Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/26334
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorWassyng, Alan-
dc.contributor.advisorLawford, Mark-
dc.contributor.authorLee, Bill-
dc.date.accessioned2021-04-23T18:30:23Z-
dc.date.available2021-04-23T18:30:23Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/11375/26334-
dc.description.abstractFor input data of homogenous type, the standard form of convolutional neural network is normally constructed with universally applied filters to identify global patterns. However, for certain datasets, there are identifiable trends and patterns within subgroups of input data. This research proposes a convolutional neural network that deliberately partitions input data into groups to be processed with unique sets of convolutional layers, thus identifying the underlying features of individual data groups. Training and testing data are built from historical prices of stock market and preprocessed so that the generated datasets are suitable for both standard and the proposed convolutional neural network. The author of this research also developed a software framework that can construct neural networks to perform necessary testing. The calculation logic was implemented using parallel programming and executed on a Nvidia graphic processing unit, thus allowing tests to be executed without expensive hardware. Tests were executed for 134 sets of datasets to benchmark the performance between standard and the proposed convolutional neural network. Test results show that the partitioned convolution method is capable of performance that rivals its standard counterpart. Further analysis indicates that more sophisticated method of building datasets, larger sets of training data, or more training epochs can further improve the performance of the partitioned neural network. For suitable datasets, the proposed method could be a viable replacement or supplement to the standard convolutional neural network structure.en_US
dc.language.isoenen_US
dc.subjectconvolutional neural networken_US
dc.subjectparallel programmingen_US
dc.subjectpartitioneden_US
dc.titlePerformance Impact on Neural Network with Partitioned Convolution Implemented with GPU Programmingen_US
dc.title.alternativePartitioned Convolution in Neuron Networken_US
dc.typeThesisen_US
dc.contributor.departmentComputing and Softwareen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.description.layabstractA convolutional neural network is a machine learning tool that allows complex patterns in datasets to be identified and modelled. For datasets with input that consists of the same type of data, a convolutional neural network is often architected to identify global patterns. This research explores the viability of partitioning input data into groups and processing them with separate convolutional layers so unique patterns associated with individual subgroups of input data can be identified. The author of this research built suitable test datasets and developed a (parallel computation enabled) framework that can construct both standard and proposed convolutional neural networks. The test results show that the proposed structure is capable of performance that matches its standard counterpart. Further analysis indicates that there are potential methods to further improve the performance of partitioned convolution, making it a viable replacement or supplement to standard convolution.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
lee_bill_202004_master.pdf
Open Access
Thesis for master degree of applied science in software engineering1.89 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue