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Lay Abstract

A convolutional neural network is a machine learning tool that allows complex
patterns in datasets to be identified and modelled. For datasets with input that
consists of the same type of data, a convolutional neural network is often
architected to identify global patterns. This research explores the viability of
partitioning input data into groups and processing them with separate
convolutional layers so unique patterns associated with individual subgroups of
input data can be identified. The author of this research built suitable test
datasets and developed a (parallel computation enabled) framework that can
construct both standard and proposed convolutional neural networks. The test
results show that the proposed structure is capable of performance that matches
its standard counterpart. Further analysis indicates that there are potential
methods to further improve the performance of partitioned convolution, making it

a viable replacement or supplement to standard convolution.



Abstract

For input data of homogenous type, the standard form of convolutional neural
network is normally constructed with universally applied filters to identify global
patterns. However, for certain datasets, there are identifiable trends and patterns
within subgroups of input data. This research proposes a convolutional neural
network that deliberately partitions input data into groups to be processed with
unique sets of convolutional layers, thus identifying the underlying features of
individual data groups. Training and testing data are built from historical prices of
stock market and preprocessed so that the generated datasets are suitable for
both standard and the proposed convolutional neural network. The author of this
research also developed a software framework that can construct neural
networks to perform necessary testing. The calculation logic was implemented
using parallel programming and executed on a Nvidia graphic processing unit,
thus allowing tests to be executed without expensive hardware. Tests were
executed for 134 sets of datasets to benchmark the performance between
standard and the proposed convolutional neural network. Test results show that
the partitioned convolution method is capable of performance that rivals its
standard counterpart. Further analysis indicates that more sophisticated method
of building datasets, larger sets of training data, or more training epochs can
further improve the performance of the partitioned neural network. For suitable
datasets, the proposed method could be a viable replacement or supplement to

the standard convolutional neural network structure.
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1 Introduction

In the field of machine learning, Convolutional Neural Network (CNN) is a
fundamental concept that enables deep learning. It is a feed-forward neural
network with many parameters in hidden layers that typically alternate between a
convolutional layer and a subsampling (pooling) layer (Nielsen, 2015). It has a
wide range of applications and is practically the standard for machine learning
operations in several industries (Serkan Kiranyaz, 2019). Naturally, there are
ample efforts to improve its performance and broaden its applications.

There are several variations on how convolutional layers in neural network
can be setup. These variations generally depend on the nature of the data in the
modelled datasets, especially the input data. This research is based on the notion
that there could be more than one suitable neural network structure. For a set of
datasets that can be modelled by standard CNN, the author of this document
proposes that it may also be modelled by deliberately partitioning the convolution
process in the neural network. This research explores the viability of this
approach. It is theorized that for some datasets, the proposed method of
convolution would match and, in some cases, surpass the performance of
standard CNN.

This document discusses in depth the underlying concepts of the
proposed approach and its potential applications. The author designed and
implemented a software framework to build necessary neural networks for testing

and benchmarking. Datasets suitable for both standard and proposed
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convolutional networks were constructed and properly preprocessed. This
document includes both methodology and result of the tests performed for this

research as well as the subsequent analysis.

2 Theory and Concept

2.1  Convolutional Layer in Neural Network

Figure 1 shows a typical 2D convolutional layer in a neural network used
for image classification (Yakura, March 2018). Output is the dot product between
the filter values and the corresponding local values in the input map. In practice,
multiple filters are often used to generate multiple channels (Nielsen, 2015). A
convolutional layer has several advantages over a simple dense layer, shown in
Figure 2 (Isaksson, 2020). Convolutional layers are inherently more resistant to
overfitting, which means less chance of an exploding or vanishing gradient during
backpropagation. More importantly, it can identify features formed by input data
points while the dense layer is unable to account for the “location” of values in the

input map (Nielsen, 2015).

Filter

Figure 1: Convolutional Layer
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Figure 2: Dense Layer
2.2  Convolutional Strategy

Convolutional layers need to be appropriately setup according to the
characteristics of the modelled data, especially input. For example, for a
convolutional layer with images as its input as shown in Figure 1, there are no
structural limitations to the shape of the filter since all input data are completely
homogeneous with each value representing a pixel. The convolutional filter is
likely a square matrix so features in the images can be adequately captured.

The convolutional layer setup would be different if the input data is
comprised of heterogenous groups of data with no correlations to each other.
Figure 3 represents such an example. The input data is comprised of readings
over time from different types of sensors, which includes electrical current,
electrical voltage, water pressure, and radiation level. In this case, each vector of

sensor readings would need to be processed in separate 1D convolutional layers.

lp I iy i3 iy s

Vo V1 7V U3 Vy Vg

Po P1 D2 DP3 Ps DPs

T 11 Ty, T3 I, TIg

Figure 3: Heterogenous Groups of Data
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Figure 4 shows a particularly interesting example of input data for a
convolutional layer. There are multiple data series of the same type. There are no
inter-row patterns to be identified since any two rows can switch and the overall
represented data would remain the same. Therefore, the filter for convolution
must be a vector (size 1 X n). Because all rows represent data of the same type,
the same filter can be used for convolutional process of every row. In this case,

global patterns and trends would be “learned” by the neural network.

lpo lp1 lp2 Ip3 lpa lpgs

Figure 4: Independent Data Groups of the Same Type

However, the approach proposed by this research is to separate this input
data by row and process them with independent 1D convolutional layers in
parallel. At the cost of increasing trainable parameters and not learning global
patterns, this setup would allow patterns that are associated with individual
groups of input data to be identified by the neural network. The research
presented in this document focuses on datasets where they can be modelled by
both standard convolutional layer with a universal filter or partitioned

convolutional layers with individualized filters.

2.3 Prior Work

Processing a row (or vector) of data with 1D convolutional layer is not a

new concept. An in-depth research survey shows that the application of 1D CNN

4
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has seen successes in recent years (Serkan Kiranyaz, 2019). Examples of its
applications include detection of adverse condition such as real-time motor fault
and structural damage (Osama Abdeljaber, 2017) (Turker Ince, 2016). There has
also been research on its application with sound event detection (Hyungui Lim,
2017). A 1D CNN model sometimes includes a layer to fold 2D input into 1D data,
which is often done when the model is used for natural language processing
(Kim, 2014).

Research related to CNN generally focuses on building a neural network
structure that is best suited for specific datasets. There has not been much work
on deliberately partitioning input data for separate convolutional processes,
especially when the input data can be adequately modelled by traditional CNN.
The convolutional structure proposed in this research also runs contrary to the
general practice of minimizing trainable parameters. But some existing work is
relevant to the idea of partitioning convolutional processes in a neural network.
For example, one publication discussed the use of a neural network structure
where results from several parallel-running CNNs are merged for downstream
processing (Siavash Sakhavi, 2015). This suggests that for suitable datasets,
merging the results of partitioned convolution processes, a critical characteristic

of the method proposed in this research, is theoretically viable.

2.4  Proposed Model

Figure 5 and Figure 6 show the difference between a standard

convolutional layer and the partitioned convolutional layer. Instead of using a

5
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universal filter (vector of weights), a unique filter is used for each data row. It is
also possible to create multiple channels of convolution by having multiple filters
for one data row. Other aspects such as pooling layer, activation function and use
of biases parameters do not change with the proposed partitioned convolutional

layers. Figure 7 shows an example of a pooling layer.

Input Filter Output
Too | Tox | Toz2 | fo3 | loa Oo,0 | 00,1 | Oo2
Lo | Lia | hyz | s |11a O10 | 011 | 01
Lo |21 | 122 | 123 | I24 ‘ Wo ’ Wi ‘ L) ‘ 020 | 02,1 | 022
Iso | I31 | 132 | 133 | I34 O30 | 031 | O3
Ino | Ia1 | 1a2 | 143 | I4a 04,0 | O41 | Oa

Figure 5: Standard Convolutional Layer

Input Filter Output
oo | Toq | Toz2 | Tos | Toa | Wo,0 | Wo,1 ‘ Wo,2 ‘ Oo,0 | 001 | Oop2
Lo | Iip | hz | 3| s ‘ Wi0 ‘ Wi1 ‘ Wi,2 ‘ O10 | 011 | 012
Ly | Ly | L2 | 23| 24 ’ W20 ’ W21 ‘ W2 ‘ 020 | 021 | 022
Lo |31 | 32 | 33 | [34 | W30 | W31 ‘ W32 ‘ O30 | 031 | O3
Lo | Ig1 | a2 | la3 | L4a ‘ Wa0 ‘ Wa1 ‘ Wa 2 ‘ Osp0 | Os1 | O42

Figure 6: Partitioned Convolutional Layer

Input Output
IOO 101 102 103 10,4 10,5 000 001 002
110 111 112 113 11,4 11,5 010 011 012
120 121 122 123 12,4- 125 020 021 022
130 131 132 133 13,4 135 030 031 032
14-0 14-1 14-2 14-3 14-,4- 14-5 040 041 042

Figure 7: Partitioned Max Pooling
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Figure 8 provides a comparison in structure between a standard CNN and

the proposed structure. The proposed neural network separates input data into

multiple data vectors. Each data group would be processed by a series of

convolutional layers and pooling layers independently. The outputs would then be

merged and processed by dense (fully-connected) layers to produce the final

output. This structure is referred to as Partitioned Convolutional Neural Network

(PCNN) in this document.

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector

Input Data Vector T
<
Input Data Vector O
S o
Convolution and = R=
Input Data Vector Max-Pooling > ,8, » 5
[¢] —
Input Data Vector =
5
Input Data Vector =
H 1D Convolution and Max-Pooling ’—}
g
H 1D Convolution and Max-Pooling ’—} ;
ul E)
H 1D Convolution and Max-Pooling ’—} 2 §
3 &
H 1D Convolution and Max-Pooling ’—} 5
2
H 1D Convolution and Max-Pooling ’—}

3

3.1

Figure 8: Structure of CNN (above) and PCNN (below)

Implementation

Existing Framework

ndino

Several frameworks, with complete documentation and API (Application

Programming Interface), are freely available to implement machine learning

models. The following frameworks were investigated:

7
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e TensorFlow (Google Brain Team, 2020)

e Keras (Massachusetts Institute of Technology, 2020)

e PyTorch (Torch Contributors, 2020)

The frameworks listed above are all capable of constructing commonly
used structures of neural networks. While modeling the partitioned convolutional
layers would not be as straightforward, all investigated frameworks support
modeling parallel convolutional layers. However, the unique structures of the
proposed neural network may prevent the framework from optimizing for the best
performance.

In addition, there are advantages in having control and transparency on
the details of the implementation, especially when this research is focused on the
low-level logic of neural network. Thus, the author of this research decided to
develop a specific API to construct neural networks and to run any necessary

tests.

3.2 Calculation

Information on calculation related to neural network is readily available
(Nielsen, 2015). PCNN proposed in this document shares many identical
operations and processes with standard CNN. Upon input data partitioning at the
beginning of the neural network, each partitioned group is then processed by
unigue series of layers of the same configuration. The scope of this research

focuses on partitioned 2D input data into 1D vector groups.
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Figure 9 illustrates input, filter, and output of a convolutional layer to
process a data vector. In this example, there are three channels (or depth) for
input data and two channels for output data. This corresponds to 3 x 2 = 6 filter

vectors.

Input Filter Pre-Activated

Output
loo | Toa | oz | Tos | loa | [ Y000 | Wo01 | Wo,0,2
Wo,10 | Wo,1,1 | Wo,1,2 ‘ Oo,0 ‘ Ooa ‘ 0o, ‘
Wo,20 | Wo,2,1 | Wo,2,2

Wi00 | Wi0,1 | Wi0,2

Wiio0 | Wi11 | Wi12 ‘ 01,0 ‘ 01,1 ’ 01,2 ‘
12,0 12,1 12,2 12,3 12,4- W1,2,0 W1,2,1 W1,2,2

Figure 9: Forward Calculation for a Single Data Row

The calculation for output 0, (as highlighted in Figure 9) is:

LioXwigtlig Xwyq+1,Xwy,+
Lo Xwyo+ Iy Xwyg+ 15 Xwy,

Derived Output

Input Error Signal Filter Error Signal

OE a_E a_E a_E 6_E Wo,0,0 | Wo,01 | Wo,0,2
61 0,0 61 0,1 01 0,2 61 0,3 61 0,4

0E 0E 0E
Wo10 | Wo,1,1 | Wo,1,2 904, | 90441 | 304,

Wo2,0 | Wo,2,1 | Wo2,2

0E oE oE 0E 0E

ol 1,0 El,l ELZ 51,3 51,4

Wi10,0 | Wi01 | Wi02

oF OF OF
9E 9E 9E 9E 9E Wi10 | W111 | W11,2 %1,0 %1.1 %1,2
0l 20 | 01,4 | 01,5 | 01,5 | 01,4 | LW120 | W1,21 | Wi22

Figure 10: Backpropagation for a Single Data Row

For backpropagation, as shown in Figure 10, the calculation for Z—fm is:
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O0E +aE +_6E +aE
— XW — XWw — Xw — XWw
9000 0,0,1 9001 0,0,0 9010 1,0,1 9014 1,0,0

The calculation for gradient of wy ,  is:

oE 0E 0E oE o0E oE
— X— — X— — X—
aI 0’0 601‘0 61 0’1 601'1 a[ 0'2 601'2

3.3 Features

There are several factors to consider when implementing the API. A neural
network can model output data of both regression and classification. To keep the
implementation simple, the API focuses on modelling classification datasets. A
regression dataset can be converted into a classification dataset (Brownlee,
2017). This means the error function for backpropagation would be Cross
Entropy (Nielsen, 2015). The Adam optimization algorithm is selected for its fast
convergence and built-in regulation features (Brownlee, 2017). Training is done
with mini-batch gradient descent to obtain balance between convergent speed,
computation efficiency and learning noise minimization (Brownlee, 2017).

Some features were considered but not included. Dropout can create a
“voting” mechanism within the network while providing regulation during training
(Nielsen, 2015). Batch normalization greatly reduces the possibility of vanishing
or exploding gradient while preventing overfitting (Brownlee, 2019). However,
both features would add more trainable parameters to the network and place
higher requirements on the number of training datasets. Therefore, these two
features were not implemented for the API. The research thus relied on

preprocessing of input data to achieve similar benefits.

10



Master’s Thesis — B. Lee; Master University — Applied Science

Both standard CNN and proposed PCNN are to be built with the
developed API. This enables benchmarking between two methods of

convolutions with the same test datasets.

3.4  Parallel Programming

Machine learning and especially CNN is computationally heavy. Time to
execute tests would be significant if the implementation handles all calculations
with a Central Processing Unit (CPU). Instead of looking for expensive hardware,
parallel programming is utilized to take advantage of the parallelable nature of the
calculations.

A laptop, Lenovo Legion Y520, was available for the research. The
relevant hardware specifications are listed in Table 1. Parallel programming with
a Graphics Processing Unit (GPU) is enabled by Compute Unified Device
Architecture (CUDA) framework. Documents for CUDA are readily available from

Nvidia (NVIDIA Corporation, 2017).

Component Specification

Processor 7" Generation Intel® Core™ i7-7700HQ Processor
(2.80GHz, up to 3.80GHz with Turbo Boost, 6MB Cache)

Operating System Windows 10 Home

Graphics NVIDIA® GeForce® GTX 1050Ti 4 GB

Memory 16 GB DDR4 2400 MHz

Table 1: Relevant Specifications of Lenovo Legion Y520

3.4.1 Optimization for Hardware
CUDA Occupancy Calculator is available from NVIDIA to help with the

architecture design of the implementation (NVIDIA Corporation, 2017). Though

11




Master’s Thesis — B. Lee; Master University — Applied Science

the computation load for neural network is heavy, the calculation logic itself is
simple and does not use a high number of registers. Thus, the thread block sizes
of 256, 512 or 1,024 are all acceptable according to the analysis tool. A thread
block size of 512 is chosen for the implementation.

Another design decision is into how many threads should a calculation
task be partitioned. It has been suggested that there should be at least 14,000
threads running concurrently for Tesla K20X, which has 2,688 CUDA cores
(Woolley, 2013) (NVIDIA Corporation, 2013). GTX 1050Ti GPU has 768 CUDA
cores (NVIDIA Corporation, 2019). It is determined that the implementation would
attempt to achieve at least 8,192 total threads. It is important to note that
separating calculation into too many threads could hurt the performance of
certain operations, as shown in later sections of this document.
3.4.2 Calculation

Table 2 shows the required calculations for both forward computation and
backpropagation in a convolutional neural network. Some operations are simple
to parallelize, such as:

e Output error signal calculation

e Parameter updates with gradients

However, most calculations involve a reduction (by addition) operation. A
simple approach is to have one thread handling all calculations for an element in
the output vector or matrix. This approach has the advantage of simplicity in its

implementation. If the output vector or matrix is large, the calculation would be

12
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naturally partitioned into enough number of threads to achieve good parallel
computation performance. However, some operations would not meet this
criterion, such as the weight gradient calculation for a convolutional layer or
calculations related to dense layers. A more dynamic method to setup threads is

needed to better utilize the parallel computation potential of the GPU.

Operation Calculation Required
Forward Convolutional Layer - Matrix multiplications
Calculation - Reduction (by addition)
- Apply bias and activation
Pooling Layer - Reduction
Dense (Fully Connected) Layer - Matrix multiplications

- Reduction (by addition)
- Apply bias and activation

Backpropagation | Output Error Signal Calculation - N-to-N vector mapping

Dense (Fully Connected) Layer - Derive error signals
- Matrix multiplications
- Reduction (by addition)

Pooling Layer - Un-reduction

Convolutional Layer - Derive error signals
- Matrix multiplications
- Reduction (by addition)

Weight Gradient Calculation - Matrix multiplications

- Reduction (by addition)
Parameter Updates with - Matrix addition
Gradient

Table 2: Calculation Required in PCNN

3.4.3 Partition reduction operation
To reach the desired total thread count of 8,192, the process to calculate a

single output value often need to be partitioned into multiple threads. The

13
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implementation is heavily inspired by a guide on optimizing parallel reduction in
CUDA (Harris, 2007). The overall principles for the implementation include:
e Avoid writing to or reading from GPU memory except for data that
needs to persist outside of the operation
e Use shared memory for inter-thread communication required by
reduction operation to minimize latency (Harris, 2013)
e Perform part of reduction operation at thread-level since a register is
faster than shared memory
Figure 11 shows the thread-level logic flow when a reduction operation is
separated into 4 threads. Assuming the logic requires preliminary calculation to
obtain the 23 inputs for the reduction operation and post-reduction calculation to
obtain the final output:
e Each thread would perform pre-reduction calculation for 6 (or 5) of the
inputs of the reduction operation
e Each thread would perform thread-level reduction of the 6 (or 5) inputs
it has calculated
e The threads are synchronized for further reduction operation where
shared memory is used to store temporary variable
e For 4 threads, log, 4 = 2 synchronized calculations complete the
reduction operation
e The first (index 0) thread applies any post-reduction calculation on the

output before storing it to GPU memory

14
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It is worth noting that calculations should only be partitioned so the overall

thread count could reach the desired 8,192. As seen in Figure 11, there is

significant thread idleness after pre-reduction calculation. Shared memory also

has higher latency than registers. Therefore, unnecessarily partitioning

calculation into many threads would decrease performance.

Thread #0 Thread #1 Thread #2 Thread #3
Calculate then Calculate then Calculate then Calculate then
[0 . reduce (obtain total) | reduce (obtain total) | reduce (obtain total)
S o reduce (obtain total) - . .
o c elements of index elements of index elements of index elements of index
= 8n + 1, stored to 8n + 2, stored to 8n + 3, stored to
R 8n, stored to shared h h h
s o memory index 0 s ared memory s ared memory s ared memory
=9 index 1 index 2 index 3
Fa
Shared memory Shared memory
?3 - el[0] += el[2] el[1] += el[3]
o O
£3
53 Shared memory
8 el[0] +=el[1]
[
° Apply needed
S o | calculation to result
S c
S at shared memory
x4 el[0] then store to
‘g 8 output vector
aa

Figure 11: CUDA Reduction With 8 Threads

3.4.4 Performance

The performance of the GPU-based parallel-programming implementation
was benchmarked against a CPU-based implementation. The neural network
structure described in Section 6.1 was built with the developed GPU-based API.
A set of the datasets described in Section 5 was used as a sample. The
execution time of one training epoch (with approximately 6,000 training sets) for

the sample datasets was 0.04590681 second. A simple program was written to
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simulate the same amount of floating-point calculation performed by a CPU,
which resulted in an execution time of 5.7944 second. The simulation does not
consider the higher memory latency when using a CPU. Therefore, even
conservatively, the CUDA implementation has a performance advantage by a

factor of 126 over a single-CPU implementation.

3.5 Implementation of Neural Network API

Nvidia-provided APIs for CUDA are all module based instead of being
class based. The APl was developed to implement CUDA-based calculations
specific to neural network calculation through C++ classes, thus enabling object-
oriented design at top level (Network class) of the API. The API allows users to
build a neural network with standard convolutional layer, proposed partitioned
convolutional layer, pooling layer and dense (fully-connected) layer. Figure 12
shows the dependency graph between various components that builds the
Network class at the top level. The entirety of source code of the API is available
at https://github.com/BillLee-SDE/Parallel/tree/master/network API.
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Calculation (module)

Cuda (module) Global (enumerations)

Figure 12: Internal Structure of API

3.5.1 Global (Enumeration)

This is a collection of enumerations used across the API. These
enumerations are also visible to the user of the API. The code snippet below is

one of the enumeration definitions.

enum ActivationFunction

{

TanH = 0,
Sigmoid = 1,
ReLu = 2,

LeakyReLu = 3

35

3.5.2 Cuda (module)

This module is implemented with CUDA file types (cuda.cu and cuda.cuh).
The module includes functions that allocate, free, and reset GPU memory. The

code snippet below is the function to allocate memory.
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template <typename T>

T* CUDA_Array_Allocate(int size)

{
size_t free_t, total_t;
cudaMemGetInfo(&free_t, &total_t);

T* result;
cudakError cudaStatus = cudaMalloc((void**)&result, size * sizeof(T));
if (cudaStatus != cudaSuccess)
{
int i = 0;
i++;
}

return result;

}

There are also several utility functions to copy data between GPU memory
and regular memory, initialize GPU memory or obtain debugging information.
This module also defines a class that regulates the parameters of CUDA kernel
call, so a suitable number of threads is used to maximize GPU computing

utilization, as described in Section 3.2. Below is the declaration of the class.

class CudaParameter
{
public:
int CountBlock;
int ThreadPerResult;
CudaParameter(int countResult, int countCalculationPer);
s

3.5.3 Calculation (module)

This module is implemented with CUDA file types (calculation.cu and
calculation.cuh) and include all the CUDA logic related to calculations for neural
network. This includes functions that handle both forward and backpropagation of
dense layer, partitioned convolutional layer, standard convolutional layer, and
pooling layer. Most of the complexity in the API is implemented in this module.
The code snippet below is the function that handles inter-threaded reduction

shown in Figure 11. It is executed and invoked at GPU level.
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__device__ void cuda_Reduce(
double* buffer, double input, int threadID, int count, double* result)
{
int id = threadID % count;
if (count <= 1)
{
*result = input;
return;
}
buffer[id] = input;
if (count > 128)
{
__syncthreads();
if (id >= 128 && id < 256) { buffer[id - 128] += buffer[id]; }
}
if (count > 64)
{
__syncthreads();
if (id >= 64 && id < 128) { buffer[id - 64] += buffer[id]; }
}
if (count > 32)
{
__syncthreads();
if (id >= 32 && id < 64) { buffer[id - 32] += buffer[id]; }
}
if (count > 16)
{
__syncthreads();
if (id >= 16 && id < 32) { buffer[id - 16] += buffer[id]; }
}
if (count > 8)
{
__syncthreads();
if (id >= 8 && id < 16) { buffer[id - 8] += buffer[id]; }
}
if (count > 4)
{
__syncthreads();
if (id >= 4 && id < 8) { buffer[id - 4] += buffer[id]; }
}
if (count > 2)
{
__syncthreads();
if (id >= 2 && id < 4) { buffer[id - 2] += buffer[id]; }
}
if (count > 1)
{
__syncthreads();
if (id >= 1 && id < 2) { buffer[id - 1] += buffer[id]; }
}
__syncthreads();
if (id == @) { *result = buffer[0]; }
}

Below is the kernel function that handles forward calculate of a fully
connected layer. The function is invoked at CPU level and executed at GPU

level.
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__global__ void cuda_Calculation_FullyConnected_Forward(
int sizeBatch, int sizelInput, int sizeOutput, int* dropoutSelect,
double* input, double* weight, double scaleRatio, double* bias,
Global::ActivationFunction af, double* activated, int threadPerResult)
{
extern __shared__ double buffer[];
int index = blockDim.x * blockIdx.x + threadIdx.x;
int indexOutputBatch = 0;
int indexCalculation = 0;
if (!cuda_Reduce_Setup(index, sizeBatch * sizeOutput, threadPerResult,
&indexOutputBatch, &indexCalculation))
{
cuda_Reduce_Dummy(threadPerResult);
return;
}
int indexBatch = indexOutputBatch / sizeOutput;
int indexOutput = indexOutputBatch % sizeOutput;
double result = 0.0;
for (int i = indexCalculation; i < sizeInput; i += threadPerResult)
{
if (dropoutSelect == nullptr ? true : dropoutSelect[i])
{
result += input[indexBatch * sizeInput + i] *
weight[indexOutput * sizeInput + i];
}
}
cuda_Reduce(buffer, result, threadIdx.x, threadPerResult, &result);
if (indexCalculation == 9)
{
if (bias == nullptr)
{
activated[indexBatch * sizeOutput + indexOutput] =
cuda_activation(result * scaleRatio, af);
}
else
{
activated[indexBatch * sizeOutput + indexOutput] =
cuda_activation(result * scaleRatio +
bias[indexOutput], af);
}
}
X

The code snippet below shows how the above function is invoked.

cuda_Calculation_FullyConnected_Forward
<<<parameter.CountBlock, CUDA_CALCULATION_BLOCK_THREAD_SIZE,
CUDA_CALCULATION_BLOCK_THREAD_SIZE * sizeof(double)>>>
(sizeBatch, sizeInput, sizeOutput, dropoutSelectInput, input, weight[@], scale, bias[@],
af, activated, parameter.ThreadPerResult);

3.5.4 Layer (class)
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Layer is an abstract class that defines the overall behavior of a layer in the

neural network. The following child classes are defined from the abstract class:

Input (represents the first layer that contains the input data)
CalculationC_1D (partitioned convolutional layer)
Pooling_1D (partitioned pooling layer)

CalculationC_2D (standard convolutional layer)
Pooling_2D (standard pooling layer)

CalculationFC (fully connected layer)

The implementation of each class is based on the expected behavior of

the corresponding layer. Member functions Forward() and Backward() of each

class call the corresponding functions defined in Calculation module.

3.5.5 Network (class)

This is the top-level class that integrates all classes and modules together.

The public functions of this class are visible as the API features, including:

Network (constructor function that build the neural network layers
based on parameters)

AddTrainingSet (add a pair of input and output as training data)
Error (provide pairs of input and output to calculate error of the
network)

Calculate (provide a list of input data for outputs calculated by the

network)
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4 Preliminary Test

Before running large-scaled experiments with real data, it is beneficial to
test with an established set of datasets specifically tailored for machine learning.
This serves as a sanity check to ensure the network is implemented correctly.

The MNIST database of handwritten digits was used for this test (Yann
LeCun, 2020). A dataset contains 28 x 28 images of handwritten digits and
corresponding correct categorizations. There are 50,000 training datasets and

10,000 testing datasets.

4.1 Setup

With the implemented API (described in Section 3.5), neural networks of
different types can be created. The input data entries are easily standardized to
values between 0 and 1 (division by 255). The initialization of weight and bias are

done with the following formulas (Nielsen, 2015):

normal_distribution_randomization(0, 1)
\/Size of input

bias =0

weight =

the numerator for individual weight initialization is the result of normal
distribution randomization which is centered at O with standard deviation of 1. The
denominator is the square root of the size of input vector or matrix. All biases are
simply set to O at the beginning.

Three separate neural networks were built to benchmark the performance

of dense-only, CNN and PCNN with the datasets.
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Dense-Only Neural Network

Layer Parameters Output Size

- -- 28 X 28 =784
Dense 784 x 512 = 401,408 512

Dense 512 x 10 = 5,120 10
Convolutional Neural Network

Layer Parameters Output Size

-- - 28 X 28 =784

Convolutional Layer

20 channels of 5 x 5 filters
5 X 5 x 20 = 500 parameters

24 x 24 x 20 = 11,520

Max Pooling Layer

Pooling by 2 x 2
No parameters

12 x 12 x 20 = 2,880

Convolutional Layer

40 channels of 5 x 5 filters
5 x5 x40 = 1,000 parameters

8 x 8 x40 =2,560

Max Pooling Layer

Pooling by 2 x 2
No parameters

4 X 4 x40 = 640

Dense 640 x 512 = 327,680 512

Dense 512 x 10 = 5,120 10
Partitioned Convolutional Neural Network

Layer Parameters Output Size

-- -- 28 X 28 = 784

Partitioned Convolutional Layer

20 channels of 5 filters with size
of 1 x 28
5 x 28 x 20 = 2,800 parameters

24 x 28 x 20 = 13,440

Max Pooling Layer

Pooling by 2 x 1
No parameters

12 x 28 x 20 = 6,720

Partitioned Convolutional Layer

40 channels of 5 filters with size
of 1 x 28
5 % 28 X 40 = 5,600 parameters

8% 28 x40 = 8,960

Max Pooling Layer

Pooling by 2 x 1
No parameters

4 x 28 x 40 = 4,480

Dense 4,480 x 512 = 2,293,760 512
Dense 512 x 10 = 5,120 10
4.2 Result

All three networks were trained with 50,000 training datasets, mini-batch

size of 64 and 20 epochs. Activation function is Rectified Linear Unit (ReLU) for
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all layers except the final dense layer where Sigmoid is used. The trained
networks were then used to categorize 10,000 test sets, which were compared

against expected outputs.

Network Type | Only Dense CNN PCNN
Run #1 9824 9880 9785
Run #2 9824 9880 9778
Run #3 9837 9906 9814
Run #4 9831 9908 9791
Run #5 9813 9904 9762
Average 9826 9896 9786

Table 3: Preliminary Test Result of 10,000 Datasets

Table 3 shows the result of the preliminary test. The follow observations
and analysis are made:

e Standard CNN yielded the best performance in accuracy, averaging

9896 out of 10000. It is also the only network capable of exceeding
99% accuracy in a test run. This demonstrates the advantage of
identifying features formed by input data points.

e PCNN had the lowest accuracy. Multiple reasons likely contributed to

this result.

Figure 13 illustrates the difference of filter usage between CNN and
PCNN. For 2D image categorization, all input data points are homogenous.
Therefore, 2D filter should be used with standard CNN to identify local features in
particular areas of the image. On the other hand, deliberately partitioning the
input image into rows and using vector filters make little sense since the network

would be unable to recognize any features formed by pixels from different rows.
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Therefore, the partitioned convolutional layers add no real value except creating
more noise. Furthermore, adding two partitioned convolutional layers introduces
additional 1,900,752 parameters, thus making the network harder to train. This is

clearly a scenario where PCNN is not suitable.

Figure 13: CNN (left) vs PCNN (right) for image recognition

Three sample networks in the preliminary test produced results that are
expected. This indicates the APl implementation described in Section 3.5 was

working as intended and ready for testing with real data.

5 Test Data

There are a few criteria for test data selection. The most important one is
that the input of the dataset must be suitable for both standard CNN and
proposed PCNN. The number of datasets must also be large enough to facilitate

training.

5.1  Existing sources

There are numerous datasets available for the purpose of machine
learning testing and benchmarking. However, most of these data libraries are
specifically prepared to test standard machine learning network models and may
not be suitable for the proposed PCNN.
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5.2 Data Selection

Stock movement analysis is a common application of machine learning. It

is also suitable in this research for the following reasons:

e Data is readily available.

e The size of data is large enough as a lot of stocks have price history
that go back more than 10 years.

e Prices of different stocks in the same market share an underlying
correlation, which enables them to be modelled by standard CNN. But
they also have no spatial relationship with each other when
represented as rows in a matrix. For example, Figure 14 and Figure 15

are the same. This means that they are suitable for PCNN modelling.

Poo Po1 Poz Po3 Pos DPos P10 P11 P12 P13 Pisa DPis
Pio P11 P12 P13 Pi1a Pis Poo Poa1 Po2 Po3 Pos Pos
Figure 14: Input #1 for PCNN Figure 15: Input #2 for PCNN

It was assumed that, on a given date (the pivot date), price movement of
multiple stocks in the past 120 days can be used to model the movement of a
single stock in the next 30 days. For this research, 40 stocks (including the

forecasted stock) are used to create input data.

5.3  Data Acquisition

As mentioned in the previous section, there are several online sources to
obtain stock price history. The North America stock market was selected as the

source. As the first step, a database was built through the following steps:
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e The stock list was obtained from www.eoddata.com for (EODData,
LLC., 2019):
o New York Stock Exchange
o American Stock Exchange
o NASDAQ Stock Exchange
o Toronto Stock Exchange
e With use of a scripting language, historical prices for each stock from
the lists obtained in the previous step are downloaded from Yahoo or
Alpha Vintage (Yahoo!, 2019) (Alpha Vantage Inc., 2019). The

downloaded data is stored in a SQL database.

5.4  Dataset Construction and Pre-processing

5.4.1 Predictor Stock Selection

One needs to consider how to select 39 stocks in addition to the
forecasted stock to build the input matrix. There must be enough historical data of
every selected stock to build enough datasets. It was decided that the historical
data of a stock must be up to date and go back more than 3,653 days. Another
consideration is that if the prices of two stocks are highly correlated, they will be
supplying redundant information as input. Therefore, the selection process is as
follow:

1. Start with the stock to be forecasted.

2. Randomly pick another stock.
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3. If the newly picked stock does not have enough data, discard, and
go to Step 2.

4. If the newly picked stock has a correlation coefficient that is greater
than 0.7 with any stocks that are already selected, discard and go
to Step 2.

5. Keep the selected stock and return to Step 2 until 40 stocks have
been selected.

To speed up the individual query, a SQL table was created to store pre-
calculated correlation coefficients of all possible stock pairs. The logic of selecting
39 suitable predictor stocks (based on the steps described above) is
implemented in a SQL store procedure.

5.4.2 Representing Price Movement

It is simple to build a dataset input with raw stock price. But there are
several problems with this approach. The price of a stock can be a few cents or
thousands of dollars. This would make it difficult to initialize training parameters,
specifically the weights. If initial weights are too low, the training speed of the
network would take too long to ramp up. On the other hand, if weights are too
high at initialization, exploding and vanishing gradients would occur, creating
large number of “dead” nodes and effectively crippling the network.

The solution is simple. Instead building datasets with raw stock price, the
daily change in price, represented by a percentage, is used. Therefore, each data

point is calculated from the formula below:
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pricecurrent day

- -1
prlceprevious day

Figure 16 shows the format of the output when the SQL stored procedure
mentioned in the previous section is called. In the first data column, ¢, ,,

represents the daily price change of the forecasted stock, which also acts as a

predictor.
datey cop €10 €390
date; ¢co1 €11t C391
date, c¢cop €12 C392
ldaten Con Cin -~ C39,nJ

. . price kym,d
cmn Fepresents a daily price change calculated from ———=m4aten 1
’ DPTiCestockm,daten—1

Figure 16: Data structure of one dataset

5.4.3 Building Datasets

Figure 17 provides a visual representation on how a dataset is built from
the data represented by Figure 16. The input matrix is obtained by taking a
40 x 120 block from the data matrix, represented by the blue section in Figure 17.
The output is constructed by reducing the 1 x 30 vector from the first column
(represented by the yellow section in Figure 17) immediately after the input

matrix. The formula to reduce the 1 x 30 vector is:

Output = (Z(c + 1)) -1
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Date Stock Daily Change

Figure 17: Building a dataset from SQL output matrix

Intuitively, the date corresponding to the last row of the input matrix can be

considered the “pivot date”. The input matrix represents the daily price change of
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40 stocks (1 forecasted stock and 39 predictor stocks) during the 120-days period
up to the pivot date. The output is a percentage representing the overall
movement of the forecasted stock 30 days after the pivot day. A unique dataset is
generated for each pivot day. If there are 7,000 days (rows) in the data matrix
shown in Figure 16, then 7,000 — 120 — 30 + 1 = 6,851 datasets will be
generated.

As mentioned in Section 3.3, classification is preferred over regression to
enable the use of ReLU activation function and max pooling. Therefore, output is
further transformed from a percentage to a vector by applying the logic defined in
Table 4. Standard deviation (o) is calculated from the percentage-based output of

all generated datasets.

Range of Stock Change Stock Movement | Output Vector

Less than -2.0c Significant Drop [1.0,0,0,0, 0]

Greater than or equal to -2¢
Less than -0.5¢

Greater than or equal to -
0.5¢ Stable [0,0,1.0,0,0]
Less than 0.5¢

Greater than or equal to 0.5¢
Less than 2.0c

Moderate Drop [0,1.0,0,0,0]

Moderate Increase | [0, 0, 0, 1.0, 0]

Significant

[0, 0, 0,0, 1.0]
Increase

Greater than or equal to 2.0c

Table 4: Transforming Regression-based output to Classification

5.4.4 Training vs Testing Datasets

After datasets are generated for a forecasted stock, 95% of datasets are
used for training a neural network while the remaining 5% act as testing data. If
the actual performance of stock forecasting is to be measured, then datasets with
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the latest pivot dates would be used for testing, as visually illustrated in Figure
18. However, this approach is not suitable for this research.

First aspect to consider is the underlying assumption that past price
movement of 40 stocks can be used to forecast future movement of one stock.
The stock selection process described in Section 5.4.1 is not sophisticated
enough to provide confidence of such an assumption in realistic scenarios. The
assumption is further challenged by the common notion in finance industry “past

results are no indication of future” (Kennion, 2020).

o180 fowid

Figure 18: Select latest 5% of datasets for testing

o160 1ovi9

Figure 19: Randomly select 5% of datasets for testing

It is also important to recognize that the purpose of this research is to
benchmark how well different neural networks model the constructed datasets
instead of measuring the feasibility of forecasting stock market. Therefore, the
method of selecting testing datasets shown in Figure 18 is not used.

Figure 19 illustrates the methodology of randomly selecting 5% of datasets
for testing. With this approach, for each testing dataset, there are likely training
datasets with pivot dates that are “close neighbors” to the pivot date of the testing
dataset. This ensures that there are likely training datasets similar but not
identical to testing datasets. Therefore, the resulting training-testing dataset

combination is suitable to benchmark how well a neural network can model the
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datasets without relying on the underlying assumption about stock market (stated
in Section 5.2) being true.

134 different stocks are selected to be forecast. Their stock codes are
listed in Appendix A. On average, over 6700 datasets are generated for each
stock. There are 45,193 testing datasets in total, approximately 337 for each
selected stock.

5.4.5 Implementation

The process of calling SQL store procedure, generating datasets, and
selecting testing datasets are implemented in Visual Studio C#. For each
forecasted stock, the resulting training and testing datasets are generated with
the C# application, then passed to a C++ application via shared memory. The
C++ application builds different neural networks using the framework described in

Section 3.5 to train and test with the provided datasets.

6 Test

6.1 Setup

Like the preliminary test, three neural networks with different structures are

constructed to benchmark the performance with the same set of datasets.
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Dense-Only Neural Network

Layer Parameters Output Size

- - 120 x 40 = 4,800
Dense 4800 x 256 = 1,228,800 256

Dense 256 x5 =1,280 5

CNN Neural Network

Layer Parameters Output Size

120 x 40 = 4,800

Convolutional Layer

10 channels of 19 x 1 filters
19 x 1 X 10 = 190 parameters

102 x 40 x 10 = 40,800

Max Pooling Layer

Pooling by 3 x 1
No parameters

34 x40 x 10 = 13,600

Convolutional Layer

10 channels of 20 x 1 filters
20 X1 x 10 = 1,000 parameters

15 x40 x 10 = 6,000

Max Pooling Layer

Pooling by 3 x 1
No parameters

5x40x 10 = 2,000

Dense 2,000 x 256 = 512,000 256

Dense 256 x 5 =1,280 5

PCNN Neural Network

Layer Parameters Output Size

120 x 40 = 4,800

Partitioned Convolutional Layer

10 channels of 40 filters with size of
19x1
19 X 40 x 10 = 7,600 parameters

102 x 40 x 10 = 40,800

Max Pooling Layer

Pooling by 3 x 1
No parameters

34 x40 x 10 = 13,600

Partitioned Convolutional Layer

10 channels of 40 filters with size of
20x1
20 X 40 x 10 = 8,000 parameters

15 x40 x 10 = 6,000

Max Pooling Layer

Pooling by 3 x 1
No parameters

5x40x10=2,000

Dense

2,000 x 256 = 512,000

256

Dense

256 x5 =1,280

5

Figure 20 illustrates the structure of input data of a dataset. All data entries

are of the same type (daily stock price change). But since each vector row

represents different stock, the data cannot be processed with cross-row filter.

Therefore, vector filter must be used.
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lstocko,o lstocko,l lstocko,z lstock0,3 lstock0,119
lstockl,o lstock1,1 lstockl,z lstock1,3 lstock1,119
lstockso,0 Ustocksg,l Ustockse,2 Ustockse,3 " Ustockse,119

Figure 20: Structure of input data for CNN and PCNN

For CNN and PCNN, the output after each layer would have the same
size, which is illustrated in Figure 21. However, all vector rows are processed by
the same filter (for each channel) in CNN. For PCNN, each vector row is
processed by unique filter. Therefore, PCNN has 7,600 trainable parameters for
the first convolutional layer, 40 times of its CNN counterpart. Pooling layers have

the same logic for both CNN and PCNN.

Ostocko,o Ostocko,l OstockO,Z Ostocko,S Ostocko,lol
Ostock,,0  Ostocky, 1 Ostocky,2  Ostock,,3 " Ostock,,101
Ostockse,0 Ostockse, 1 Ostocksq,2  Ostockse,3 " Ostockse,101

Figure 21: Output of first convolutional layer for CNN and PCNN

The key difference between CNN and PCNN is the use of common vs.
unique filter for each vector row. While CNN process the input matrix through a
series of layers, PCNN partitions input matrix into separate vectors and process
each in isolated series of convolutional and pooling layers until they are merged
for final dense layers. Intuitively, CNN would be trained to learn the market-wise
trends and patterns between the input data (representing the price changes of 40
stocks over 120 days) and the output (representing the 30-day price change of
the forecasted stock). PCNN would be trained to identify the trends and patterns
between each stock represented in the input data and the forecasted stock

individually.
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The weights and biases for all networks are initialized with the same
method as described in Section 4.1. Every network is trained for 10 epochs, with
mini-batch size of 64 and RelLU activation function (except final layer which uses
Sigmoid). Test datasets are processed after each epoch to measure how well the

network has been trained.

6.2 Initial Test Result

For every network, after each training epoch, the performance was
measured with the test datasets. The best performance of the network and the
number of training epochs to reach it were recorded. If performance drop with
further training, the training would be terminated early before 10 epochs are
completed. There are 134 sets of datasets, 45,193 testing datasets (averaging
337 per selected stock). The detailed results are recorded in Appendix A. Table 5

shows the summary of performance of each neural network structure.

Network Type Only Dense CNN PCNN
Number of trainable parameters in network 1,230,080 513,670 528,880
Average number epochs to peak performance 231 5.81 8.31
Number of correct test data outputs

(of 45,193 datasets) 27606 34253 37454
Accuracy 61.08% 75.79% 82.88%

Table 5: Forecast Accuracy by Network of Initial Test Run

Based on the result of the initial test run, the performance of PCNN
seemed very promising, ranking top in accuracy. It is also observed that a dense-
only neural network is not able to adequately model the data. However, before
declaring PCNN as the superior neural network structure, it is important to ensure

that the comparison was fair.
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6.3  Additional Pre-processing

As explained in Section 5.4, datasets must be preprocessed to make the
input data suitable for neural network modelling. One of the preprocesses is to
convert raw stock price into percentages that represent daily change of stock
prices. This is done so the parameter initialization for neural network is easier
and the different average price between stocks does not cause issues.

However, even the volatility of the stock daily change, when expressed in
percentage, still presents an issue when modelling with standard CNN. Two
stocks can have correlation coefficient close to 1.0 but with drastic different
volatility in price changes. Interestingly, this is not an issue for PCNN because
every stock was processed with individual sets of layers and associated
parameters. But for standard CNN, the same parameters are used to process
data of all rows. This means input rows with larger volatility will “overshadow” the
other rows as trainable parameters are updated to compensate for their higher
standard deviation. Thus, for the initial test run, only a few rows from the input
matrix contribute to the CNN model. This means PCNN had an “unfair”
advantage because input data needs another preprocessing step to be suitable

for standard CNN.

o Standard
Original Data Deviation Scaled Data

—0.934
0.708

0.708
0.556

x 0.2 =-0.264 -0.198 -0.074 0.173 0.156

—0.934 -0.702 -0.262 0.611 0.553
-0.563 0.712 0.351 0.244 —0.492]

—0.359 -—0.058 0.395 —0.097 -0.204 0.282 —0.203 0.256 0.126 0.088 —0.177
—0.051 0.065 0.086 —0.010 0.070 0.059 —0255 —0.041 0.280 —0.069 -0.144
—0.007 -0.009 0.006 —0.009 -0.010 0.007 -0.171 0.219 0.289 —0.035 0.236

—0.214 -0.262 0.185 —0.256 —0.297

Figure 22: Scaling Data
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The different volatility of movement between stocks can be mitigated by

scaling (dividing) all daily price changes of a stock with its standard deviation.

The result is then scaled down by a factor of 5.0 to keep the resulting values

between 0 and 1. This process is demonstrated in Figure 22, which brings the

standard deviation of every row to 0.2.

After scaling, the volatility of all stocks is brought to the same level, as

illustrated in Figure 23. With input data further refined, test was executed again

for standard CNN. It was not necessary to repeat the test for dense-only network

and PCNN as the lack of scaling does not impact these two network structures.

Pre-scaling

Post-scaling

Figure 23: Impact of scaling to the volatility difference

6.4 Final Test Result

Table 6 shows the overall result with second round of testing for CNN.

Standard CNN surpassed PCNN in performance and achieved the best accuracy.

The detailed data of the test result is included in Appendix A.

Network Type Only Dense CNN PCNN
Number of trainable parameters in network 1,230,080 513,670 528,880
Average number epochs to peak performance 231 6.37 8.31
Number of correct test data outputs

(of 45,193 sets) 27,606 38,273 37,454
Accuracy 61.08% 84.69% 82.88%

Table 6: Forecast Accuracy by Network of Final Test Run
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7 Discussion

With scaled input data, standard CNN has the best performance of all
three networks. PCNN is a close second with 2.14% less accuracy. The dense-

only network fell behind by a large margin.

7.1  Dense-only Network

Detailed data in Appendix A shows that the dense-only network merely
“votes for majority”. The neural network gravitates toward the most frequent
appearing output in the training data and trains itself to always output that. The
trained network would output the same result regardless of the input. This
indicates an inability to identify complex patterns. This is also evidenced by how

the network performance stop improving after only 2-3 training epochs.

7.2 Standard CNN vs PCNN

Both standard CNN and PCNN produced correct outputs for over 80% of
test data. While the overall performance of CNN and PCNN were close, several
observations can be made based on the detailed result data.

As described in Section 6.1, standard CNN uses underlying market-level
trend to make the forecast while PCNN identifies the trends of 40 stocks
individually. The outcome indicates that both methods make sense intuitively and
lead to decent results. This is significant as it demonstrates a scenario where the
proposed approach of partitioning input data with PCNN can produce

performance that rivals standard CNN. Even though CNN outperformed PCNN by
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a small margin, the result from PCNN indicates that this approach should not be
overlooked for suitable datasets.

While the overall test data accuracies of CNN and PCNN are close, the
difference in performance for some sets of datasets is quite large. This is likely
related to underlying financial principles and nature of the stocks represented by
the datasets. For PCNN, if one or several stocks represented by the input matrix
have underlying correlation with the forecasted stock, its performance would
likely be good. However, if such stocks are not included in the input data or
simply do not exist, CNN would likely get better result with market-level trend.
The method used to build input data (described in Section 5.4) is quite primitive.
It can be assumed that PCNN would likely get a better overall result if a more
sophisticated method (ideally based on financial principles) is used to select
stocks for input data building. This also highlights that PCNN achieved its
performance by identifying patterns different to those learned by CNN.

It is worth noting that there are also several potential factors that could
have improved the performance of PCNN. CNN has a lower number of trainable
parameters than PCNN. Although the difference of total number of trainable
parameters between CNN and PCNN seems small (513,670 to 528,880, which is
only different by 2.96%), the additions of parameters were all in the convolutional
layers, raising the number of parameters in the first layer from 190 to 7,600 and
second layer from 200 to 8,000. Increasing parameters by a factor of 40 implies

that the layers would likely need more training data. It would also require more
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training epochs to reach peak performance. This is shown by the test result
where CNN takes an average of 5.4 training epochs to reach best result while
PCNN takes an average of 7.3, as shown in Table 7. This indicates that the minor
performance gap between PCNN and CNN may narrow or even reverse if the
maximum number of training epochs was increased to 15. PCNN would likely

benefit more than CNN does if there are more training data available.

Network Type CNN PCNN
Best Performance After 1 Epoch 8

Best Performance After 2 Epoch 8 1
Best Performance After 3 Epoch 10 3
Best Performance After 4 Epoch 11 2
Best Performance After 5 Epoch 15 3
Best Performance After 6 Epoch 12 6
Best Performance After 7 Epoch 17 12
Best Performance After 8 Epoch 12 24
Best Performance After 9 Epoch 16 36
Best Performance After 10 Epoch 25 44
Average Epochs to Best Performance | 6.373 8.306

Table 7: Number of Epochs to Reach Best Performance
7.3 Viability of PCNN

Test results have indicated that PCNN has potentially the same capability
of modeling data as that of standard CNN. Its performance would likely benefit
under the following conditions:

e Sophisticated method to construct the input groups (if selection is

required)
e Large amount of training datasets

e High number of training epochs
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The test conducted in this research shows a scenario where both CNN
and PCNN are viable options. This means that PCNN can be a replacement for
standard CNN in certain situations or a supplement to standard CNN to create a
more powerful neural network (discussed in section below). For the scope of this
research, the result of the test has adequately demonstrated the viability of

PCNN.

7.4  Application of PCNN

From a structural point of view, PCNN is designed to handle input with
heterogenous groups of data. However, even without the concept of PCNN, data
analysist would still construct the network to convolute these data groups
separately, which leads the same effect of PCNN. A particularly interesting
possibility explored by this research is using PCNN even when the input data is
also suitable for standard CNN.

Processing homogenous groups of data with separate convolutional layers
may seem counterintuitive. But the test result in this research demonstrates that
identifying trends and patterns for individual data groups could produce
comparable or even superior results. One does not need to choose between
PCNN and standard CNN when constructing a neural network. Data can be
processed with both methods and brought together through dense layers or a
voting mechanism. Figure 24 shows such an example. Note that PCNN part and
CNN part of the network can have different number of layers and filter

dimensions.
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Figure 24: Example of Flexible PCNN Design

8 Future Work

The next step is to further explore the application of PCNN with datasets
that are normally processed with standard CNN, like the stock data used for this
research. If the performance of PCNN proves to be good with the datasets,
further research could be conducted to determine if an even better result can be

achieved by pairing standard CNN and PCNN, as described in Section 7.4.

9 Conclusion

This research sets forth an alternative to the standard convolutional neural
network structure when modelling homogenous groups of data. The proposed
PCNN is designed to identify underlying patterns of individual data groups that
are not learned by standard CNN. The author of this research implemented the
software framework that allows both CNN and PCNN to be constructed and test.
In addition, test data was built from stock markets and refined to be suitable for
both CNN and PCNN. The test results show that PCNN is capable of meaningful
performance when modelling suitable datasets. Post-test analysis indicates that

there are possible methods to improve its performance even further. The result
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indicates that with suitable datasets and right setups, PCNN can potentially be

used to replace or pair with standard CNN for better neural network performance.
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Appendix A Test Result Details

Datasets are built for 134 stocks. The performance of each test neural network is
shown in this section. The following columns are included for each table:
e # of Epochs to Best: the number of training epochs before peak
performance of the neural network is reached
e The network has five possible outputs, as described in Section 5.4. There
are two columns for each possible output:
o Total: number of test datasets with such expected result
o Corr.: number of test datasets for which the network correctly
forecasted such output
e Incorrect — Magnitude of Error: number of incorrect outputs categorized by
how incorrect they are. For example:
o An actual output of [0, 1, 0,0, 0] against an expected output of
[0,0,1,0,0] means an error magnitude of 1
o An actual output of [0, 1,0, 0, 0] against an expected output of

[0,0,0,0,1] means an error magnitude of 3
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A.1  Dense-only Neural Network

#of Significant Moderate stable Moderate Significant Incorr-ect -
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | 1 2 3
ABB 2 0 0 21 0 26 0 225 222 43 5 67 21 0
AKS 1 29 0 213 213 45 0 24 0 4 0 74 24 4
BIOS 1 303 303 3 0 7 0 2 0 0 0 3 7 2
CIA 1 0 0 14 0 44 0 179 179 78 0 122 | 14 0
cot 1 0 0 39 0 264 264 5 0 7 0 44 7 0
CYBE 1 2 0 77 0 160 160 57 0 19 0 134 | 21 0
DYNT 1 0 0 105 0 207 207 61 0 15 0 166 | 15 0
EFOI 1 0 0 8 0 348 348 30 0 2 0 38 2 0
EMITF 1 30 0 189 189 99 1 35 0 3 0 128 | 35 3
FISV 1 68 0 235 235 69 0 13 0 3 0 137 | 13 3
GEOS 2 0 0 21 0 90 9 87 87 15 0 101 | 16 0
GFI 2 0 0 6 0 101 7 224 218 57 0 154 | 9 0
GILT 1 2 0 71 0 199 166 117 50 18 0 177 | 14 0
GPIC 1 0 0 127 0 158 158 20 0 10 0 147 | 10 0
GPX 2 0 0 0 0 12 0 77 6 267 264 76 10 0
GV 6 0 0 0 0 78 9 250 237 28 6 100 | 4 0
HDSN 1 0 0 45 0 199 199 90 0 22 0 135 | 22 0
HLIT 5 0 0 16 0 117 34 176 162 47 5 138 | 17 0
HMY 1 0 0 173 168 93 10 4 0 6 0 90 4 4
HOV 9 3 0 130 15 181 130 74 39 19 0 205 | 18 0
HRTX 2 47 4 202 193 52 10 10 0 4 0 94 10 4
ICAD 1 35 0 278 278 65 0 20 0 9 0 100 | 20 9
IDRA 1 3 0 341 341 50 0 15 0 4 0 53 15 4
IDSA 1 0 0 4 0 281 148 111 74 11 0 185 | O 0
IESC 1 79 0 249 249 52 0 29 0 4 0 131 | 29 4
IGLD 7 0 0 12 2 157 45 114 90 32 13 146 | 18 1
IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0
IIN 1 0 0 125 0 197 196 68 0 17 0 194 | 17 0
IMGN 8 0 0 2 0 134 29 192 177 28 2 147 | 1 0
IMGN 5 0 0 0 0 101 24 270 267 36 1 115 | O 0
IMH 3 0 0 22 0 329 325 45 6 17 0 65 17 0
IMMU | 3 0 0 0 0 325 325 28 3 3 0 25 3 0
ING 8 0 0 6 0 21 0 206 151 123 64 133 | 8 0
INOD 10 2 0 106 67 117 41 36 7 15 6 116 | 35 4
INS 2 5 0 112 27 152 127 35 0 11 0 139 | 21 1
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
INSG 2 79 29 99 87 22 0 13 0 0 0 83 13 1
IPAS 4 109 12 87 82 12 0 5 0 0 0 114 | 5 0
ISIG 1 0 0 62 0 177 177 60 0 16 0 120 18 0
JAKK 5 5 0 80 8 70 7 53 49 5 0 87 61 1
JCS 1 1 0 84 1 187 131 117 60 18 0 183 | 32 0
JOoB 1 0 0 77 0 266 266 62 0 8 0 139 | 8 0
JPM 6 9 0 83 13 185 123 117 44 13 0 195 | 32 0
KGC 2 93 39 111 92 7 0 1 0 1 0 80 1 1
KGJI 1 0 0 0 0 279 279 28 0 8 0 28 8 0
KlQ 1 0 0 44 0 276 234 70 7 17 0 141 | 25 0
KMT 1 0 0 0 0 4 0 32 0 320 320 32 4 0
KVHI 1 254 254 20 0 2 0 0 0 0 0 20 2 0
LEE 1 0 0 74 0 289 289 40 0 10 0 114 | 10 0
LFVN 1 0 0 40 0 241 241 62 0 13 0 102 | 13 0
LPX 1 23 0 243 238 102 18 34 0 11 0 121 | 35 1
Lscc 1 7 0 103 6 162 156 73 3 11 0 169 | 22 0
LTBR 1 0 0 16 0 295 295 2 0 2 0 18 2 0
LYTS 1 46 0 168 168 51 0 8 0 3 0 97 8 3
MAGS 1 10 0 245 245 40 0 16 0 4 0 50 16 4
MAMS | 1 0 0 6 0 73 0 180 180 17 0 90 6 0
MERC 3 15 0 252 179 122 66 14 1 10 0 148 19 0
MFIN 4 27 0 188 159 139 34 22 0 12 0 164 | 30 1
MICR 8 0 0 15 0 251 126 123 76 18 1 175 | 29 0
MIND 5 0 0 12 0 74 7 246 218 81 25 146 17 0
MNI 2 0 0 83 4 197 196 24 0 11 0 104 11 0
MNTA 6 0 0 64 22 106 85 34 10 9 0 86 9 1
MSTR 1 0 0 30 0 254 251 64 1 8 0 96 8 0
MXC 7 0 0 104 6 283 280 14 0 6 0 107 11 3
MXWL | 1 0 0 20 0 76 0 228 228 64 0 140 | 20 0
NAI 1 0 0 29 0 136 0 185 185 38 0 174 | 29 0
NSYS 1 8 0 64 0 156 156 70 0 17 0 134 | 25 0
NTZ 3 0 0 17 0 98 12 128 127 33 0 119 | 18 0
NVLN 1 145 13 153 150 11 0 6 0 0 0 146 | 6 0
NYMX 1 0 0 64 0 255 255 87 0 7 0 151 | 7 0
NYNY 4 0 0 19 0 170 115 118 78 8 0 114 | 7 1
ol 1 260 260 15 0 0 0 1 0 0 0 15 0 1
OSUR 2 0 0 24 0 158 33 163 142 43 1 168 | 43 1
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
PAR 7 103 60 140 98 25 3 4 0 4 0 103 | 10 2
PDLI 1 0 0 43 0 246 245 61 4 6 0 101 | 6 0
PESI 1 0 0 5 0 30 0 131 131 47 0 77 5 0
PICO 5 0 0 0 0 11 0 94 15 308 299 91 8 0
PIR 1 0 0 19 0 241 241 11 0 5 0 30 5 0
PKD 1 96 1 225 225 72 0 9 0 5 0 167 | 9 5
PLX 1 0 0 0 0 264 264 7 0 5 0 7 5 0
PPIH 3 17 0 265 205 92 29 25 0 8 0 148 18 7
PRAN 2 1 0 63 4 101 101 40 0 8 0 99 9 0
PRCP 4 0 0 0 0 3 0 93 10 260 258 85 3 0
QcomM | 1 0 0 26 0 250 116 118 97 19 0 178 | 22 0
Qumu | 2 5 0 81 5 87 85 34 2 6 0 110 | 11 0
RADA 1 0 0 45 0 241 240 90 0 31 0 136 | 31 0
RAND 1 0 0 107 64 86 44 13 0 7 0 92 10 3
RAVE 1 6 0 177 67 168 123 52 0 10 0 198 | 24 1
RCMT 6 223 157 164 81 17 3 9 0 0 0 153 14 5
RELL 1 56 0 182 182 61 0 13 0 3 0 117 13 3
RLH 1 1 0 5 0 55 0 130 130 22 0 77 5 1
SCKT 1 0 0 83 0 146 146 39 0 8 0 122 | 8 0
SCX 1 15 0 123 2 179 178 80 0 16 0 202 | 31 0
SFE 8 0 0 5 0 82 48 230 161 39 25 98 23 1
SGMA | 2 0 0 20 0 268 201 106 61 19 0 139 | 12 0
SGU 1 11 0 46 0 179 140 109 29 11 0 153 27 7
SIGA 1 0 0 39 0 258 252 97 5 19 0 141 | 15 0
SIGM 1 0 0 80 0 212 212 91 0 24 0 171 | 24 0
SMRT 1 0 0 3 0 167 167 30 0 13 0 33 13 0
SPB 1 1 0 11 0 61 0 235 235 48 0 109 11 1
SRDX 3 13 0 117 109 64 13 14 0 5 0 77 14 0
SRI 1 4 0 67 0 139 139 54 0 12 0 121 | 16 0
STAR 1 5 0 33 0 199 199 22 0 17 0 55 22 0
STRM 1 0 0 0 0 2 0 252 104 102 62 188 | 2 0
SYPR 6 0 0 10 0 201 42 139 135 38 1 205 | 5 0
TACT 1 0 0 78 0 197 145 119 37 19 0 219 12 0
TCl 1 3 0 80 0 191 191 90 0 24 0 170 | 27 0
THC 6 10 0 162 19 182 169 44 1 15 2 201 19 1
TIVO 1 28 0 132 132 41 0 11 0 1 0 69 11 1
TRK 1 0 0 0 0 10 0 117 0 229 229 117 10 0

52




Master’s Thesis — B. Lee; Master University — Applied Science

#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
TRT 8 0 0 70 7 161 71 124 64 33 7 193 | 41 5
TT™MI 1 312 312 1 0 2 0 0 0 0 0 1 2 0
TWMC | 1 65 0 248 248 59 0 24 0 11 0 124 | 24 11
UAMY 1 0 0 174 174 31 0 4 0 4 0 31 4 4
UCTT 4 0 0 9 0 87 25 99 88 18 10 76 11 3
uls 2 1 0 148 12 148 129 83 20 8 0 213 | 14 0
UNM 1 0 0 14 0 25 0 217 131 100 60 138 17 10
USAK 1 79 0 250 250 50 0 20 0 8 0 129 | 20 8
USAS 1 18 0 162 162 27 0 3 0 3 0 45 3 3
USAU 1 70 0 166 166 24 0 13 0 3 0 94 13 3
USEG 2 0 0 114 14 190 170 90 15 19 0 194 | 20 0
USG 2 0 0 26 0 135 12 217 210 29 0 161 | 24 0
VGZ 1 10 0 154 154 34 0 12 0 3 0 44 12 3
VICR 2 126 25 209 199 54 0 16 0 2 0 164 | 17 2
VIRC 1 336 336 44 0 4 0 4 0 0 0 44 4 4
VOXX 1 0 0 62 0 224 149 99 55 28 0 188 | 21 0
VTNR 1 0 0 0 0 100 14 99 93 14 0 106 | O 0
VVUS 1 0 0 153 19 162 161 81 0 11 0 216 11 0
WLK 1 197 197 15 0 1 0 0 0 0 0 15 1 0
WTT 1 0 0 127 1 209 208 46 0 6 0 173 | 6 0
WTW 9 0 0 24 5 197 189 43 9 12 1 65 7 0
WYY 1 165 165 34 0 6 0 6 0 2 0 34 6 6
X 1 31 0 205 192 105 10 37 0 10 0 143 35 8
XEC 3 14 0 126 41 100 68 34 13 2 0 131 | 21 2
ZIXI 3 0 0 4 0 157 65 197 172 30 0 148 | 3 0

53




Master’s Thesis — B. Lee; Master University — Applied Science

A.2  Standard Convolutional Neural Network

#of Significant Moderate stable Moderate Significant Incorr-ect -
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | 1 2 3
ABB 2 0 0 21 6 26 1 225 218 43 16 57 17 0
AKS 1 29 3 213 158 45 21 24 10 4 0 81 30 12
BIOS 5 303 303 3 1 7 6 2 1 0 0 3 1 0
CIA 8 0 0 14 10 44 15 179 150 78 65 60 12 3
cot 5 0 0 39 33 264 264 5 0 7 5 11 2 0
CYBE 7 2 0 77 34 160 105 57 52 19 8 102 14 0
DYNT 4 0 0 105 48 207 192 61 24 15 12 97 14 1
EFOI 1 0 0 8 0 348 340 30 2 2 0 44 2 0
EMITF 1 30 0 189 170 99 45 35 11 3 0 112 17 1
FISV 9 68 53 235 216 69 26 13 9 3 0 76 6 1
GEOS 7 0 0 21 10 90 66 87 76 15 14 38 6 3
GFI 2 0 0 6 3 101 41 224 211 57 27 103 | 3 0
GILT 2 2 0 71 37 199 192 117 52 18 10 104 | 12 0
GPIC 6 0 0 127 113 158 114 20 9 10 0 67 8 4
GPX 3 0 0 0 0 12 5 77 21 267 261 67 2 0
GV 10 0 0 0 0 78 23 250 243 28 21 66 3 0
HDSN 7 0 0 45 15 199 174 90 47 22 16 83 19 2
HLIT 4 0 0 16 1 117 100 176 153 47 27 57 17 1
HMY 6 0 0 173 154 93 77 4 0 6 6 38 1 0
HOV 7 3 0 130 47 181 158 74 51 19 14 120 16 1
HRTX 5 47 23 202 185 52 32 10 7 4 3 64 1 0
ICAD 7 35 8 278 268 65 17 20 15 9 3 81 12 3
IDRA 7 3 1 341 311 50 28 15 8 4 2 48 5 9
IDSA 5 0 0 4 0 281 139 111 92 11 10 153 13 0
IESC 5 79 13 249 241 52 12 29 10 4 1 118 15 3
IGLD 10 0 0 12 9 157 120 114 68 32 29 73 15 1
IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0
IIN 2 0 0 125 48 197 141 68 55 17 11 108 | 38 6
IMGN 8 0 0 2 1 134 70 192 177 28 16 91 1 0
IMGN 3 0 0 0 0 101 48 270 261 36 7 91 0 0
IMH 9 0 0 22 2 329 324 45 10 17 13 54 6 4
IMMU | 9 0 0 0 0 325 296 28 23 3 3 33 1 0
ING 3 0 0 6 2 21 4 206 197 123 77 72 4 0
INOD 10 2 0 106 90 117 98 36 18 15 9 45 12 4
INS 5 5 4 112 71 152 76 35 32 11 8 103 | 20 1
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
INSG 7 79 71 99 97 22 11 13 10 0 0 21 3 0
IPAS 7 109 98 87 67 12 7 5 3 0 0 37 1 0
ISIG 4 0 0 62 44 177 171 60 40 16 7 46 7 0
JAKK 7 5 3 80 58 70 30 53 50 5 0 52 19 1
JCS 2 1 0 84 18 187 151 117 74 18 8 130 | 24 2
JOoB 4 0 0 77 27 266 233 62 45 8 7 96 5 0
JPM 5 9 0 83 40 185 121 117 97 13 8 116 | 20 3
KGC 4 93 74 111 88 7 0 1 0 1 1 48 2 0
KGJI 10 0 0 0 0 279 272 28 4 8 2 28 9 0
KlQ 1 0 0 44 1 276 203 70 29 17 1 147 | 26 0
KMT 5 0 0 0 0 4 0 32 5 320 320 27 4 0
KVHI 9 254 250 20 14 2 2 0 0 0 0 6 4 0
LEE 3 0 0 74 66 289 273 40 34 10 7 32 0 1
LFVN 10 0 0 40 19 241 187 62 57 13 1 78 14 0
LPX 8 23 0 243 216 102 64 34 33 11 6 80 6 8
Lscc 5 7 0 103 30 162 105 73 62 11 6 92 60 1
LTBR 4 0 0 16 5 295 294 2 0 2 1 14 1 0
LYTS 5 46 26 168 114 51 44 8 6 3 3 69 7 3
MAGS 9 10 4 245 238 40 26 16 8 4 2 27 8 2
MAMS | 6 0 0 6 1 73 49 180 151 17 14 46 12 3
MERC 4 15 3 252 178 122 46 14 13 10 6 92 63 12
MFIN 10 27 23 188 159 139 124 22 8 12 8 60 5 1
MICR 4 0 0 15 7 251 186 123 98 18 12 97 7 0
MIND 9 0 0 12 0 74 28 246 223 81 42 107 13 0
MNI 10 0 0 83 68 197 190 24 19 11 6 31 1 0
MNTA 4 0 0 64 39 106 103 34 22 9 4 42 3 0
MSTR 4 0 0 30 4 254 241 64 47 8 0 54 10 0
MXC 2 0 0 104 50 283 270 14 2 6 6 77 2 0
MXWL | 5 0 0 20 4 76 31 228 222 64 31 85 11 4
NAI 10 0 0 29 20 136 105 185 95 38 37 102 | 23 6
NSYS 7 8 6 64 11 156 95 70 63 17 14 85 29 12
NTZ 8 0 0 17 6 98 66 128 105 33 24 54 15 6
NVLN 2 145 120 153 125 11 8 6 5 0 0 51 3 3
NYMX | 6 0 0 64 24 255 236 87 60 7 5 78 10 0
NYNY 5 0 0 19 1 170 155 118 89 8 3 56 10 1
ol 9 260 251 15 10 0 0 1 1 0 0 13 1 0
OSUR 5 0 0 24 14 158 116 163 132 43 26 77 19 4
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
PAR 7 103 56 140 126 25 16 4 0 4 0 72 4 2
PDLI 2 0 0 43 20 246 164 61 46 6 2 106 | 18 0
PESI 7 0 0 5 0 30 17 131 117 47 35 34 6 4
PICO 6 0 0 0 0 11 0 94 35 308 301 69 8 0
PIR 10 0 0 19 8 241 237 11 8 5 4 16 3 0
PKD 10 96 43 225 182 72 50 9 4 5 4 103 | 20 1
PLX 1 0 0 0 0 264 254 7 1 5 0 9 12 0
PPIH 8 17 3 265 219 92 53 25 8 8 6 97 18 3
PRAN 7 1 1 63 29 101 97 40 21 8 5 55 5 0
PRCP 4 0 0 0 0 3 0 93 40 260 253 60 3 0
QcoM | 2 0 0 26 12 250 227 118 61 19 2 105 | 5 1
QumMu | 10 5 4 81 72 87 64 34 14 6 5 44 10 0
RADA 9 0 0 45 27 241 225 90 64 31 30 58 3 0
RAND 6 0 0 107 98 86 55 13 3 7 6 49 1 1
RAVE 5 6 2 177 154 168 73 52 43 10 7 124 | 9 1
RCMT 7 223 190 164 97 17 5 9 4 0 0 103 11 3
RELL 9 56 8 182 167 61 54 13 3 3 1 57 19 6
RLH 8 1 0 5 3 55 39 130 120 22 18 31 0 1
SCKT 7 0 0 83 46 146 123 39 33 8 1 64 9 0
SCX 9 15 0 123 60 179 99 80 71 16 12 123 | 42 6
SFE 2 0 0 5 3 82 44 230 199 39 31 71 8 0
SGMA | 9 0 0 20 7 268 244 106 73 19 10 50 25 4
SGU 10 11 3 46 27 179 142 109 69 11 7 84 18 5
SIGA 8 0 0 39 8 258 216 97 60 19 18 86 19 6
SIGM 4 0 0 80 54 212 206 91 37 24 0 84 24 2
SMRT 3 0 0 3 1 167 164 30 15 13 9 21 3 0
SPB 7 1 0 11 1 61 20 235 195 48 40 68 23 8
SRDX 8 13 2 117 108 64 56 14 10 5 5 31 1 0
SRI 10 4 0 67 16 139 127 54 35 12 3 81 14 0
STAR 7 5 0 33 8 199 173 22 17 17 15 34 17 7
STRM 9 0 0 0 0 2 0 252 106 102 94 154 | 2 0
SYPR 2 0 0 10 0 201 160 139 89 38 6 130 | 3 0
TACT 2 0 0 78 6 197 161 119 92 19 11 118 | 24 1
TCl 1 3 0 80 27 191 178 90 22 24 0 117 | 43 1
THC 7 10 7 162 96 182 177 44 27 15 14 88 3 1
TIVO 4 28 13 132 112 41 34 11 3 1 0 50 1 0
TRK 9 0 0 0 0 10 3 117 77 229 192 78 6 0
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
TRT 3 0 0 70 8 161 118 124 113 33 9 113 | 27 0
TT™MI 1 312 312 1 0 2 0 0 0 0 0 1 2 0
TWMC | 8 65 9 248 234 59 40 24 5 11 0 96 18 5
UAMY | 2 0 0 174 167 31 19 4 3 4 0 20 0 4
UCTT 10 0 0 9 4 87 54 99 96 18 11 42 3 3
uls 7 1 1 148 108 148 135 83 69 8 5 63 7 0
UNM 1 0 0 14 3 25 0 217 157 100 62 112 16 6
USAK 1 79 3 250 249 50 3 20 0 8 0 125 | 19 8
USAS 10 18 16 162 158 27 17 3 1 3 1 16 2 2
USAU 10 70 57 166 143 24 20 13 5 3 2 44 2 3
USEG 8 0 0 114 58 190 158 90 79 19 13 88 17 0
UsG 9 0 0 26 3 135 103 217 194 29 22 83 2 0
VGZ 6 10 7 154 139 34 11 12 7 3 2 31 15 1
VICR 7 126 95 209 198 54 40 16 12 2 2 57 3 0
VIRC 1 336 336 44 3 4 1 4 0 0 0 42 5 1
VOXX 10 0 0 62 42 224 198 99 83 28 23 61 3 3
VTNR 5 0 0 0 0 100 75 99 92 14 7 38 1 0
VVUS 6 0 0 153 71 162 144 81 33 11 7 141 10 1
WLK 5 197 193 15 12 1 1 0 0 0 0 7 0 0
WTT 2 0 0 127 24 209 183 46 32 6 3 107 | 36 3
WTW 8 0 0 24 18 197 183 43 34 12 7 34 0 0
WYY 2 165 157 34 19 6 3 6 4 2 0 27 2 1
X 2 31 8 205 180 105 37 37 31 10 2 100 16 14
XEC 8 14 5 126 74 100 93 34 21 2 1 73 4 5
ZIXI 6 0 0 4 0 157 105 197 179 30 7 87 10 0

57




Master’s Thesis — B. Lee; Master University — Applied Science

A.3  Standard Convolutional Neural Network with Data Scaling

#of Significant Moderate stable Moderate Significant Incorr-ect -
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | 1 2 3
ABB 10 0 0 21 9 26 12 225 223 43 25 36 10 0
AKS 9 29 24 213 164 45 41 24 22 4 4 57 1 2
BIOS 5 303 303 3 2 7 6 2 2 0 0 1 1 0
CIA 9 0 0 14 12 44 30 179 172 78 61 37 2 1
cot 9 0 0 39 36 264 263 5 2 7 7 7 0 0
CYBE 7 2 2 77 65 160 141 57 52 19 18 33 4 0
DYNT 2 0 0 105 44 207 204 61 32 15 11 90 5 2
EFOI 1 0 0 8 5 348 341 30 18 2 1 23 0 0
EMITF | 8 30 23 189 136 99 86 35 25 3 0 84 2 0
FISV 9 68 59 235 222 69 39 13 10 3 0 58 0 0
GEOS 7 0 0 21 18 90 86 87 86 15 15 7 0 1
GFI 6 0 0 6 5 101 73 224 199 57 46 64 1 0
GILT 10 2 2 71 48 199 191 117 94 18 10 55 7 0
GPIC 5 0 0 127 107 158 144 20 7 10 9 47 1 0
GPX 7 0 0 0 0 12 9 77 57 267 262 27 1 0
GV 5 0 0 0 0 78 37 250 239 28 22 55 3 0
HDSN 9 0 0 45 16 199 183 90 65 22 17 63 11 1
HLIT 6 0 0 16 1 117 96 176 171 47 33 46 9 0
HMY 3 0 0 173 168 93 72 4 3 6 6 26 1 0
HOV 10 3 2 130 104 181 168 74 63 19 18 51 1 0
HRTX 8 47 30 202 185 52 37 10 7 4 2 51 2 1
ICAD 6 35 11 278 240 65 38 20 19 9 1 69 28 1
IDRA 6 3 1 341 321 50 43 15 9 4 4 34 0 1
IDSA 2 0 0 4 1 281 169 111 107 11 9 119 | 2 0
IESC 6 79 27 249 244 52 16 29 16 4 3 100 | 7 0
IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0
IGLD 6 0 0 12 9 157 128 114 88 32 29 55 6 0
IIN 4 0 0 125 76 197 185 68 60 17 17 65 4 0
IMGN 4 0 0 0 0 101 74 270 253 36 27 49 4 0
IMGN 8 0 0 2 2 134 108 192 181 28 21 41 3 0
IMH 1 0 0 22 13 329 326 45 31 17 17 21 2 3
IMMU | 5 0 0 0 0 325 324 28 22 3 3 7 0 0
ING 10 0 0 6 6 21 5 206 200 123 77 68 0 0
INOD 9 2 0 106 97 117 99 36 30 15 10 34 5 1
INS 10 5 5 112 79 152 123 35 31 11 9 59 9 0
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
INSG 7 79 71 99 98 22 14 13 9 0 0 19 2 0
IPAS 2 109 100 87 69 12 10 5 4 0 0 30 0 0
ISIG 10 0 0 62 40 177 158 60 56 16 11 37 13 0
JAKK 8 5 3 80 74 70 39 53 45 5 4 41 7 0
JCS 7 1 1 84 66 187 119 117 112 18 16 71 14 8
JOoB 3 0 0 77 50 266 234 62 56 8 7 64 2 0
JPM 5 9 2 83 51 185 153 117 101 13 11 77 11 1
KGC 4 93 87 111 96 7 6 1 0 1 1 23 0 0
KGJI 3 0 0 0 0 279 270 28 21 8 7 14 3 0
KlQ 1 0 0 44 5 276 158 70 64 17 12 139 | 29 0
KMT 5 0 0 0 0 4 0 32 12 320 320 22 2 0
KVHI 4 254 253 20 19 2 2 0 0 0 0 2 0 0
LEE 7 0 0 74 71 289 261 40 29 10 10 41 1 0
LFVN 1 0 0 40 24 241 161 62 53 13 1 105 11 1
LPX 8 23 2 243 228 102 81 34 29 11 9 57 3 4
Lscc 10 7 7 103 75 162 129 73 62 11 10 61 12 0
LTBR 1 0 0 16 14 295 295 2 1 2 2 3 0 0
LYTS 8 46 40 168 147 51 48 8 4 3 3 34 0 0
MAGS | 4 10 8 245 234 40 33 16 13 4 4 20 3 0
MAMS | 5 0 0 6 2 73 50 180 163 17 16 27 14 4
MERC 2 15 15 252 236 122 82 14 11 10 9 54 5 1
MFIN 10 27 22 188 166 139 124 22 18 12 10 48 0 0
MICR 2 0 0 15 14 251 202 123 101 18 18 68 4 0
MIND 9 0 0 12 4 74 34 246 233 81 69 64 9 0
MNI 9 0 0 83 78 197 189 24 18 11 9 21 0 0
MNTA 7 0 0 64 44 106 100 34 21 9 7 39 2 0
MSTR 6 0 0 30 25 254 246 64 56 8 4 23 2 0
MXC 9 0 0 104 48 283 276 14 7 6 6 67 2 1
MXWL | 6 0 0 20 3 76 39 228 214 64 58 58 10 6
NAI 7 0 0 29 26 136 98 185 161 38 32 63 6 2
NSYS 7 8 8 64 24 156 107 70 65 17 14 72 19 6
NTZ 8 0 0 17 6 98 75 128 121 33 30 30 9 5
NVLN 8 145 102 153 140 11 11 6 4 0 0 53 5 0
NYMX 10 0 0 64 31 255 248 87 64 7 7 58 5 0
NYNY 7 0 0 19 6 170 161 118 108 8 1 35 4 0
ol 10 260 257 15 14 0 0 1 1 0 0 4 0 0
OSUR 6 0 0 24 19 158 121 163 150 43 32 59 6 1

59




Master’s Thesis — B. Lee; Master University — Applied Science

#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
PAR 3 103 96 140 120 25 20 4 1 4 2 36 0 1
PDLI 7 0 0 43 33 246 203 61 58 6 4 51 7 0
PESI 5 0 0 5 5 30 27 131 128 47 37 16 0 0
PICO 3 0 0 0 0 11 1 94 48 308 306 51 7 0
PIR 10 0 0 19 16 241 238 11 10 5 5 7 0 0
PKD 9 96 58 225 193 72 61 9 4 5 5 72 14 0
PLX 4 0 0 0 0 264 262 7 7 5 5 2 0 0
PPIH 8 17 9 265 212 92 81 25 12 8 8 74 7 4
PRAN 3 1 1 63 39 101 93 40 29 8 6 43 2 0
PRCP 4 0 0 0 0 3 0 93 40 260 258 55 3 0
Qcom | 7 0 0 26 18 250 230 118 105 19 12 48 0 0
QumMu | 10 5 4 81 75 87 82 34 27 6 5 18 2 0
RADA 5 0 0 45 20 241 220 90 80 31 29 49 9 0
RAND 3 0 0 107 100 86 53 13 9 7 7 42 2 0
RAVE 9 6 6 177 160 168 129 52 33 10 9 73 3 0
RCMT 2 223 195 164 130 17 8 9 3 0 0 68 8 1
RELL 5 56 20 182 168 61 58 13 8 3 3 34 21 3
RLH 2 1 1 5 3 55 41 130 121 22 18 28 1 0
SCKT 10 0 0 83 58 146 137 39 33 8 7 41 0 0
SCX 10 15 7 123 68 179 135 80 79 16 15 75 28 6
SFE 4 0 0 5 0 82 74 230 204 39 31 41 6 0
SGMA 10 0 0 20 6 268 241 106 79 19 17 51 17 2
SGU 5 11 11 46 39 179 154 109 94 11 9 49 0 0
SIGA 10 0 0 39 27 258 210 97 84 19 19 66 4 3
SIGM 9 0 0 80 52 212 196 91 76 24 1 77 4 1
SMRT 6 0 0 3 3 167 165 30 24 13 13 8 0 0
SPB 7 1 0 11 2 61 41 235 217 48 43 37 9 6
SRDX 4 13 11 117 114 64 47 14 13 5 5 23 0 0
SRI 10 4 1 67 55 139 130 54 39 12 5 41 5 0
STAR 4 5 5 33 20 199 184 22 14 17 17 21 12 3
STRM 5 0 0 0 0 2 0 252 197 102 96 61 2 0
SYPR 10 0 0 10 4 201 137 139 133 38 24 87 3 0
TACT 1 0 0 78 27 197 153 119 98 19 16 93 22 4
TCl 8 3 3 80 54 191 165 90 80 24 22 51 13 0
THC 9 10 8 162 144 182 170 44 29 15 14 44 2 2
TIVO 4 28 23 132 125 41 33 11 10 1 0 21 1 0
TRK 10 0 0 0 0 10 5 117 101 229 212 37 1 0
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
TRT 8 0 0 70 15 161 118 124 120 33 23 75 34 3
TT™MI 5 312 312 1 1 2 0 0 0 0 0 0 2 0
TWMC | 6 65 43 248 236 59 51 24 18 11 4 51 4 0
UAMY | 1 0 0 174 169 31 17 4 2 4 0 21 0 4
UCTT 7 0 0 9 6 87 59 99 98 18 12 35 3 0
uls 7 1 1 148 133 148 140 83 76 8 8 24 6 0
UNM 5 0 0 14 10 25 11 217 156 100 99 69 7 4
USAK 7 79 45 250 217 50 38 20 16 8 8 82 1 0
USAS 6 18 18 162 160 27 18 3 3 3 2 12 0 0
USAU 3 70 64 166 156 24 18 13 10 3 1 27 0 0
USEG 3 0 0 114 97 190 169 90 70 19 16 60 1 0
UsG 2 0 0 26 1 135 111 217 185 29 22 83 5 0
VGZ 10 10 8 154 153 34 22 12 11 3 2 16 1 0
VICR 10 126 112 209 192 54 27 16 8 2 1 58 8 1
VIRC 7 336 328 44 29 4 4 4 1 0 0 25 1 0
VOXX 9 0 0 62 24 224 220 99 75 28 22 63 9 0
VTNR 10 0 0 0 0 100 79 99 93 14 12 29 0 0
VVUS 10 0 0 153 79 162 155 81 56 11 9 96 7 5
WLK 3 197 195 15 12 1 1 0 0 0 0 5 0 0
WTT 5 0 0 127 71 209 185 46 44 6 4 64 20 0
WTW 9 0 0 24 21 197 192 43 39 12 9 15 0 0
WYY 9 165 163 34 28 6 6 6 4 2 2 10 0 0
X 10 31 17 205 194 105 71 37 35 10 9 59 3 0
XEC 8 14 12 126 115 100 75 34 31 2 2 38 3 0
ZIXI 10 0 0 4 0 157 108 197 183 30 12 77 8 0

61




Master’s Thesis — B. Lee; Master University — Applied Science

A.4  Partitioned Convolutional Neural Network

#of Significant Moderate stable Moderate Significant Incorr-ect -
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | 1 2 3
ABB 10 0 0 21 20 26 11 225 216 43 16 50 2 0
AKS 3 29 1 213 197 45 12 24 11 4 1 63 20 10
BIOS 7 303 301 3 2 7 3 2 1 0 0 7 0 1
CIA 10 0 0 14 10 44 22 179 135 78 73 57 17 1
cot 8 0 0 39 36 264 255 5 0 7 6 16 2 0
CYBE 9 2 2 77 42 160 126 57 46 19 13 68 16 2
DYNT 9 0 0 105 75 207 192 61 41 15 14 57 6 3
EFOI 10 0 0 8 5 348 344 30 22 2 2 15 0 0
EMITF 10 30 29 189 160 99 63 35 29 3 1 66 8 0
FISV 8 68 14 235 233 69 20 13 7 3 0 108 | 5 0
GEOS 9 0 0 21 13 90 57 87 80 15 11 49 2 1
GFI 9 0 0 6 4 101 60 224 192 57 52 70 9 1
GILT 7 2 1 71 42 199 159 117 96 18 13 91 5 0
GPIC 10 0 0 127 109 158 92 20 17 10 3 85 8 1
GPX 10 0 0 0 0 12 8 77 43 267 257 44 4 0
GV 9 0 0 0 0 78 44 250 216 28 25 64 7 0
HDSN 10 0 0 45 29 199 168 90 70 22 21 43 22 3
HLIT 10 0 0 16 15 117 95 176 168 47 37 38 2 1
HMY 10 0 0 173 165 93 70 4 3 6 6 32 0 0
HOV 7 3 3 130 83 181 158 74 61 19 12 83 7 0
HRTX 9 47 18 202 190 52 27 10 6 4 4 67 3 0
ICAD 10 35 10 278 246 65 27 20 18 9 2 73 28 3
IDRA 7 3 0 341 331 50 30 15 10 4 0 41 1 0
IDSA 10 0 0 4 3 281 266 111 82 11 11 44 1 0
IESC 8 79 58 249 236 52 22 29 10 4 2 71 12 2
IGLD 9 0 0 12 9 157 119 114 99 32 22 66 0 0
IGLD 1 276 276 0 0 0 0 0 0 0 0 0 0 0
IIN 9 0 0 125 107 197 169 68 57 17 11 62 1 0
IMGN 10 0 0 2 2 134 106 192 164 28 25 56 3 0
IMGN 8 0 0 0 0 101 64 270 261 36 23 59 0 0
IMH 3 0 0 22 11 329 322 45 13 17 13 44 7 3
IMMU | 9 0 0 0 0 325 314 28 20 3 3 17 2 0
ING 9 0 0 6 6 21 5 206 197 123 86 59 3 0
INOD 10 2 0 106 91 117 93 36 21 15 8 50 11 2
INS 9 5 5 112 59 152 108 35 28 11 7 88 19 1
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
INSG 8 79 70 99 93 22 4 13 7 0 0 30 8 1
IPAS 9 109 92 87 65 12 6 5 2 0 0 47 0 1
ISIG 7 0 0 62 53 177 163 60 37 16 15 38 9 0
JAKK 10 5 3 80 59 70 25 53 52 5 0 53 20 1
JCS 10 1 1 84 69 187 134 117 92 18 15 90 3 3
JOoB 9 0 0 77 49 266 246 62 25 8 8 80 5 0
JPM 8 9 4 83 65 185 145 117 97 13 9 82 5 0
KGC 10 93 77 111 100 7 3 1 0 1 1 31 1 0
KGJI 9 0 0 0 0 279 274 28 18 8 4 17 2 0
KIQ 8 0 0 44 10 276 184 70 61 17 12 99 38 3
KMT 8 0 0 0 0 4 0 32 18 320 318 20 0 0
KVHI 6 254 245 20 13 2 2 0 0 0 0 15 1 0
LEE 6 0 0 74 60 289 279 40 32 10 8 33 1 0
LFVN 10 0 0 40 37 241 220 62 40 13 8 39 11 1
LPX 6 23 3 243 235 102 26 34 33 11 6 99 7 4
Lscc 9 7 0 103 60 162 135 73 61 11 8 78 12 2
LTBR 7 0 0 16 13 295 292 2 2 2 2 6 0 0
LYTS 9 46 19 168 146 51 31 8 3 3 3 61 11 0
MAGS 10 10 5 245 237 40 18 16 7 4 4 37 6 1
MAMS | 8 0 0 6 1 73 29 180 160 17 12 58 14 2
MERC 8 15 15 252 233 122 83 14 11 10 8 60 3 0
MFIN 10 27 23 188 164 139 125 22 13 12 9 51 3 0
MICR 5 0 0 15 5 251 187 123 85 18 14 103 13 0
MIND 9 0 0 12 6 74 48 246 235 81 62 57 5 0
MNI 10 0 0 83 73 197 181 24 16 11 9 35 1 0
MNTA 10 0 0 64 49 106 98 34 24 9 8 33 1 0
MSTR 10 0 0 30 27 254 231 64 49 8 6 40 3 0
MXC 10 0 0 104 49 283 280 14 10 6 5 60 0 3
MXWL | 8 0 0 20 7 76 44 228 212 64 43 61 21 0
NAI 8 0 0 29 23 136 108 185 113 38 37 84 20 3
NSYS 8 8 8 64 29 156 121 70 61 17 12 76 8 0
NTZ 9 0 0 17 6 98 61 128 101 33 30 54 17 7
NVLN 2 145 122 153 120 11 7 6 1 0 0 56 5 4
NYMX 10 0 0 64 47 255 234 87 65 7 7 54 6 0
NYNY 9 0 0 19 11 170 143 118 103 8 7 50 1 0
ol 1 260 252 15 0 0 0 1 0 0 0 23 0 1
OSUR 9 0 0 24 20 158 115 163 125 43 32 85 11 0
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#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
PAR 10 103 78 140 113 25 20 4 1 4 0 57 7 0
PDLI 5 0 0 43 22 246 211 61 46 6 3 61 12 1
PESI 9 0 0 5 0 30 22 131 121 47 37 24 5 4
PICO 7 0 0 0 0 11 4 94 79 308 300 30 0 0
PIR 9 0 0 19 15 241 233 11 6 5 4 17 1 0
PKD 4 96 47 225 189 72 45 9 1 5 2 109 | 11 3
PLX 1 0 0 0 0 264 252 7 1 5 2 9 12 0
PPIH 9 17 9 265 248 92 71 25 7 8 7 56 9 0
PRAN 6 1 1 63 29 101 91 40 30 8 8 46 8 0
PRCP 10 0 0 0 0 3 2 93 61 260 257 36 0 0
QCoOM 7 0 0 26 13 250 230 118 97 19 17 54 1 1
QumMu | 10 5 4 81 74 87 76 34 22 6 5 29 2 1
RADA 10 0 0 45 43 241 230 90 73 31 29 31 1 0
RAND 10 0 0 107 84 86 75 13 11 7 6 36 1 0
RAVE 9 6 4 177 162 168 120 52 47 10 5 69 5 1
RCMT 10 223 183 164 156 17 7 9 1 0 0 60 6 0
RELL 10 56 37 182 164 61 49 13 9 3 3 37 9 6
RLH 10 1 0 5 3 55 36 130 120 22 18 34 0 1
SCKT 8 0 0 83 63 146 119 39 29 8 4 52 8 1
SCX 8 15 14 123 80 179 137 80 67 16 13 88 14 0
SFE 8 0 0 5 0 82 66 230 208 39 35 38 6 3
SGMA | 9 0 0 20 18 268 246 106 78 19 15 46 8 2
SGU 10 11 3 46 32 179 155 109 91 11 9 57 5 3
SIGA 8 0 0 39 22 258 239 97 67 19 19 60 5 1
SIGM 9 0 0 80 62 212 195 91 73 24 14 55 7 1
SMRT 5 0 0 3 0 167 165 30 17 13 10 16 4 1
SPB 8 1 0 11 4 61 33 235 216 48 31 59 12 1
SRDX 7 13 13 117 104 64 48 14 12 5 4 29 3 0
SRI 10 4 2 67 50 139 111 54 45 12 6 49 9 4
STAR 6 5 5 33 19 199 189 22 17 17 16 24 3 2
STRM 9 0 0 0 0 2 0 252 212 102 83 59 2 0
SYPR 7 0 0 10 4 201 184 139 107 38 34 56 3 0
TACT 10 0 0 78 46 197 178 119 94 19 15 70 9 1
TCl 8 3 3 80 58 191 158 90 74 24 17 74 4 0
THC 8 10 8 162 138 182 160 44 25 15 13 63 6 0
TIVO 10 28 24 132 125 41 27 11 11 1 0 25 0 1
TRK 9 0 0 0 0 10 10 117 93 229 212 41 0 0

64




Master’s Thesis — B. Lee; Master University — Applied Science

#of Significant Moderate stable Moderate Significant Incorrect —
Code Epochs Drop Drop Increase Increase Magnitude of Error

toBest | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. | Total | Corr. 1 2 3
TRT 10 0 0 70 64 161 141 124 99 33 27 53 4 0
TT™MI 4 312 311 1 0 2 2 0 0 0 0 2 0 0
TWMC | 8 65 53 248 218 59 50 24 19 11 6 55 6 0
UAMY | 3 0 0 174 166 31 16 4 0 4 0 24 3 4
UCTT 9 0 0 9 3 87 58 99 86 18 11 49 3 3
uls 9 1 0 148 112 148 136 83 67 8 7 62 4 0
UNM 8 0 0 14 9 25 16 217 184 100 91 53 3 0
USAK 8 79 58 250 233 50 32 20 17 8 6 57 4 0
USAS 8 18 18 162 142 27 19 3 2 3 1 27 2 1
USAU 9 70 63 166 141 24 15 13 5 3 2 45 5 0
USEG 10 0 0 114 97 190 149 90 84 19 12 62 9 0
UsG 9 0 0 26 22 135 94 217 205 29 25 56 5 0
VGZ 10 10 7 154 146 34 23 12 8 3 2 20 6 1
VICR 7 126 111 209 174 54 45 16 12 2 2 60 3 0
VIRC 10 336 330 44 24 4 4 4 3 0 0 26 1 0
VOXX 9 0 0 62 46 224 207 99 81 28 22 51 4 2
VTNR 7 0 0 0 0 100 83 99 83 14 7 37 3 0
VVUS 10 0 0 153 101 162 146 81 63 11 11 74 12 0
WLK 10 197 195 15 6 1 1 0 0 0 0 11 0 0
WTT 6 0 0 127 68 209 182 46 28 6 4 102 | 2 2
WTW 10 0 0 24 22 197 182 43 38 12 10 24 0 0
WYY 9 165 159 34 25 6 3 6 2 2 2 21 1 0
X 9 31 24 205 174 105 73 37 24 10 10 71 12 0
XEC 10 14 14 126 105 100 88 34 25 2 2 41 1 0
ZIXI 9 0 0 4 3 157 118 197 168 30 25 72 2 0
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