Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/25846
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHassini, Elkafi-
dc.contributor.authorTamvada, Srinivas-
dc.date.accessioned2020-10-02T13:37:45Z-
dc.date.available2020-10-02T13:37:45Z-
dc.date.issued2020-
dc.identifier.urihttp://hdl.handle.net/11375/25846-
dc.description.abstractWe propose solution strategies for hard Mixed Integer Programming (MIP) problems, with a focus on distributed parallel MIP optimization. Although our proposals are inspired by the Less-than-truckload (LTL) freight routing problem, they are more generally applicable to hard MIPs from other domains. We start by developing an Integer Programming model for the Less-than-truckload (LTL) freight routing problem, and present a novel heuristic for solving the model in a reasonable amount of time on large LTL networks. Next, we identify some adaptations to MIP branching strategies that are useful for achieving improved scaling upon distribution when the LTL routing problem (or other hard MIPs) are solved using parallel MIP optimization. Recognizing that our model represents a pseudo-Boolean optimization problem (PBO), we leverage solution techniques used by PBO solvers to develop a CPLEX based look-ahead solver for LTL routing and other PBO problems. Our focus once again is on achieving improved scaling upon distribution. We also analyze a technique for implementing subtree parallelism during distributed MIP optimization. We believe that our proposals represent a significant step towards solving big-data driven optimization problems (such as the LTL routing problem) in a more efficient manner.en_US
dc.language.isoenen_US
dc.subjectBig-data driven optimization methodsen_US
dc.subjectLess-than-truckload freight routingen_US
dc.titleBig-Data Driven Optimization Methods with Applications to LTL Freight Routingen_US
dc.typeThesisen_US
dc.contributor.departmentComputational Engineering and Scienceen_US
dc.description.degreetypeThesisen_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.layabstractLess-than-truckload (LTL) freight transportation is a vital part of Canada's economy, with revenues running into billions of dollars and a cascading impact on many other industries. LTL operators often have to deal with large volumes of shipments, unexpected changes in traffic conditions, and uncertainty in demand patterns. In an industry that already has low profit margins, it is therefore vitally important to make good routing decisions without expending a lot of time. The optimization of such LTL freight networks often results in complex big-data driven optimization problems. In addition to the challenge of finding optimal solutions for these problems, analysts often have to deal with the complexities of big-data driven inputs. In this thesis we develop several solution strategies for solving the LTL freight routing problem including an exact model, novel heuristics, and techniques for solving the problem efficiently on a cluster of computers. Although the techniques we develop are inspired by LTL routing, they are more generally applicable for solving big-data driven optimization problems from other domains. Experiments conducted over the years in consultation with industry experts indicate that our proposals can significantly improve solution quality and reduce time to solution. Furthermore, our proposals open up interesting avenues for future research.en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Tamvada_Srinivas_S_202008_phd.pdf
Access is allowed from: 2021-08-18
1.8 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue