Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25846
Title: Big-Data Driven Optimization Methods with Applications to LTL Freight Routing
Authors: Tamvada, Srinivas
Advisor: Hassini, Elkafi
Department: Computational Engineering and Science
Keywords: Big-data driven optimization methods;Less-than-truckload freight routing
Publication Date: 2020
Abstract: We propose solution strategies for hard Mixed Integer Programming (MIP) problems, with a focus on distributed parallel MIP optimization. Although our proposals are inspired by the Less-than-truckload (LTL) freight routing problem, they are more generally applicable to hard MIPs from other domains. We start by developing an Integer Programming model for the Less-than-truckload (LTL) freight routing problem, and present a novel heuristic for solving the model in a reasonable amount of time on large LTL networks. Next, we identify some adaptations to MIP branching strategies that are useful for achieving improved scaling upon distribution when the LTL routing problem (or other hard MIPs) are solved using parallel MIP optimization. Recognizing that our model represents a pseudo-Boolean optimization problem (PBO), we leverage solution techniques used by PBO solvers to develop a CPLEX based look-ahead solver for LTL routing and other PBO problems. Our focus once again is on achieving improved scaling upon distribution. We also analyze a technique for implementing subtree parallelism during distributed MIP optimization. We believe that our proposals represent a significant step towards solving big-data driven optimization problems (such as the LTL routing problem) in a more efficient manner.
URI: http://hdl.handle.net/11375/25846
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tamvada_Srinivas_S_202008_phd.pdf
Access is allowed from: 2021-08-18
1.8 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue