CPU level and executed at GPU 

level. 



Master’s Thesis – B. Lee; Master University – Applied Science 

20 
 

__global__ void cuda_Calculation_FullyConnected_Forward( 
 int sizeBatch, int sizeInput, int sizeOutput, int* dropoutSelect, 
 double* input, double* weight, double scaleRatio, double* bias, 
 Global::ActivationFunction af, double* activated, int threadPerResult) 
{ 
 extern __shared__ double buffer[]; 
 int index = blockDim.x * blockIdx.x + threadIdx.x; 
 
 int indexOutputBatch = 0; 
 int indexCalculation = 0; 

if (!cuda_Reduce_Setup(index, sizeBatch * sizeOutput, threadPerResult,  
       &indexOutputBatch, &indexCalculation)) 

 { 
  cuda_Reduce_Dummy(threadPerResult); 
  return; 
 } 
 
 int indexBatch = indexOutputBatch / sizeOutput; 
 int indexOutput = indexOutputBatch % sizeOutput; 
 double result = 0.0; 
 
 for (int i = indexCalculation; i < sizeInput; i += threadPerResult) 
 { 
  if (dropoutSelect == nullptr ? true : dropoutSelect[i]) 
  { 
   result += input[indexBatch * sizeInput + i] *  

  weight[indexOutput * sizeInput + i]; 
  } 
 } 
 
 cuda_Reduce(buffer, result, threadIdx.x, threadPerResult, &result); 
 
 if (indexCalculation == 0) 
 { 
  if (bias == nullptr) 
  { 
   activated[indexBatch * sizeOutput + indexOutput] = 
    cuda_activation(result * scaleRatio, af); 
  } 
  else 
  { 
   activated[indexBatch * sizeOutput + indexOutput] = 
    cuda_activation(result * scaleRatio +  

bias[indexOutput], af); 
  } 
 } 
}  

The code snippet below shows how the above function is invoked. 

 cuda_Calculation_FullyConnected_Forward 
<<<parameter.CountBlock, CUDA_CALCULATION_BLOCK_THREAD_SIZE,  
   CUDA_CALCULATION_BLOCK_THREAD_SIZE * sizeof(double)>>> 

  (sizeBatch, sizeInput, sizeOutput, dropoutSelectInput, input, weight[0], scale, bias[0], 
 af, activated, parameter.ThreadPerResult);  

3.5.4 Layer (class) 



Master’s Thesis – B. Lee; Master University – Applied Science 

21 
 

Layer is an abstract class that defines the overall behavior of a layer in the 

neural network. The following child classes are defined from the abstract class: 

• Input (represents the first layer that contains the input data) 

• CalculationC_1D (partitioned convolutional layer) 

• Pooling_1D (partitioned pooling layer) 

• CalculationC_2D (standard convolutional layer) 

• Pooling_2D (standard pooling layer) 

• CalculationFC (fully connected layer) 

The implementation of each class is based on the expected behavior of 

the corresponding layer. Member functions Forward() and Backward() of each 

class call the corresponding functions defined in Calculation module. 

3.5.5 Network (class) 

This is the top-level class that integrates all classes and modules together. 

The public functions of this class are visible as the API features, including: 

• Network (constructor function that build the neural network layers 

based on parameters) 

• AddTrainingSet (add a pair of input and output as training data) 

• Error (provide pairs of input and output to calculate error of the 

network) 

• Calculate (provide a list of input data for outputs calculated by the 

network) 



Master’s Thesis – B. Lee; Master University – Applied Science 

22 
 

4  Preliminary Test 

Before running large-scaled experiments with real data, it is beneficial to 

test with an established set of datasets specifically tailored for machine learning. 

This serves as a sanity check to ensure the network is implemented correctly. 

The MNIST database of handwritten digits was used for this test (Yann 

LeCun, 2020). A dataset contains 28 × 28 images of handwritten digits and 

corresponding correct categorizations. There are 50,000 training datasets and 

10,000 testing datasets. 

4.1 Setup 

With the implemented API (described in Section 3.5), neural networks of 

different types can be created. The input data entries are easily standardized to 

values between 0 and 1 (division by 255). The initialization of weight and bias are 

done with the following formulas (Nielsen, 2015): 

𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑛𝑜𝑟𝑚𝑎𝑙_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛_𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(0, 1)

√𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡
 

𝑏𝑖𝑎𝑠 = 0 

the numerator for individual weight initialization is the result of normal 

distribution randomization which is centered at 0 with standard deviation of 1. The 

denominator is the square root of the size of input vector or matrix. All biases are 

simply set to 0 at the beginning. 

 Three separate neural networks were built to benchmark the performance 

of dense-only, CNN and PCNN with the datasets. 



Master’s Thesis – B. Lee; Master University – Applied Science 

23 
 

Dense-Only Neural Network 

Layer Parameters Output Size 

-- -- 28 × 28 = 784  

Dense 784 × 512 = 401,408  512  

Dense 512 × 10 = 5,120  10  

 

Convolutional Neural Network 

Layer Parameters Output Size 

-- -- 28 × 28 = 784  

Convolutional Layer 
20 channels of 5 × 5 filters 
5 × 5 × 20 = 500 parameters 

24 × 24 × 20 = 11,520  

Max Pooling Layer 
Pooling by 2 × 2 
No parameters 

12 × 12 × 20 = 2,880  

Convolutional Layer 
40 channels of 5 × 5 filters 

5 × 5 × 40 = 1,000 parameters 
8 × 8 × 40 = 2,560  

Max Pooling Layer 
Pooling by 2 × 2 
No parameters 

4 × 4 × 40 = 640  

Dense 640 × 512 = 327,680  512  

Dense 512 × 10 = 5,120  10  

 

Partitioned Convolutional Neural Network 

Layer Parameters Output Size 

-- -- 28 × 28 = 784  

Partitioned Convolutional Layer 

20 channels of 5 filters with size 

of 1 × 28  

5 × 28 × 20 = 2,800 parameters 

24 × 28 × 20 = 13,440  

Max Pooling Layer 
Pooling by 2 × 1 
No parameters 

12 × 28 × 20 = 6,720  

Partitioned Convolutional Layer 

40 channels of 5 filters with size 

of 1 × 28 

5 × 28 × 40 = 5,600 parameters 

8 × 28 × 40 = 8,960  

Max Pooling Layer 
Pooling by 2 × 1 
No parameters 

4 × 28 × 40 = 4,480  

Dense 4,480 × 512 = 2,293,760  512  

Dense 512 × 10 = 5,120  10  

4.2 Result 

All three networks were trained with 50,000 training datasets, mini-batch 

size of 64 and 20 epochs. Activation function is Rectified Linear Unit (ReLU) for 



Master’s Thesis – B. Lee; Master University – Applied Science 

24 
 

all layers except the final dense layer where Sigmoid is used. The trained 

networks were then used to categorize 10,000 test sets, which were compared 

against expected outputs. 

Network Type Only Dense CNN PCNN 

Run #1 9824 9880 9785 

Run #2 9824 9880 9778 

Run #3 9837 9906 9814 

Run #4 9831 9908 9791 

Run #5 9813 9904 9762 

Average 9826 9896 9786 

Table 3: Preliminary Test Result of 10,000 Datasets 

Table 3 shows the result of the preliminary test. The follow observations 

and analysis are made: 

• Standard CNN yielded the best performance in accuracy, averaging 

9896 out of 10000. It is also the only network capable of exceeding 

99% accuracy in a test run. This demonstrates the advantage of 

identifying features formed by input data points. 

• PCNN had the lowest accuracy. Multiple reasons likely contributed to 

this result. 

Figure 13 illustrates the difference of filter usage between CNN and 

PCNN. For 2D image categorization, all input data points are homogenous. 

Therefore, 2D filter should be used with standard CNN to identify local features in 

particular areas of the image. On the other hand, deliberately partitioning the 

input image into rows and using vector filters make little sense since the network 

would be unable to recognize any features formed by pixels from different rows. 



Master’s Thesis – B. Lee; Master University – Applied Science 

25 
 

Therefore, the partitioned convolutional layers add no real value except creating 

more noise. Furthermore, adding two partitioned convolutional layers introduces 

additional 1,900,752 parameters, thus making the network harder to train. This is 

clearly a scenario where PCNN is not suitable. 

 

Figure 13: CNN (left) vs PCNN (right) for image recognition 

Three sample networks in the preliminary test produced results that are 

expected. This indicates the API implementation described in Section 3.5 was 

working as intended and ready for testing with real data. 

5  Test Data 

There are a few criteria for test data selection. The most important one is 

that the input of the dataset must be suitable for both standard CNN and 

proposed PCNN. The number of datasets must also be large enough to facilitate 

training. 

5.1 Existing sources 

There are numerous datasets available for the purpose of machine 

learning testing and benchmarking. However, most of these data libraries are 

specifically prepared to test standard machine learning network models and may 

not be suitable for the proposed PCNN. 



Master’s Thesis – B. Lee; Master University – Applied Science 

26 
 

5.2 Data Selection 

Stock movement analysis is a common application of machine learning. It 

is also suitable in this research for the following reasons: 

• Data is readily available. 

• The size of data is large enough as a lot of stocks have price history 

that go back more than 10 years. 

• Prices of different stocks in the same market share an underlying 

correlation, which enables them to be modelled by standard CNN. But 

they also have no spatial relationship with each other when 

represented as rows in a matrix. For example, Figure 14 and Figure 15 

are the same. This means that they are suitable for PCNN modelling. 

𝑝0,0 𝑝0,1 𝑝0,2 𝑝0,3 𝑝0,4 𝑝0,5 

𝑝1,0 𝑝1,1 𝑝1,2 𝑝1,3 𝑝1,4 𝑝1,5 

Figure 14: Input #1 for PCNN 

𝑝1,0 𝑝1,1 𝑝1,2 𝑝1,3 𝑝1,4 𝑝1,5 

𝑝0,0 𝑝0,1 𝑝0,2 𝑝0,3 𝑝0,4 𝑝0,5 

Figure 15: Input #2 for PCNN 

It was assumed that, on a given date (the pivot date), price movement of 

multiple stocks in the past 120 days can be used to model the movement of a 

single stock in the next 30 days. For this research, 40 stocks (including the 

forecasted stock) are used to create input data. 

5.3 Data Acquisition 

As mentioned in the previous section, there are several online sources to 

obtain stock price history. The North America stock market was selected as the 

source. As the first step, a database was built through the following steps: 



Master’s Thesis – B. Lee; Master University – Applied Science 

27 
 

• The stock list was obtained from www.eoddata.com for (EODData, 

LLC., 2019):  

o New York Stock Exchange 

o American Stock Exchange 

o NASDAQ Stock Exchange 

o Toronto Stock Exchange 

• With use of a scripting language, historical prices for each stock from 

the lists obtained in the previous step are downloaded from Yahoo or 

Alpha Vintage (Yahoo!, 2019) (Alpha Vantage Inc., 2019). The 

downloaded data is stored in a SQL database. 

5.4 Dataset Construction and Pre-processing 

5.4.1 Predictor Stock Selection 

One needs to consider how to select 39 stocks in addition to the 

forecasted stock to build the input matrix. There must be enough historical data of 

every selected stock to build enough datasets. It was decided that the historical 

data of a stock must be up to date and go back more than 3,653 days. Another 

consideration is that if the prices of two stocks are highly correlated, they will be 

supplying redundant information as input. Therefore, the selection process is as 

follow: 

1. Start with the stock to be forecasted. 

2. Randomly pick another stock. 

http://www.eoddata.com/


Master’s Thesis – B. Lee; Master University – Applied Science 

28 
 

3. If the newly picked stock does not have enough data, discard, and 

go to Step 2. 

4. If the newly picked stock has a correlation coefficient that is greater 

than 0.7 with any stocks that are already selected, discard and go 

to Step 2. 

5. Keep the selected stock and return to Step 2 until 40 stocks have 

been selected. 

To speed up the individual query, a SQL table was created to store pre-

calculated correlation coefficients of all possible stock pairs. The logic of selecting 

39 suitable predictor stocks (based on the steps described above) is 

implemented in a SQL store procedure. 

5.4.2 Representing Price Movement 

It is simple to build a dataset input with raw stock price. But there are 

several problems with this approach. The price of a stock can be a few cents or 

thousands of dollars. This would make it difficult to initialize training parameters, 

specifically the weights. If initial weights are too low, the training speed of the 

network would take too long to ramp up. On the other hand, if weights are too 

high at initialization, exploding and vanishing gradients would occur, creating 

large number of “dead” nodes and effectively crippling the network. 

The solution is simple. Instead building datasets with raw stock price, the 

daily change in price, represented by a percentage, is used. Therefore, each data 

point is calculated from the formula below: 



Master’s Thesis – B. Lee; Master University – Applied Science 

29 
 

𝑝𝑟𝑖𝑐𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑎𝑦

𝑝𝑟𝑖𝑐𝑒𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑑𝑎𝑦
− 1 

Figure 16 shows the format of the output when the SQL stored procedure 

mentioned in the previous section is called. In the first data column, 𝑐0,𝑛 

represents the daily price change of the forecasted stock, which also acts as a 

predictor. 

[
 
 
 
 
𝑑𝑎𝑡𝑒0 𝑐0,0 𝑐1,0 ⋯ 𝑐39,0

𝑑𝑎𝑡𝑒1 𝑐0,1 𝑐1,1 ⋯ 𝑐39,1

𝑑𝑎𝑡𝑒2 𝑐0,2 𝑐1,2 ⋯ 𝑐39,2

⋮ ⋮ ⋮ ⋮ ⋮
𝑑𝑎𝑡𝑒𝑛 𝑐0,𝑛 𝑐1,𝑛 ⋯ 𝑐39,𝑛]

 
 
 
 

 

𝑐𝑚,𝑛 represents a daily price change calculated from 
𝑝𝑟𝑖𝑐𝑒 𝑠𝑡𝑜𝑐𝑘𝑚,𝑑𝑎𝑡𝑒𝑛

𝑝𝑟𝑖𝑐𝑒𝑠𝑡𝑜𝑐𝑘𝑚,𝑑𝑎𝑡𝑒𝑛−1

− 1 

Figure 16: Data structure of one dataset 

5.4.3 Building Datasets 

Figure 17 provides a visual representation on how a dataset is built from 

the data represented by Figure 16. The input matrix is obtained by taking a 

40 × 120 block from the data matrix, represented by the blue section in Figure 17. 

The output is constructed by reducing the 1 × 30 vector from the first column 

(represented by the yellow section in Figure 17) immediately after the input 

matrix. The formula to reduce the 1 × 30 vector is: 

𝑂𝑢𝑡𝑝𝑢𝑡 = (∑(𝑐 + 1)) − 1 



Master’s Thesis – B. Lee; Master University – Applied Science 

30 
 

 

Figure 17: Building a dataset from SQL output matrix 

Intuitively, the date corresponding to the last row of the input matrix can be 

considered the “pivot date”. The input matrix represents the daily price change of 



Master’s Thesis – B. Lee; Master University – Applied Science 

31 
 

40 stocks (1 forecasted stock and 39 predictor stocks) during the 120-days period 

up to the pivot date. The output is a percentage representing the overall 

movement of the forecasted stock 30 days after the pivot day. A unique dataset is 

generated for each pivot day. If there are 7,000 days (rows) in the data matrix 

shown in Figure 16, then 7,000 − 120 − 30 + 1 = 6,851 datasets will be 

generated. 

As mentioned in Section 3.3, classification is preferred over regression to 

enable the use of ReLU activation function and max pooling. Therefore, output is 

further transformed from a percentage to a vector by applying the logic defined in 

Table 4. Standard deviation () is calculated from the percentage-based output of 

all generated datasets.  

Range of Stock Change Stock Movement Output Vector 

Less than -2.0 Significant Drop [1.0, 0, 0, 0, 0] 

Greater than or equal to -2 

Less than -0.5 
Moderate Drop [0, 1.0, 0, 0, 0] 

Greater than or equal to -

0.5 

Less than 0.5 

Stable [0, 0, 1.0, 0, 0] 

Greater than or equal to 0.5 

Less than 2.0 
Moderate Increase [0, 0, 0, 1.0, 0] 

Greater than or equal to 2.0 
Significant 
Increase 

[0, 0, 0, 0, 1.0] 

Table 4: Transforming Regression-based output to Classification 

5.4.4 Training vs Testing Datasets 

After datasets are generated for a forecasted stock, 95% of datasets are 

used for training a neural network while the remaining 5% act as testing data. If 

the actual performance of stock forecasting is to be measured, then datasets with 



Master’s Thesis – B. Lee; Master University – Applied Science 

32 
 

the latest pivot dates would be used for testing, as visually illustrated in Figure 

18. However, this approach is not suitable for this research. 

First aspect to consider is the underlying assumption that past price 

movement of 40 stocks can be used to forecast future movement of one stock. 

The stock selection process described in Section 5.4.1 is not sophisticated 

enough to provide confidence of such an assumption in realistic scenarios. The 

assumption is further challenged by the common notion in finance industry “past 

results are no indication of future” (Kennion, 2020). 

 

Figure 18: Select latest 5% of datasets for testing 

 

Figure 19: Randomly select 5% of datasets for testing 

It is also important to recognize that the purpose of this research is to 

benchmark how well different neural networks model the constructed datasets 

instead of measuring the feasibility of forecasting stock market. Therefore, the 

method of selecting testing datasets shown in Figure 18 is not used. 

Figure 19 illustrates the methodology of randomly selecting 5% of datasets 

for testing. With this approach, for each testing dataset, there are likely training 

datasets with pivot dates that are “close neighbors” to the pivot date of the testing 

dataset. This ensures that there are likely training datasets similar but not 

identical to testing datasets. Therefore, the resulting training-testing dataset 

combination is suitable to benchmark how well a neural network can model the 



Master’s Thesis – B. Lee; Master University – Applied Science 

33 
 

datasets without relying on the underlying assumption about stock market (stated 

in Section 5.2) being true. 

134 different stocks are selected to be forecast. Their stock codes are 

listed in Appendix A. On average, over 6700 datasets are generated for each 

stock. There are 45,193 testing datasets in total, approximately 337 for each 

selected stock. 

5.4.5 Implementation 

The process of calling SQL store procedure, generating datasets, and 

selecting testing datasets are implemented in Visual Studio C#. For each 

forecasted stock, the resulting training and testing datasets are generated with 

the C# application, then passed to a C++ application via shared memory. The 

C++ application builds different neural networks using the framework described in 

Section 3.5 to train and test with the provided datasets. 

6  Test 

6.1 Setup 

Like the preliminary test, three neural networks with different structures are 

constructed to benchmark the performance with the same set of datasets. 

  



Master’s Thesis – B. Lee; Master University – Applied Science 

34 
 

Dense-Only Neural Network 

Layer Parameters Output Size 

-- -- 120 × 40 = 4,800  

Dense 4800 × 256 = 1,228,800  256  

Dense 256 × 5 = 1,280  5  

 

CNN Neural Network 

Layer Parameters Output Size 

-- -- 120 × 40 = 4,800  

Convolutional Layer 
10 channels of 19 × 1 filters 

19 × 1 × 10 = 190 parameters 
102 × 40 × 10 = 40,800  

Max Pooling Layer 
Pooling by 3 × 1 
No parameters 

34 × 40 × 10 = 13,600  

Convolutional Layer  
10 channels of 20 × 1 filters 

20 × 1 × 10 = 1,000 parameters 
15 × 40 × 10 = 6,000  

Max Pooling Layer 
Pooling by 3 × 1 
No parameters 

5 × 40 × 10 = 2,000  

Dense 2,000 × 256 = 512,000  256  

Dense 256 × 5 = 1,280  5  

 

PCNN Neural Network 

Layer Parameters Output Size 

-- -- 120 × 40 = 4,800  

Partitioned Convolutional Layer 

10 channels of 40 filters with size of 

19 × 1 

19 × 40 × 10 = 7,600 parameters 

102 × 40 × 10 = 40,800  

Max Pooling Layer 
Pooling by 3 × 1 
No parameters 

34 × 40 × 10 = 13,600  

Partitioned Convolutional Layer 
10 channels of 40 filters with size of 

20 × 1 
20 × 40 × 10 = 8,000 parameters 

15 × 40 × 10 = 6,000  

Max Pooling Layer 
Pooling by 3 × 1 
No parameters 

5 × 40 × 10 = 2,000  

Dense 2,000 × 256 = 512,000  256  

Dense 256 × 5 = 1,280  5  

Figure 20 illustrates the structure of input data of a dataset. All data entries 

are of the same type (daily stock price change). But since each vector row 

represents different stock, the data cannot be processed with cross-row filter. 

Therefore, vector filter must be used. 



Master’s Thesis – B. Lee; Master University – Applied Science 

35 
 

[
 
 
 
𝑖𝑠𝑡𝑜𝑐𝑘0,0 𝑖𝑠𝑡𝑜𝑐𝑘0,1 𝑖𝑠𝑡𝑜𝑐𝑘0,2 𝑖𝑠𝑡𝑜𝑐𝑘0,3 ⋯ 𝑖𝑠𝑡𝑜𝑐𝑘0,119

𝑖𝑠𝑡𝑜𝑐𝑘1,0 𝑖𝑠𝑡𝑜𝑐𝑘1,1 𝑖𝑠𝑡𝑜𝑐𝑘1,2 𝑖𝑠𝑡𝑜𝑐𝑘1,3 ⋯ 𝑖𝑠𝑡𝑜𝑐𝑘1,119

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑖𝑠𝑡𝑜𝑐𝑘39,0 𝑖𝑠𝑡𝑜𝑐𝑘39,1 𝑖𝑠𝑡𝑜𝑐𝑘39,2 𝑖𝑠𝑡𝑜𝑐𝑘39,3 ⋯ 𝑖𝑠𝑡𝑜𝑐𝑘39,119]

 
 
 

 

Figure 20: Structure of input data for CNN and PCNN 

For CNN and PCNN, the output after each layer would have the same 

size, which is illustrated in Figure 21. However, all vector rows are processed by 

the same filter (for each channel) in CNN. For PCNN, each vector row is 

processed by unique filter. Therefore, PCNN has 7,600 trainable parameters for 

the first convolutional layer, 40 times of its CNN counterpart. Pooling layers have 

the same logic for both CNN and PCNN. 

[

𝑜𝑠𝑡𝑜𝑐𝑘0,0 𝑜𝑠𝑡𝑜𝑐𝑘0,1 𝑜𝑠𝑡𝑜𝑐𝑘0,2 𝑜𝑠𝑡𝑜𝑐𝑘0,3 ⋯ 𝑜𝑠𝑡𝑜𝑐𝑘0,101

𝑜𝑠𝑡𝑜𝑐𝑘1,0 𝑜𝑠𝑡𝑜𝑐𝑘1,1 𝑜𝑠𝑡𝑜𝑐𝑘1,2 𝑜𝑠𝑡𝑜𝑐𝑘1,3 ⋯ 𝑜𝑠𝑡𝑜𝑐𝑘1,101

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑜𝑠𝑡𝑜𝑐𝑘39,0 𝑜𝑠𝑡𝑜𝑐𝑘39,1 𝑜𝑠𝑡𝑜𝑐𝑘39,2 𝑜𝑠𝑡𝑜𝑐𝑘39,3 ⋯ 𝑜𝑠𝑡𝑜𝑐𝑘39,101

] 

Figure 21: Output of first convolutional layer for CNN and PCNN 

The key difference between CNN and PCNN is the use of common vs. 

unique filter for each vector row. While CNN process the input matrix through a 

series of layers, PCNN partitions input matrix into separate vectors and process 

each in isolated series of convolutional and pooling layers until they are merged 

for final dense layers. Intuitively, CNN would be trained to learn the market-wise 

trends and patterns between the input data (representing the price changes of 40 

stocks over 120 days) and the output (representing the 30-day price change of 

the forecasted stock). PCNN would be trained to identify the trends and patterns 

between each stock represented in the input data and the forecasted stock 

individually. 



Master’s Thesis – B. Lee; Master University – Applied Science 

36 
 

The weights and biases for all networks are initialized with the same 

method as described in Section 4.1. Every network is trained for 10 epochs, with 

mini-batch size of 64 and ReLU activation function (except final layer which uses 

Sigmoid). Test datasets are processed after each epoch to measure how well the 

network has been trained. 

6.2 Initial Test Result 

For every network, after each training epoch, the performance was 

measured with the test datasets. The best performance of the network and the 

number of training epochs to reach it were recorded. If performance drop with 

further training, the training would be terminated early before 10 epochs are 

completed. There are 134 sets of datasets, 45,193 testing datasets (averaging 

337 per selected stock). The detailed results are recorded in Appendix A. Table 5 

shows the summary of performance of each neural network structure. 

Network Type Only Dense CNN PCNN 

Number of trainable parameters in network 1,230,080 513,670 528,880 

Average number epochs to peak performance 2.31 5.81 8.31 

Number of correct test data outputs 
(of 45,193 datasets) 

27606 34253 37454 

Accuracy 61.08% 75.79% 82.88% 

Table 5: Forecast Accuracy by Network of Initial Test Run 

Based on the result of the initial test run, the performance of PCNN 

seemed very promising, ranking top in accuracy. It is also observed that a dense-

only neural network is not able to adequately model the data. However, before 

declaring PCNN as the superior neural network structure, it is important to ensure 

that the comparison was fair. 



Master’s Thesis – B. Lee; Master University – Applied Science 

37 
 

6.3 Additional Pre-processing 

As explained in Section 5.4, datasets must be preprocessed to make the 

input data suitable for neural network modelling. One of the preprocesses is to 

convert raw stock price into percentages that represent daily change of stock 

prices. This is done so the parameter initialization for neural network is easier 

and the different average price between stocks does not cause issues. 

However, even the volatility of the stock daily change, when expressed in 

percentage, still presents an issue when modelling with standard CNN. Two 

stocks can have correlation coefficient close to 1.0 but with drastic different 

volatility in price changes. Interestingly, this is not an issue for PCNN because 

every stock was processed with individual sets of layers and associated 

parameters. But for standard CNN, the same parameters are used to process 

data of all rows. This means input rows with larger volatility will “overshadow” the 

other rows as trainable parameters are updated to compensate for their higher 

standard deviation. Thus, for the initial test run, only a few rows from the input 

matrix contribute to the CNN model. This means PCNN had an “unfair” 

advantage because input data needs another preprocessing step to be suitable 

for standard CNN. 

Original Data 
Standard 
Deviation 

Scaled Data 

[
 
 
 
 
−0.934 −0.702 −0.262 0.611 0.553
−0.563 0.712 0.351 0.244 −0.492
−0.359 −0.058 0.395 −0.097 −0.204
−0.051 0.065 0.086 −0.010 0.070
−0.007 −0.009 0.006 −0.009 −0.010]

 
 
 
 

 

[
 
 
 
 
0.708
0.556
0.282
0.059
0.007]

 
 
 
 

 

[
 
 
 
 
 
−0.934

0.708
× 0.2 = −0.264 −0.198 −0.074 0.173 0.156

−0.203 0.256 0.126 0.088 −0.177
−0255 −0.041 0.280 −0.069 −0.144
−0.171 0.219 0.289 −0.035 0.236
−0.214 −0.262 0.185 −0.256 −0.297]

 
 
 
 
 

 

Figure 22: Scaling Data 



Master’s Thesis – B. Lee; Master University – Applied Science 

38 
 

The different volatility of movement between stocks can be mitigated by 

scaling (dividing) all daily price changes of a stock with its standard deviation. 

The result is then scaled down by a factor of 5.0 to keep the resulting values 

between 0 and 1. This process is demonstrated in Figure 22, which brings the 

standard deviation of every row to 0.2. 

After scaling, the volatility of all stocks is brought to the same level, as 

illustrated in Figure 23. With input data further refined, test was executed again 

for standard CNN. It was not necessary to repeat the test for dense-only network 

and PCNN as the lack of scaling does not impact these two network structures. 

 

Figure 23: Impact of scaling to the volatility difference 

6.4 Final Test Result 

Table 6 shows the overall result with second round of testing for CNN. 

Standard CNN surpassed PCNN in performance and achieved the best accuracy. 

The detailed data of the test result is included in Appendix A. 

Network Type Only Dense CNN  PCNN 

Number of trainable parameters in network 1,230,080 513,670 528,880 

Average number epochs to peak performance 2.31 6.37 8.31 

Number of correct test data outputs 
(of 45,193 sets) 

27,606 38,273 37,454 

Accuracy 61.08% 84.69% 82.88% 

Table 6: Forecast Accuracy by Network of Final Test Run 



Master’s Thesis – B. Lee; Master University – Applied Science 

39 
 

7  Discussion 

With scaled input data, standard CNN has the best performance of all 

three networks. PCNN is a close second with 2.14% less accuracy. The dense-

only network fell behind by a large margin. 

7.1 Dense-only Network 

Detailed data in Appendix A shows that the dense-only network merely 

“votes for majority”. The neural network gravitates toward the most frequent 

appearing output in the training data and trains itself to always output that. The 

trained network would output the same result regardless of the input. This 

indicates an inability to identify complex patterns. This is also evidenced by how 

the network performance stop improving after only 2-3 training epochs. 

7.2 Standard CNN vs PCNN 

Both standard CNN and PCNN produced correct outputs for over 80% of 

test data. While the overall performance of CNN and PCNN were close, several 

observations can be made based on the detailed result data. 

As described in Section 6.1, standard CNN uses underlying market-level 

trend to make the forecast while PCNN identifies the trends of 40 stocks 

individually. The outcome indicates that both methods make sense intuitively and 

lead to decent results. This is significant as it demonstrates a scenario where the 

proposed approach of partitioning input data with PCNN can produce 

performance that rivals standard CNN. Even though CNN outperformed PCNN by 



Master’s Thesis – B. Lee; Master University – Applied Science 

40 
 

a small margin, the result from PCNN indicates that this approach should not be 

overlooked for suitable datasets. 

While the overall test data accuracies of CNN and PCNN are close, the 

difference in performance for some sets of datasets is quite large. This is likely 

related to underlying financial principles and nature of the stocks represented by 

the datasets. For PCNN, if one or several stocks represented by the input matrix 

have underlying correlation with the forecasted stock, its performance would 

likely be good. However, if such stocks are not included in the input data or 

simply do not exist, CNN would likely get better result with market-level trend. 

The method used to build input data (described in Section 5.4) is quite primitive. 

It can be assumed that PCNN would likely get a better overall result if a more 

sophisticated method (ideally based on financial principles) is used to select 

stocks for input data building. This also highlights that PCNN achieved its 

performance by identifying patterns different to those learned by CNN. 

It is worth noting that there are also several potential factors that could 

have improved the performance of PCNN. CNN has a lower number of trainable 

parameters than PCNN. Although the difference of total number of trainable 

parameters between CNN and PCNN seems small (513,670 to 528,880, which is 

only different by 2.96%), the additions of parameters were all in the convolutional 

layers, raising the number of parameters in the first layer from 190 to 7,600 and 

second layer from 200 to 8,000. Increasing parameters by a factor of 40 implies 

that the layers would likely need more training data. It would also require more 



Master’s Thesis – B. Lee; Master University – Applied Science 

41 
 

training epochs to reach peak performance. This is shown by the test result 

where CNN takes an average of 5.4 training epochs to reach best result while 

PCNN takes an average of 7.3, as shown in Table 7. This indicates that the minor 

performance gap between PCNN and CNN may narrow or even reverse if the 

maximum number of training epochs was increased to 15. PCNN would likely 

benefit more than CNN does if there are more training data available. 

Network Type CNN PCNN 

Best Performance After 1 Epoch 8 3 

Best Performance After 2 Epoch 8 1 

Best Performance After 3 Epoch 10 3 

Best Performance After 4 Epoch 11 2 

Best Performance After 5 Epoch 15 3 

Best Performance After 6 Epoch 12 6 

Best Performance After 7 Epoch 17 12 

Best Performance After 8 Epoch 12 24 

Best Performance After 9 Epoch 16 36 

Best Performance After 10 Epoch 25 44 

Average Epochs to Best Performance 6.373 8.306 

Table 7: Number of Epochs to Reach Best Performance 

7.3 Viability of PCNN 

Test results have indicated that PCNN has potentially the same capability 

of modeling data as that of standard CNN. Its performance would likely benefit 

under the following conditions: 

• Sophisticated method to construct the input groups (if selection is 

required) 

• Large amount of training datasets 

• High number of training epochs 



Master’s Thesis – B. Lee; Master University – Applied Science 

42 
 

The test conducted in this research shows a scenario where both CNN 

and PCNN are viable options. This means that PCNN can be a replacement for 

standard CNN in certain situations or a supplement to standard CNN to create a 

more powerful neural network (discussed in section below). For the scope of this 

research, the result of the test has adequately demonstrated the viability of 

PCNN. 

7.4 Application of PCNN 

From a structural point of view, PCNN is designed to handle input with 

heterogenous groups of data. However, even without the concept of PCNN, data 

analysist would still construct the network to convolute these data groups 

separately, which leads the same effect of PCNN. A particularly interesting 

possibility explored by this research is using PCNN even when the input data is 

also suitable for standard CNN. 

Processing homogenous groups of data with separate convolutional layers 

may seem counterintuitive. But the test result in this research demonstrates that 

identifying trends and patterns for individual data groups could produce 

comparable or even superior results. One does not need to choose between 

PCNN and standard CNN when constructing a neural network. Data can be 

processed with both methods and brought together through dense layers or a 

voting mechanism. Figure 24 shows such an example. Note that PCNN part and 

CNN part of the network can have different number of layers and filter 

dimensions. 



Master’s Thesis – B. Lee; Master University – Applied Science 

43 
 

 

Figure 24: Example of Flexible PCNN Design  

8  Future Work 

The next step is to further explore the application of PCNN with datasets 

that are normally processed with standard CNN, like the stock data used for this 

research. If the performance of PCNN proves to be good with the datasets, 

further research could be conducted to determine if an even better result can be 

achieved by pairing standard CNN and PCNN, as described in Section 7.4. 

9  Conclusion 

This research sets forth an alternative to the standard convolutional neural 

network structure when modelling homogenous groups of data. The proposed 

PCNN is designed to identify underlying patterns of individual data groups that 

are not learned by standard CNN. The author of this research implemented the 

software framework that allows both CNN and PCNN to be constructed and test. 

In addition, test data was built from stock markets and refined to be suitable for 

both CNN and PCNN. The test results show that PCNN is capable of meaningful 

performance when modelling suitable datasets. Post-test analysis indicates that 

there are possible methods to improve its performance even further. The result 

Partitioned 
Convolutional Layers 

Standard 
Convolutional Layers 

M
e

rg
e
 &

 F
la

tte
n
 

D
e
n
s
e
 L

a
y
e
rs

 

O
u
tp

u
t 

Input 



Master’s Thesis – B. Lee; Master University – Applied Science 

44 
 

indicates that with suitable datasets and right setups, PCNN can potentially be 

used to replace or pair with standard CNN for better neural network performance.  



Master’s Thesis – B. Lee; Master University – Applied Science 

45 
 

10  References 

Alpha Vantage Inc. (2019). Alpha Vantage - Free APIs for Realtime and Historical 

Stock. (Alpha Vantage Inc.) Retrieved March 3, 2018, from Alpha Vantage: 

https://www.alphavantage.co/ 

Brownlee, J. (2017, July 21). A Gentle Introduction to Mini-Batch Gradient 

Descent and How to Configure Batch Size. Retrieved February 28, 2019, 

from Machine Learning Mastery: 

https://machinelearningmastery.com/gentle-introduction-mini-batch-

gradient-descent-configure-batch-size/ 

Brownlee, J. (2017, December 11). Difference Between Classification and 

Regression in Machine Learning. Retrieved June 13, 2019, from Machine 

Learning Mastery: https://machinelearningmastery.com/classification-

versus-regression-in-machine-learning/ 

Brownlee, J. (2017, July 3). Gentle Introduction to the Adam Optimization 

Algorithm for Deep Learning. Retrieved May 2, 2019, from Machine 

Learning Mastery: https://machinelearningmastery.com/adam-

optimization-algorithm-for-deep-learning/ 

Brownlee, J. (2019, January 18). How to Accelerate Learning of Deep Neural 

Networks With Batch Normalization. Retrieved March 11, 2019, from 

Machine Learning Mastery: https://machinelearningmastery.com/how-to-

accelerate-learning-of-deep-neural-networks-with-batch-normalization/ 

EODData, LLC. (2019). End of Day Stock Quote Data and Historical Stock 

Prices. (EODData, LLC.) Retrieved Feb 28, 2018, from eoddata: 

http://www.eoddata.com/ 

Google Brain Team. (2020, July 9). TensorFlow. Retrieved Feb 28, 2019, from 

TensorFlow: https://www.tensorflow.org/ 

Harris, M. (2007). Optimizing Parallel Reduction in CUDA. 



Master’s Thesis – B. Lee; Master University – Applied Science 

46 
 

Harris, M. (2013, January 28). Using Shared Memory in CUDA C/C++. (NVIDIA 

Corporation) Retrieved June 3, 2018, from 

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/ 

Hyungui Lim, J. P. (2017, November 16). Rare Sound Event Detection Using 1D 

Convolutional Recurrent Neural Networks. Detection and Classification of 

Acoustic Scenes and Events 2017. 

Isaksson, M. (2020, June 6). Four Common Types of Neural Network Layers. 

Retrieved from Towards Data Science: 

https://towardsdatascience.com/four-common-types-of-neural-network-

layers-c0d3bb2a966c 

Kennion, J. (2020, December 08). Past Performance Is No Guarantee of Future 

Results. Retrieved from the balance: https://www.thebalance.com/past-

performance-is-no-guarantee-of-future-results-357862 

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. New 

York: New York University. 

Massachusetts Institute of Technology. (2020). Keras: the Python deep learning 

API. Retrieved February 28, 2019, from Keras: https://keras.io/ 

Nielsen, M. A. (2015, June). Neural Networks and Deep Learning. Determination 

Press. Retrieved August 31, 2019 

NVIDIA Corporation. (2013, July). Tesla K20X GPU Accelerator. 

NVIDIA Corporation. (2017, June 2). CUDA Occupancy Calculator :: CUDA 

Toolkit Documentation. Retrieved June 3, 2018, from 

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html 

NVIDIA Corporation. (2017, July 2). CUDA Toolkit Documentation. Retrieved 

November 11, 2018, from https://docs.nvidia.com/cuda/ 

NVIDIA Corporation. (2019). GeForce GTX 1050 Graphics Cards | NVIDIA 

GeForce. Retrieved from NVIDIA: https://www.nvidia.com/en-

sg/geforce/products/10series/geforce-gtx-1050/ 



Master’s Thesis – B. Lee; Master University – Applied Science 

47 
 

NVIDIA Corporation. (n.d.). Whitepaper NVidia's Next Generation CUDA 

Compute Architecture: Fermi. Retrieved July 9, 2018, from 

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_C

ompute_Architecture_Whitepaper.pdf 

Osama Abdeljaber, O. A. (2017, February 3). Real-time Vibration-based 

Structural Damage Detection Using One-dimensional Convolutional Neural 

Networks. Journal of Sound and Vibration, 388, 154-170. 

Serkan Kiranyaz, O. A. (2019, May 9). 1D Convolutional Neural Networks and 

Applications: A Survey. Retrieved from arXiv.org: 

https://arxiv.org/ftp/arxiv/papers/1905/1905.03554.pdf 

Siavash Sakhavi, C. G. (2015). Parallel Convolutional-linear Neural Network for 

Motor Imagery Classification. 2015 23rd European Signal Processing 

Conference (EUSIPCO). Nice, France: IEEE. 

Torch Contributors. (2020). PyTorch documentation — PyTorch 1.6.0 

documentation. Retrieved February 28, 2019, from PyTorch: 

https://pytorch.org/ 

Turker Ince, S. K. (2016, November). Real-Time Motor Fault Detection by 1-D 

Convolutional Neural Networks. IEEE Transactions on Industrial 

Electronics, 63(11), 7067-7075. 

Woolley, C. (2013). GPU Optimization Fundamentals. NVIDIA. 

Yahoo! (2019). Yahoo Finance - Stock Market Live, Quotes, Business & Financial 

News. (Yahoo!) Retrieved March 3, 2018, from Yahoo Finance: 

https://finance.yahoo.com/ 

Yakura, H. (March 2018). Malware Analysis of Imaged Binary Samples by 

Convolutional Neural Network with Attention Mechanism. The 8th ACM 

Conference on Data and Application Security and Privacy (pp. 127-134). 

Tempe, AZ, USA: ACM CODASPY '18. 



Master’s Thesis – B. Lee; Master University – Applied Science 

48 
 

Yann LeCun, C. C. (2020). The MNIST database of handwritten digits. Retrieved 

January 15, 2018, from The MNIST database: 

http://yann.lecun.com/exdb/mnist/ 

 

 

 



Master’s Thesis – B. Lee; Master University – Applied Science 

49 
 

Appendix A Test Result Details 

Datasets are built for 134 stocks. The performance of each test neural network is 

shown in this section. The following columns are included for each table: 

• # of Epochs to Best: the number of training epochs before peak 

performance of the neural network is reached 

• The network has five possible outputs, as described in Section 5.4. There 

are two columns for each possible output: 

o Total: number of test datasets with such expected result 

o Corr.: number of test datasets for which the network correctly 

forecasted such output 

• Incorrect – Magnitude of Error: number of incorrect outputs categorized by 

how incorrect they are. For example: 

o An actual output of [0, 1, 0, 0, 0] against an expected output of 

[0, 0, 1, 0, 0] means an error magnitude of 1 

o An actual output of [0, 1, 0, 0, 0] against an expected output of 

[0, 0, 0, 0, 1] means an error magnitude of 3 

  



Master’s Thesis – B. Lee; Master University – Applied Science 

50 
 

A.1 Dense-only Neural Network 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

ABB 2 0 0 21 0 26 0 225 222 43 5 67 21 0 0 

AKS 1 29 0 213 213 45 0 24 0 4 0 74 24 4 0 

BIOS 1 303 303 3 0 7 0 2 0 0 0 3 7 2 0 

CIA 1 0 0 14 0 44 0 179 179 78 0 122 14 0 0 

COT 1 0 0 39 0 264 264 5 0 7 0 44 7 0 0 

CYBE 1 2 0 77 0 160 160 57 0 19 0 134 21 0 0 

DYNT 1 0 0 105 0 207 207 61 0 15 0 166 15 0 0 

EFOI 1 0 0 8 0 348 348 30 0 2 0 38 2 0 0 

EMITF 1 30 0 189 189 99 1 35 0 3 0 128 35 3 0 

FISV 1 68 0 235 235 69 0 13 0 3 0 137 13 3 0 

GEOS 2 0 0 21 0 90 9 87 87 15 0 101 16 0 0 

GFI 2 0 0 6 0 101 7 224 218 57 0 154 9 0 0 

GILT 1 2 0 71 0 199 166 117 50 18 0 177 14 0 0 

GPIC 1 0 0 127 0 158 158 20 0 10 0 147 10 0 0 

GPX 2 0 0 0 0 12 0 77 6 267 264 76 10 0 0 

GV 6 0 0 0 0 78 9 250 237 28 6 100 4 0 0 

HDSN 1 0 0 45 0 199 199 90 0 22 0 135 22 0 0 

HLIT 5 0 0 16 0 117 34 176 162 47 5 138 17 0 0 

HMY 1 0 0 173 168 93 10 4 0 6 0 90 4 4 0 

HOV 9 3 0 130 15 181 130 74 39 19 0 205 18 0 0 

HRTX 2 47 4 202 193 52 10 10 0 4 0 94 10 4 0 

ICAD 1 35 0 278 278 65 0 20 0 9 0 100 20 9 0 

IDRA 1 3 0 341 341 50 0 15 0 4 0 53 15 4 0 

IDSA 1 0 0 4 0 281 148 111 74 11 0 185 0 0 0 

IESC 1 79 0 249 249 52 0 29 0 4 0 131 29 4 0 

IGLD 7 0 0 12 2 157 45 114 90 32 13 146 18 1 0 

IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0 0 

IIN 1 0 0 125 0 197 196 68 0 17 0 194 17 0 0 

IMGN 8 0 0 2 0 134 29 192 177 28 2 147 1 0 0 

IMGN 5 0 0 0 0 101 24 270 267 36 1 115 0 0 0 

IMH 3 0 0 22 0 329 325 45 6 17 0 65 17 0 0 

IMMU 3 0 0 0 0 325 325 28 3 3 0 25 3 0 0 

ING 8 0 0 6 0 21 0 206 151 123 64 133 8 0 0 

INOD 10 2 0 106 67 117 41 36 7 15 6 116 35 4 0 

INS 2 5 0 112 27 152 127 35 0 11 0 139 21 1 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

51 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

INSG 2 79 29 99 87 22 0 13 0 0 0 83 13 1 0 

IPAS 4 109 12 87 82 12 0 5 0 0 0 114 5 0 0 

ISIG 1 0 0 62 0 177 177 60 0 16 0 120 18 0 0 

JAKK 5 5 0 80 8 70 7 53 49 5 0 87 61 1 0 

JCS 1 1 0 84 1 187 131 117 60 18 0 183 32 0 0 

JOB 1 0 0 77 0 266 266 62 0 8 0 139 8 0 0 

JPM 6 9 0 83 13 185 123 117 44 13 0 195 32 0 0 

KGC 2 93 39 111 92 7 0 1 0 1 0 80 1 1 0 

KGJI 1 0 0 0 0 279 279 28 0 8 0 28 8 0 0 

KIQ 1 0 0 44 0 276 234 70 7 17 0 141 25 0 0 

KMT 1 0 0 0 0 4 0 32 0 320 320 32 4 0 0 

KVHI 1 254 254 20 0 2 0 0 0 0 0 20 2 0 0 

LEE 1 0 0 74 0 289 289 40 0 10 0 114 10 0 0 

LFVN 1 0 0 40 0 241 241 62 0 13 0 102 13 0 0 

LPX 1 23 0 243 238 102 18 34 0 11 0 121 35 1 0 

LSCC 1 7 0 103 6 162 156 73 3 11 0 169 22 0 0 

LTBR 1 0 0 16 0 295 295 2 0 2 0 18 2 0 0 

LYTS 1 46 0 168 168 51 0 8 0 3 0 97 8 3 0 

MAGS 1 10 0 245 245 40 0 16 0 4 0 50 16 4 0 

MAMS 1 0 0 6 0 73 0 180 180 17 0 90 6 0 0 

MERC 3 15 0 252 179 122 66 14 1 10 0 148 19 0 0 

MFIN 4 27 0 188 159 139 34 22 0 12 0 164 30 1 0 

MICR 8 0 0 15 0 251 126 123 76 18 1 175 29 0 0 

MIND 5 0 0 12 0 74 7 246 218 81 25 146 17 0 0 

MNI 2 0 0 83 4 197 196 24 0 11 0 104 11 0 0 

MNTA 6 0 0 64 22 106 85 34 10 9 0 86 9 1 0 

MSTR 1 0 0 30 0 254 251 64 1 8 0 96 8 0 0 

MXC 7 0 0 104 6 283 280 14 0 6 0 107 11 3 0 

MXWL 1 0 0 20 0 76 0 228 228 64 0 140 20 0 0 

NAII 1 0 0 29 0 136 0 185 185 38 0 174 29 0 0 

NSYS 1 8 0 64 0 156 156 70 0 17 0 134 25 0 0 

NTZ 3 0 0 17 0 98 12 128 127 33 0 119 18 0 0 

NVLN 1 145 13 153 150 11 0 6 0 0 0 146 6 0 0 

NYMX 1 0 0 64 0 255 255 87 0 7 0 151 7 0 0 

NYNY 4 0 0 19 0 170 115 118 78 8 0 114 7 1 0 

OI 1 260 260 15 0 0 0 1 0 0 0 15 0 1 0 

OSUR 2 0 0 24 0 158 33 163 142 43 1 168 43 1 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

52 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

PAR 7 103 60 140 98 25 3 4 0 4 0 103 10 2 0 

PDLI 1 0 0 43 0 246 245 61 4 6 0 101 6 0 0 

PESI 1 0 0 5 0 30 0 131 131 47 0 77 5 0 0 

PICO 5 0 0 0 0 11 0 94 15 308 299 91 8 0 0 

PIR 1 0 0 19 0 241 241 11 0 5 0 30 5 0 0 

PKD 1 96 1 225 225 72 0 9 0 5 0 167 9 5 0 

PLX 1 0 0 0 0 264 264 7 0 5 0 7 5 0 0 

PPIH 3 17 0 265 205 92 29 25 0 8 0 148 18 7 0 

PRAN 2 1 0 63 4 101 101 40 0 8 0 99 9 0 0 

PRCP 4 0 0 0 0 3 0 93 10 260 258 85 3 0 0 

QCOM 1 0 0 26 0 250 116 118 97 19 0 178 22 0 0 

QUMU 2 5 0 81 5 87 85 34 2 6 0 110 11 0 0 

RADA 1 0 0 45 0 241 240 90 0 31 0 136 31 0 0 

RAND 1 0 0 107 64 86 44 13 0 7 0 92 10 3 0 

RAVE 1 6 0 177 67 168 123 52 0 10 0 198 24 1 0 

RCMT 6 223 157 164 81 17 3 9 0 0 0 153 14 5 0 

RELL 1 56 0 182 182 61 0 13 0 3 0 117 13 3 0 

RLH 1 1 0 5 0 55 0 130 130 22 0 77 5 1 0 

SCKT 1 0 0 83 0 146 146 39 0 8 0 122 8 0 0 

SCX 1 15 0 123 2 179 178 80 0 16 0 202 31 0 0 

SFE 8 0 0 5 0 82 48 230 161 39 25 98 23 1 0 

SGMA 2 0 0 20 0 268 201 106 61 19 0 139 12 0 0 

SGU 1 11 0 46 0 179 140 109 29 11 0 153 27 7 0 

SIGA 1 0 0 39 0 258 252 97 5 19 0 141 15 0 0 

SIGM 1 0 0 80 0 212 212 91 0 24 0 171 24 0 0 

SMRT 1 0 0 3 0 167 167 30 0 13 0 33 13 0 0 

SPB 1 1 0 11 0 61 0 235 235 48 0 109 11 1 0 

SRDX 3 13 0 117 109 64 13 14 0 5 0 77 14 0 0 

SRI 1 4 0 67 0 139 139 54 0 12 0 121 16 0 0 

STAR 1 5 0 33 0 199 199 22 0 17 0 55 22 0 0 

STRM 1 0 0 0 0 2 0 252 104 102 62 188 2 0 0 

SYPR 6 0 0 10 0 201 42 139 135 38 1 205 5 0 0 

TACT 1 0 0 78 0 197 145 119 37 19 0 219 12 0 0 

TCI 1 3 0 80 0 191 191 90 0 24 0 170 27 0 0 

THC 6 10 0 162 19 182 169 44 1 15 2 201 19 1 1 

TIVO 1 28 0 132 132 41 0 11 0 1 0 69 11 1 0 

TRK 1 0 0 0 0 10 0 117 0 229 229 117 10 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

53 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

TRT 8 0 0 70 7 161 71 124 64 33 7 193 41 5 0 

TTMI 1 312 312 1 0 2 0 0 0 0 0 1 2 0 0 

TWMC 1 65 0 248 248 59 0 24 0 11 0 124 24 11 0 

UAMY 1 0 0 174 174 31 0 4 0 4 0 31 4 4 0 

UCTT 4 0 0 9 0 87 25 99 88 18 10 76 11 3 0 

UIS 2 1 0 148 12 148 129 83 20 8 0 213 14 0 0 

UNM 1 0 0 14 0 25 0 217 131 100 60 138 17 10 0 

USAK 1 79 0 250 250 50 0 20 0 8 0 129 20 8 0 

USAS 1 18 0 162 162 27 0 3 0 3 0 45 3 3 0 

USAU 1 70 0 166 166 24 0 13 0 3 0 94 13 3 0 

USEG 2 0 0 114 14 190 170 90 15 19 0 194 20 0 0 

USG 2 0 0 26 0 135 12 217 210 29 0 161 24 0 0 

VGZ 1 10 0 154 154 34 0 12 0 3 0 44 12 3 0 

VICR 2 126 25 209 199 54 0 16 0 2 0 164 17 2 0 

VIRC 1 336 336 44 0 4 0 4 0 0 0 44 4 4 0 

VOXX 1 0 0 62 0 224 149 99 55 28 0 188 21 0 0 

VTNR 1 0 0 0 0 100 14 99 93 14 0 106 0 0 0 

VVUS 1 0 0 153 19 162 161 81 0 11 0 216 11 0 0 

WLK 1 197 197 15 0 1 0 0 0 0 0 15 1 0 0 

WTT 1 0 0 127 1 209 208 46 0 6 0 173 6 0 0 

WTW 9 0 0 24 5 197 189 43 9 12 1 65 7 0 0 

WYY 1 165 165 34 0 6 0 6 0 2 0 34 6 6 2 

X 1 31 0 205 192 105 10 37 0 10 0 143 35 8 0 

XEC 3 14 0 126 41 100 68 34 13 2 0 131 21 2 0 

ZIXI 3 0 0 4 0 157 65 197 172 30 0 148 3 0 0 

 

  



Master’s Thesis – B. Lee; Master University – Applied Science 

54 
 

A.2 Standard Convolutional Neural Network 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

ABB 2 0 0 21 6 26 1 225 218 43 16 57 17 0 0 

AKS 1 29 3 213 158 45 21 24 10 4 0 81 30 12 0 

BIOS 5 303 303 3 1 7 6 2 1 0 0 3 1 0 0 

CIA 8 0 0 14 10 44 15 179 150 78 65 60 12 3 0 

COT 5 0 0 39 33 264 264 5 0 7 5 11 2 0 0 

CYBE 7 2 0 77 34 160 105 57 52 19 8 102 14 0 0 

DYNT 4 0 0 105 48 207 192 61 24 15 12 97 14 1 0 

EFOI 1 0 0 8 0 348 340 30 2 2 0 44 2 0 0 

EMITF 1 30 0 189 170 99 45 35 11 3 0 112 17 1 0 

FISV 9 68 53 235 216 69 26 13 9 3 0 76 6 1 1 

GEOS 7 0 0 21 10 90 66 87 76 15 14 38 6 3 0 

GFI 2 0 0 6 3 101 41 224 211 57 27 103 3 0 0 

GILT 2 2 0 71 37 199 192 117 52 18 10 104 12 0 0 

GPIC 6 0 0 127 113 158 114 20 9 10 0 67 8 4 0 

GPX 3 0 0 0 0 12 5 77 21 267 261 67 2 0 0 

GV 10 0 0 0 0 78 23 250 243 28 21 66 3 0 0 

HDSN 7 0 0 45 15 199 174 90 47 22 16 83 19 2 0 

HLIT 4 0 0 16 1 117 100 176 153 47 27 57 17 1 0 

HMY 6 0 0 173 154 93 77 4 0 6 6 38 1 0 0 

HOV 7 3 0 130 47 181 158 74 51 19 14 120 16 1 0 

HRTX 5 47 23 202 185 52 32 10 7 4 3 64 1 0 0 

ICAD 7 35 8 278 268 65 17 20 15 9 3 81 12 3 0 

IDRA 7 3 1 341 311 50 28 15 8 4 2 48 5 9 1 

IDSA 5 0 0 4 0 281 139 111 92 11 10 153 13 0 0 

IESC 5 79 13 249 241 52 12 29 10 4 1 118 15 3 0 

IGLD 10 0 0 12 9 157 120 114 68 32 29 73 15 1 0 

IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0 0 

IIN 2 0 0 125 48 197 141 68 55 17 11 108 38 6 0 

IMGN 8 0 0 2 1 134 70 192 177 28 16 91 1 0 0 

IMGN 3 0 0 0 0 101 48 270 261 36 7 91 0 0 0 

IMH 9 0 0 22 2 329 324 45 10 17 13 54 6 4 0 

IMMU 9 0 0 0 0 325 296 28 23 3 3 33 1 0 0 

ING 3 0 0 6 2 21 4 206 197 123 77 72 4 0 0 

INOD 10 2 0 106 90 117 98 36 18 15 9 45 12 4 0 

INS 5 5 4 112 71 152 76 35 32 11 8 103 20 1 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

55 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

INSG 7 79 71 99 97 22 11 13 10 0 0 21 3 0 0 

IPAS 7 109 98 87 67 12 7 5 3 0 0 37 1 0 0 

ISIG 4 0 0 62 44 177 171 60 40 16 7 46 7 0 0 

JAKK 7 5 3 80 58 70 30 53 50 5 0 52 19 1 0 

JCS 2 1 0 84 18 187 151 117 74 18 8 130 24 2 0 

JOB 4 0 0 77 27 266 233 62 45 8 7 96 5 0 0 

JPM 5 9 0 83 40 185 121 117 97 13 8 116 20 3 2 

KGC 4 93 74 111 88 7 0 1 0 1 1 48 2 0 0 

KGJI 10 0 0 0 0 279 272 28 4 8 2 28 9 0 0 

KIQ 1 0 0 44 1 276 203 70 29 17 1 147 26 0 0 

KMT 5 0 0 0 0 4 0 32 5 320 320 27 4 0 0 

KVHI 9 254 250 20 14 2 2 0 0 0 0 6 4 0 0 

LEE 3 0 0 74 66 289 273 40 34 10 7 32 0 1 0 

LFVN 10 0 0 40 19 241 187 62 57 13 1 78 14 0 0 

LPX 8 23 0 243 216 102 64 34 33 11 6 80 6 8 0 

LSCC 5 7 0 103 30 162 105 73 62 11 6 92 60 1 0 

LTBR 4 0 0 16 5 295 294 2 0 2 1 14 1 0 0 

LYTS 5 46 26 168 114 51 44 8 6 3 3 69 7 3 4 

MAGS 9 10 4 245 238 40 26 16 8 4 2 27 8 2 0 

MAMS 6 0 0 6 1 73 49 180 151 17 14 46 12 3 0 

MERC 4 15 3 252 178 122 46 14 13 10 6 92 63 12 0 

MFIN 10 27 23 188 159 139 124 22 8 12 8 60 5 1 0 

MICR 4 0 0 15 7 251 186 123 98 18 12 97 7 0 0 

MIND 9 0 0 12 0 74 28 246 223 81 42 107 13 0 0 

MNI 10 0 0 83 68 197 190 24 19 11 6 31 1 0 0 

MNTA 4 0 0 64 39 106 103 34 22 9 4 42 3 0 0 

MSTR 4 0 0 30 4 254 241 64 47 8 0 54 10 0 0 

MXC 2 0 0 104 50 283 270 14 2 6 6 77 2 0 0 

MXWL 5 0 0 20 4 76 31 228 222 64 31 85 11 4 0 

NAII 10 0 0 29 20 136 105 185 95 38 37 102 23 6 0 

NSYS 7 8 6 64 11 156 95 70 63 17 14 85 29 12 0 

NTZ 8 0 0 17 6 98 66 128 105 33 24 54 15 6 0 

NVLN 2 145 120 153 125 11 8 6 5 0 0 51 3 3 0 

NYMX 6 0 0 64 24 255 236 87 60 7 5 78 10 0 0 

NYNY 5 0 0 19 1 170 155 118 89 8 3 56 10 1 0 

OI 9 260 251 15 10 0 0 1 1 0 0 13 1 0 0 

OSUR 5 0 0 24 14 158 116 163 132 43 26 77 19 4 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

56 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

PAR 7 103 56 140 126 25 16 4 0 4 0 72 4 2 0 

PDLI 2 0 0 43 20 246 164 61 46 6 2 106 18 0 0 

PESI 7 0 0 5 0 30 17 131 117 47 35 34 6 4 0 

PICO 6 0 0 0 0 11 0 94 35 308 301 69 8 0 0 

PIR 10 0 0 19 8 241 237 11 8 5 4 16 3 0 0 

PKD 10 96 43 225 182 72 50 9 4 5 4 103 20 1 0 

PLX 1 0 0 0 0 264 254 7 1 5 0 9 12 0 0 

PPIH 8 17 3 265 219 92 53 25 8 8 6 97 18 3 0 

PRAN 7 1 1 63 29 101 97 40 21 8 5 55 5 0 0 

PRCP 4 0 0 0 0 3 0 93 40 260 253 60 3 0 0 

QCOM 2 0 0 26 12 250 227 118 61 19 2 105 5 1 0 

QUMU 10 5 4 81 72 87 64 34 14 6 5 44 10 0 0 

RADA 9 0 0 45 27 241 225 90 64 31 30 58 3 0 0 

RAND 6 0 0 107 98 86 55 13 3 7 6 49 1 1 0 

RAVE 5 6 2 177 154 168 73 52 43 10 7 124 9 1 0 

RCMT 7 223 190 164 97 17 5 9 4 0 0 103 11 3 0 

RELL 9 56 8 182 167 61 54 13 3 3 1 57 19 6 0 

RLH 8 1 0 5 3 55 39 130 120 22 18 31 0 1 1 

SCKT 7 0 0 83 46 146 123 39 33 8 1 64 9 0 0 

SCX 9 15 0 123 60 179 99 80 71 16 12 123 42 6 0 

SFE 2 0 0 5 3 82 44 230 199 39 31 71 8 0 0 

SGMA 9 0 0 20 7 268 244 106 73 19 10 50 25 4 0 

SGU 10 11 3 46 27 179 142 109 69 11 7 84 18 5 1 

SIGA 8 0 0 39 8 258 216 97 60 19 18 86 19 6 0 

SIGM 4 0 0 80 54 212 206 91 37 24 0 84 24 2 0 

SMRT 3 0 0 3 1 167 164 30 15 13 9 21 3 0 0 

SPB 7 1 0 11 1 61 20 235 195 48 40 68 23 8 1 

SRDX 8 13 2 117 108 64 56 14 10 5 5 31 1 0 0 

SRI 10 4 0 67 16 139 127 54 35 12 3 81 14 0 0 

STAR 7 5 0 33 8 199 173 22 17 17 15 34 17 7 5 

STRM 9 0 0 0 0 2 0 252 106 102 94 154 2 0 0 

SYPR 2 0 0 10 0 201 160 139 89 38 6 130 3 0 0 

TACT 2 0 0 78 6 197 161 119 92 19 11 118 24 1 0 

TCI 1 3 0 80 27 191 178 90 22 24 0 117 43 1 0 

THC 7 10 7 162 96 182 177 44 27 15 14 88 3 1 0 

TIVO 4 28 13 132 112 41 34 11 3 1 0 50 1 0 0 

TRK 9 0 0 0 0 10 3 117 77 229 192 78 6 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

57 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

TRT 3 0 0 70 8 161 118 124 113 33 9 113 27 0 0 

TTMI 1 312 312 1 0 2 0 0 0 0 0 1 2 0 0 

TWMC 8 65 9 248 234 59 40 24 5 11 0 96 18 5 0 

UAMY 2 0 0 174 167 31 19 4 3 4 0 20 0 4 0 

UCTT 10 0 0 9 4 87 54 99 96 18 11 42 3 3 0 

UIS 7 1 1 148 108 148 135 83 69 8 5 63 7 0 0 

UNM 1 0 0 14 3 25 0 217 157 100 62 112 16 6 0 

USAK 1 79 3 250 249 50 3 20 0 8 0 125 19 8 0 

USAS 10 18 16 162 158 27 17 3 1 3 1 16 2 2 0 

USAU 10 70 57 166 143 24 20 13 5 3 2 44 2 3 0 

USEG 8 0 0 114 58 190 158 90 79 19 13 88 17 0 0 

USG 9 0 0 26 3 135 103 217 194 29 22 83 2 0 0 

VGZ 6 10 7 154 139 34 11 12 7 3 2 31 15 1 0 

VICR 7 126 95 209 198 54 40 16 12 2 2 57 3 0 0 

VIRC 1 336 336 44 3 4 1 4 0 0 0 42 5 1 0 

VOXX 10 0 0 62 42 224 198 99 83 28 23 61 3 3 0 

VTNR 5 0 0 0 0 100 75 99 92 14 7 38 1 0 0 

VVUS 6 0 0 153 71 162 144 81 33 11 7 141 10 1 0 

WLK 5 197 193 15 12 1 1 0 0 0 0 7 0 0 0 

WTT 2 0 0 127 24 209 183 46 32 6 3 107 36 3 0 

WTW 8 0 0 24 18 197 183 43 34 12 7 34 0 0 0 

WYY 2 165 157 34 19 6 3 6 4 2 0 27 2 1 0 

X 2 31 8 205 180 105 37 37 31 10 2 100 16 14 0 

XEC 8 14 5 126 74 100 93 34 21 2 1 73 4 5 0 

ZIXI 6 0 0 4 0 157 105 197 179 30 7 87 10 0 0 

 

  



Master’s Thesis – B. Lee; Master University – Applied Science 

58 
 

A.3 Standard Convolutional Neural Network with Data Scaling 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

ABB 10 0 0 21 9 26 12 225 223 43 25 36 10 0 0 

AKS 9 29 24 213 164 45 41 24 22 4 4 57 1 2 0 

BIOS 5 303 303 3 2 7 6 2 2 0 0 1 1 0 0 

CIA 9 0 0 14 12 44 30 179 172 78 61 37 2 1 0 

COT 9 0 0 39 36 264 263 5 2 7 7 7 0 0 0 

CYBE 7 2 2 77 65 160 141 57 52 19 18 33 4 0 0 

DYNT 2 0 0 105 44 207 204 61 32 15 11 90 5 2 0 

EFOI 1 0 0 8 5 348 341 30 18 2 1 23 0 0 0 

EMITF 8 30 23 189 136 99 86 35 25 3 0 84 2 0 0 

FISV 9 68 59 235 222 69 39 13 10 3 0 58 0 0 0 

GEOS 7 0 0 21 18 90 86 87 86 15 15 7 0 1 0 

GFI 6 0 0 6 5 101 73 224 199 57 46 64 1 0 0 

GILT 10 2 2 71 48 199 191 117 94 18 10 55 7 0 0 

GPIC 5 0 0 127 107 158 144 20 7 10 9 47 1 0 0 

GPX 7 0 0 0 0 12 9 77 57 267 262 27 1 0 0 

GV 5 0 0 0 0 78 37 250 239 28 22 55 3 0 0 

HDSN 9 0 0 45 16 199 183 90 65 22 17 63 11 1 0 

HLIT 6 0 0 16 1 117 96 176 171 47 33 46 9 0 0 

HMY 3 0 0 173 168 93 72 4 3 6 6 26 1 0 0 

HOV 10 3 2 130 104 181 168 74 63 19 18 51 1 0 0 

HRTX 8 47 30 202 185 52 37 10 7 4 2 51 2 1 0 

ICAD 6 35 11 278 240 65 38 20 19 9 1 69 28 1 0 

IDRA 6 3 1 341 321 50 43 15 9 4 4 34 0 1 0 

IDSA 2 0 0 4 1 281 169 111 107 11 9 119 2 0 0 

IESC 6 79 27 249 244 52 16 29 16 4 3 100 7 0 0 

IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0 0 

IGLD 6 0 0 12 9 157 128 114 88 32 29 55 6 0 0 

IIN 4 0 0 125 76 197 185 68 60 17 17 65 4 0 0 

IMGN 4 0 0 0 0 101 74 270 253 36 27 49 4 0 0 

IMGN 8 0 0 2 2 134 108 192 181 28 21 41 3 0 0 

IMH 1 0 0 22 13 329 326 45 31 17 17 21 2 3 0 

IMMU 5 0 0 0 0 325 324 28 22 3 3 7 0 0 0 

ING 10 0 0 6 6 21 5 206 200 123 77 68 0 0 0 

INOD 9 2 0 106 97 117 99 36 30 15 10 34 5 1 0 

INS 10 5 5 112 79 152 123 35 31 11 9 59 9 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

59 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

INSG 7 79 71 99 98 22 14 13 9 0 0 19 2 0 0 

IPAS 2 109 100 87 69 12 10 5 4 0 0 30 0 0 0 

ISIG 10 0 0 62 40 177 158 60 56 16 11 37 13 0 0 

JAKK 8 5 3 80 74 70 39 53 45 5 4 41 7 0 0 

JCS 7 1 1 84 66 187 119 117 112 18 16 71 14 8 0 

JOB 3 0 0 77 50 266 234 62 56 8 7 64 2 0 0 

JPM 5 9 2 83 51 185 153 117 101 13 11 77 11 1 0 

KGC 4 93 87 111 96 7 6 1 0 1 1 23 0 0 0 

KGJI 3 0 0 0 0 279 270 28 21 8 7 14 3 0 0 

KIQ 1 0 0 44 5 276 158 70 64 17 12 139 29 0 0 

KMT 5 0 0 0 0 4 0 32 12 320 320 22 2 0 0 

KVHI 4 254 253 20 19 2 2 0 0 0 0 2 0 0 0 

LEE 7 0 0 74 71 289 261 40 29 10 10 41 1 0 0 

LFVN 1 0 0 40 24 241 161 62 53 13 1 105 11 1 0 

LPX 8 23 2 243 228 102 81 34 29 11 9 57 3 4 0 

LSCC 10 7 7 103 75 162 129 73 62 11 10 61 12 0 0 

LTBR 1 0 0 16 14 295 295 2 1 2 2 3 0 0 0 

LYTS 8 46 40 168 147 51 48 8 4 3 3 34 0 0 0 

MAGS 4 10 8 245 234 40 33 16 13 4 4 20 3 0 0 

MAMS 5 0 0 6 2 73 50 180 163 17 16 27 14 4 0 

MERC 2 15 15 252 236 122 82 14 11 10 9 54 5 1 0 

MFIN 10 27 22 188 166 139 124 22 18 12 10 48 0 0 0 

MICR 2 0 0 15 14 251 202 123 101 18 18 68 4 0 0 

MIND 9 0 0 12 4 74 34 246 233 81 69 64 9 0 0 

MNI 9 0 0 83 78 197 189 24 18 11 9 21 0 0 0 

MNTA 7 0 0 64 44 106 100 34 21 9 7 39 2 0 0 

MSTR 6 0 0 30 25 254 246 64 56 8 4 23 2 0 0 

MXC 9 0 0 104 48 283 276 14 7 6 6 67 2 1 0 

MXWL 6 0 0 20 3 76 39 228 214 64 58 58 10 6 0 

NAII 7 0 0 29 26 136 98 185 161 38 32 63 6 2 0 

NSYS 7 8 8 64 24 156 107 70 65 17 14 72 19 6 0 

NTZ 8 0 0 17 6 98 75 128 121 33 30 30 9 5 0 

NVLN 8 145 102 153 140 11 11 6 4 0 0 53 5 0 0 

NYMX 10 0 0 64 31 255 248 87 64 7 7 58 5 0 0 

NYNY 7 0 0 19 6 170 161 118 108 8 1 35 4 0 0 

OI 10 260 257 15 14 0 0 1 1 0 0 4 0 0 0 

OSUR 6 0 0 24 19 158 121 163 150 43 32 59 6 1 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

60 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

PAR 3 103 96 140 120 25 20 4 1 4 2 36 0 1 0 

PDLI 7 0 0 43 33 246 203 61 58 6 4 51 7 0 0 

PESI 5 0 0 5 5 30 27 131 128 47 37 16 0 0 0 

PICO 3 0 0 0 0 11 1 94 48 308 306 51 7 0 0 

PIR 10 0 0 19 16 241 238 11 10 5 5 7 0 0 0 

PKD 9 96 58 225 193 72 61 9 4 5 5 72 14 0 0 

PLX 4 0 0 0 0 264 262 7 7 5 5 2 0 0 0 

PPIH 8 17 9 265 212 92 81 25 12 8 8 74 7 4 0 

PRAN 3 1 1 63 39 101 93 40 29 8 6 43 2 0 0 

PRCP 4 0 0 0 0 3 0 93 40 260 258 55 3 0 0 

QCOM 7 0 0 26 18 250 230 118 105 19 12 48 0 0 0 

QUMU 10 5 4 81 75 87 82 34 27 6 5 18 2 0 0 

RADA 5 0 0 45 20 241 220 90 80 31 29 49 9 0 0 

RAND 3 0 0 107 100 86 53 13 9 7 7 42 2 0 0 

RAVE 9 6 6 177 160 168 129 52 33 10 9 73 3 0 0 

RCMT 2 223 195 164 130 17 8 9 3 0 0 68 8 1 0 

RELL 5 56 20 182 168 61 58 13 8 3 3 34 21 3 0 

RLH 2 1 1 5 3 55 41 130 121 22 18 28 1 0 0 

SCKT 10 0 0 83 58 146 137 39 33 8 7 41 0 0 0 

SCX 10 15 7 123 68 179 135 80 79 16 15 75 28 6 0 

SFE 4 0 0 5 0 82 74 230 204 39 31 41 6 0 0 

SGMA 10 0 0 20 6 268 241 106 79 19 17 51 17 2 0 

SGU 5 11 11 46 39 179 154 109 94 11 9 49 0 0 0 

SIGA 10 0 0 39 27 258 210 97 84 19 19 66 4 3 0 

SIGM 9 0 0 80 52 212 196 91 76 24 1 77 4 1 0 

SMRT 6 0 0 3 3 167 165 30 24 13 13 8 0 0 0 

SPB 7 1 0 11 2 61 41 235 217 48 43 37 9 6 1 

SRDX 4 13 11 117 114 64 47 14 13 5 5 23 0 0 0 

SRI 10 4 1 67 55 139 130 54 39 12 5 41 5 0 0 

STAR 4 5 5 33 20 199 184 22 14 17 17 21 12 3 0 

STRM 5 0 0 0 0 2 0 252 197 102 96 61 2 0 0 

SYPR 10 0 0 10 4 201 137 139 133 38 24 87 3 0 0 

TACT 1 0 0 78 27 197 153 119 98 19 16 93 22 4 0 

TCI 8 3 3 80 54 191 165 90 80 24 22 51 13 0 0 

THC 9 10 8 162 144 182 170 44 29 15 14 44 2 2 0 

TIVO 4 28 23 132 125 41 33 11 10 1 0 21 1 0 0 

TRK 10 0 0 0 0 10 5 117 101 229 212 37 1 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

61 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

TRT 8 0 0 70 15 161 118 124 120 33 23 75 34 3 0 

TTMI 5 312 312 1 1 2 0 0 0 0 0 0 2 0 0 

TWMC 6 65 43 248 236 59 51 24 18 11 4 51 4 0 0 

UAMY 1 0 0 174 169 31 17 4 2 4 0 21 0 4 0 

UCTT 7 0 0 9 6 87 59 99 98 18 12 35 3 0 0 

UIS 7 1 1 148 133 148 140 83 76 8 8 24 6 0 0 

UNM 5 0 0 14 10 25 11 217 156 100 99 69 7 4 0 

USAK 7 79 45 250 217 50 38 20 16 8 8 82 1 0 0 

USAS 6 18 18 162 160 27 18 3 3 3 2 12 0 0 0 

USAU 3 70 64 166 156 24 18 13 10 3 1 27 0 0 0 

USEG 3 0 0 114 97 190 169 90 70 19 16 60 1 0 0 

USG 2 0 0 26 1 135 111 217 185 29 22 83 5 0 0 

VGZ 10 10 8 154 153 34 22 12 11 3 2 16 1 0 0 

VICR 10 126 112 209 192 54 27 16 8 2 1 58 8 1 0 

VIRC 7 336 328 44 29 4 4 4 1 0 0 25 1 0 0 

VOXX 9 0 0 62 24 224 220 99 75 28 22 63 9 0 0 

VTNR 10 0 0 0 0 100 79 99 93 14 12 29 0 0 0 

VVUS 10 0 0 153 79 162 155 81 56 11 9 96 7 5 0 

WLK 3 197 195 15 12 1 1 0 0 0 0 5 0 0 0 

WTT 5 0 0 127 71 209 185 46 44 6 4 64 20 0 0 

WTW 9 0 0 24 21 197 192 43 39 12 9 15 0 0 0 

WYY 9 165 163 34 28 6 6 6 4 2 2 10 0 0 0 

X 10 31 17 205 194 105 71 37 35 10 9 59 3 0 0 

XEC 8 14 12 126 115 100 75 34 31 2 2 38 3 0 0 

ZIXI 10 0 0 4 0 157 108 197 183 30 12 77 8 0 0 

 

  



Master’s Thesis – B. Lee; Master University – Applied Science 

62 
 

A.4 Partitioned Convolutional Neural Network 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

ABB 10 0 0 21 20 26 11 225 216 43 16 50 2 0 0 

AKS 3 29 1 213 197 45 12 24 11 4 1 63 20 10 0 

BIOS 7 303 301 3 2 7 3 2 1 0 0 7 0 1 0 

CIA 10 0 0 14 10 44 22 179 135 78 73 57 17 1 0 

COT 8 0 0 39 36 264 255 5 0 7 6 16 2 0 0 

CYBE 9 2 2 77 42 160 126 57 46 19 13 68 16 2 0 

DYNT 9 0 0 105 75 207 192 61 41 15 14 57 6 3 0 

EFOI 10 0 0 8 5 348 344 30 22 2 2 15 0 0 0 

EMITF 10 30 29 189 160 99 63 35 29 3 1 66 8 0 0 

FISV 8 68 14 235 233 69 20 13 7 3 0 108 5 0 1 

GEOS 9 0 0 21 13 90 57 87 80 15 11 49 2 1 0 

GFI 9 0 0 6 4 101 60 224 192 57 52 70 9 1 0 

GILT 7 2 1 71 42 199 159 117 96 18 13 91 5 0 0 

GPIC 10 0 0 127 109 158 92 20 17 10 3 85 8 1 0 

GPX 10 0 0 0 0 12 8 77 43 267 257 44 4 0 0 

GV 9 0 0 0 0 78 44 250 216 28 25 64 7 0 0 

HDSN 10 0 0 45 29 199 168 90 70 22 21 43 22 3 0 

HLIT 10 0 0 16 15 117 95 176 168 47 37 38 2 1 0 

HMY 10 0 0 173 165 93 70 4 3 6 6 32 0 0 0 

HOV 7 3 3 130 83 181 158 74 61 19 12 83 7 0 0 

HRTX 9 47 18 202 190 52 27 10 6 4 4 67 3 0 0 

ICAD 10 35 10 278 246 65 27 20 18 9 2 73 28 3 0 

IDRA 7 3 0 341 331 50 30 15 10 4 0 41 1 0 0 

IDSA 10 0 0 4 3 281 266 111 82 11 11 44 1 0 0 

IESC 8 79 58 249 236 52 22 29 10 4 2 71 12 2 0 

IGLD 9 0 0 12 9 157 119 114 99 32 22 66 0 0 0 

IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0 0 

IIN 9 0 0 125 107 197 169 68 57 17 11 62 1 0 0 

IMGN 10 0 0 2 2 134 106 192 164 28 25 56 3 0 0 

IMGN 8 0 0 0 0 101 64 270 261 36 23 59 0 0 0 

IMH 3 0 0 22 11 329 322 45 13 17 13 44 7 3 0 

IMMU 9 0 0 0 0 325 314 28 20 3 3 17 2 0 0 

ING 9 0 0 6 6 21 5 206 197 123 86 59 3 0 0 

INOD 10 2 0 106 91 117 93 36 21 15 8 50 11 2 0 

INS 9 5 5 112 59 152 108 35 28 11 7 88 19 1 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

63 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

INSG 8 79 70 99 93 22 4 13 7 0 0 30 8 1 0 

IPAS 9 109 92 87 65 12 6 5 2 0 0 47 0 1 0 

ISIG 7 0 0 62 53 177 163 60 37 16 15 38 9 0 0 

JAKK 10 5 3 80 59 70 25 53 52 5 0 53 20 1 0 

JCS 10 1 1 84 69 187 134 117 92 18 15 90 3 3 0 

JOB 9 0 0 77 49 266 246 62 25 8 8 80 5 0 0 

JPM 8 9 4 83 65 185 145 117 97 13 9 82 5 0 0 

KGC 10 93 77 111 100 7 3 1 0 1 1 31 1 0 0 

KGJI 9 0 0 0 0 279 274 28 18 8 4 17 2 0 0 

KIQ 8 0 0 44 10 276 184 70 61 17 12 99 38 3 0 

KMT 8 0 0 0 0 4 0 32 18 320 318 20 0 0 0 

KVHI 6 254 245 20 13 2 2 0 0 0 0 15 1 0 0 

LEE 6 0 0 74 60 289 279 40 32 10 8 33 1 0 0 

LFVN 10 0 0 40 37 241 220 62 40 13 8 39 11 1 0 

LPX 6 23 3 243 235 102 26 34 33 11 6 99 7 4 0 

LSCC 9 7 0 103 60 162 135 73 61 11 8 78 12 2 0 

LTBR 7 0 0 16 13 295 292 2 2 2 2 6 0 0 0 

LYTS 9 46 19 168 146 51 31 8 3 3 3 61 11 0 2 

MAGS 10 10 5 245 237 40 18 16 7 4 4 37 6 1 0 

MAMS 8 0 0 6 1 73 29 180 160 17 12 58 14 2 0 

MERC 8 15 15 252 233 122 83 14 11 10 8 60 3 0 0 

MFIN 10 27 23 188 164 139 125 22 13 12 9 51 3 0 0 

MICR 5 0 0 15 5 251 187 123 85 18 14 103 13 0 0 

MIND 9 0 0 12 6 74 48 246 235 81 62 57 5 0 0 

MNI 10 0 0 83 73 197 181 24 16 11 9 35 1 0 0 

MNTA 10 0 0 64 49 106 98 34 24 9 8 33 1 0 0 

MSTR 10 0 0 30 27 254 231 64 49 8 6 40 3 0 0 

MXC 10 0 0 104 49 283 280 14 10 6 5 60 0 3 0 

MXWL 8 0 0 20 7 76 44 228 212 64 43 61 21 0 0 

NAII 8 0 0 29 23 136 108 185 113 38 37 84 20 3 0 

NSYS 8 8 8 64 29 156 121 70 61 17 12 76 8 0 0 

NTZ 9 0 0 17 6 98 61 128 101 33 30 54 17 7 0 

NVLN 2 145 122 153 120 11 7 6 1 0 0 56 5 4 0 

NYMX 10 0 0 64 47 255 234 87 65 7 7 54 6 0 0 

NYNY 9 0 0 19 11 170 143 118 103 8 7 50 1 0 0 

OI 1 260 252 15 0 0 0 1 0 0 0 23 0 1 0 

OSUR 9 0 0 24 20 158 115 163 125 43 32 85 11 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

64 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

PAR 10 103 78 140 113 25 20 4 1 4 0 57 7 0 0 

PDLI 5 0 0 43 22 246 211 61 46 6 3 61 12 1 0 

PESI 9 0 0 5 0 30 22 131 121 47 37 24 5 4 0 

PICO 7 0 0 0 0 11 4 94 79 308 300 30 0 0 0 

PIR 9 0 0 19 15 241 233 11 6 5 4 17 1 0 0 

PKD 4 96 47 225 189 72 45 9 1 5 2 109 11 3 0 

PLX 1 0 0 0 0 264 252 7 1 5 2 9 12 0 0 

PPIH 9 17 9 265 248 92 71 25 7 8 7 56 9 0 0 

PRAN 6 1 1 63 29 101 91 40 30 8 8 46 8 0 0 

PRCP 10 0 0 0 0 3 2 93 61 260 257 36 0 0 0 

QCOM 7 0 0 26 13 250 230 118 97 19 17 54 1 1 0 

QUMU 10 5 4 81 74 87 76 34 22 6 5 29 2 1 0 

RADA 10 0 0 45 43 241 230 90 73 31 29 31 1 0 0 

RAND 10 0 0 107 84 86 75 13 11 7 6 36 1 0 0 

RAVE 9 6 4 177 162 168 120 52 47 10 5 69 5 1 0 

RCMT 10 223 183 164 156 17 7 9 1 0 0 60 6 0 0 

RELL 10 56 37 182 164 61 49 13 9 3 3 37 9 6 1 

RLH 10 1 0 5 3 55 36 130 120 22 18 34 0 1 1 

SCKT 8 0 0 83 63 146 119 39 29 8 4 52 8 1 0 

SCX 8 15 14 123 80 179 137 80 67 16 13 88 14 0 0 

SFE 8 0 0 5 0 82 66 230 208 39 35 38 6 3 0 

SGMA 9 0 0 20 18 268 246 106 78 19 15 46 8 2 0 

SGU 10 11 3 46 32 179 155 109 91 11 9 57 5 3 1 

SIGA 8 0 0 39 22 258 239 97 67 19 19 60 5 1 0 

SIGM 9 0 0 80 62 212 195 91 73 24 14 55 7 1 0 

SMRT 5 0 0 3 0 167 165 30 17 13 10 16 4 1 0 

SPB 8 1 0 11 4 61 33 235 216 48 31 59 12 1 0 

SRDX 7 13 13 117 104 64 48 14 12 5 4 29 3 0 0 

SRI 10 4 2 67 50 139 111 54 45 12 6 49 9 4 0 

STAR 6 5 5 33 19 199 189 22 17 17 16 24 3 2 1 

STRM 9 0 0 0 0 2 0 252 212 102 83 59 2 0 0 

SYPR 7 0 0 10 4 201 184 139 107 38 34 56 3 0 0 

TACT 10 0 0 78 46 197 178 119 94 19 15 70 9 1 0 

TCI 8 3 3 80 58 191 158 90 74 24 17 74 4 0 0 

THC 8 10 8 162 138 182 160 44 25 15 13 63 6 0 0 

TIVO 10 28 24 132 125 41 27 11 11 1 0 25 0 1 0 

TRK 9 0 0 0 0 10 10 117 93 229 212 41 0 0 0 



Master’s Thesis – B. Lee; Master University – Applied Science 

65 
 

Code 
# of 
Epochs 
to Best 

Significant 
Drop 

Moderate 
Drop 

Stable 
Moderate 
Increase 

Significant 
Increase 

Incorrect –  
Magnitude of Error 

Total Corr. Total Corr. Total Corr. Total Corr. Total Corr. 1 2 3 4 

TRT 10 0 0 70 64 161 141 124 99 33 27 53 4 0 0 

TTMI 4 312 311 1 0 2 2 0 0 0 0 2 0 0 0 

TWMC 8 65 53 248 218 59 50 24 19 11 6 55 6 0 0 

UAMY 3 0 0 174 166 31 16 4 0 4 0 24 3 4 0 

UCTT 9 0 0 9 3 87 58 99 86 18 11 49 3 3 0 

UIS 9 1 0 148 112 148 136 83 67 8 7 62 4 0 0 

UNM 8 0 0 14 9 25 16 217 184 100 91 53 3 0 0 

USAK 8 79 58 250 233 50 32 20 17 8 6 57 4 0 0 

USAS 8 18 18 162 142 27 19 3 2 3 1 27 2 1 1 

USAU 9 70 63 166 141 24 15 13 5 3 2 45 5 0 0 

USEG 10 0 0 114 97 190 149 90 84 19 12 62 9 0 0 

USG 9 0 0 26 22 135 94 217 205 29 25 56 5 0 0 

VGZ 10 10 7 154 146 34 23 12 8 3 2 20 6 1 0 

VICR 7 126 111 209 174 54 45 16 12 2 2 60 3 0 0 

VIRC 10 336 330 44 24 4 4 4 3 0 0 26 1 0 0 

VOXX 9 0 0 62 46 224 207 99 81 28 22 51 4 2 0 

VTNR 7 0 0 0 0 100 83 99 83 14 7 37 3 0 0 

VVUS 10 0 0 153 101 162 146 81 63 11 11 74 12 0 0 

WLK 10 197 195 15 6 1 1 0 0 0 0 11 0 0 0 

WTT 6 0 0 127 68 209 182 46 28 6 4 102 2 2 0 

WTW 10 0 0 24 22 197 182 43 38 12 10 24 0 0 0 

WYY 9 165 159 34 25 6 3 6 2 2 2 21 1 0 0 

X 9 31 24 205 174 105 73 37 24 10 10 71 12 0 0 

XEC 10 14 14 126 105 100 88 34 25 2 2 41 1 0 0 

ZIXI 9 0 0 4 3 157 118 197 168 30 25 72 2 0 0 

 

 

 

 


