
BIG-DATA DRIVEN OPTIMIZATION

METHODS WITH APPLICATIONS TO

LTL-FREIGHT ROUTING



BIG-DATA DRIVEN OPTIMIZATION METHODS WITH

APPLICATIONS TO LTL-FREIGHT ROUTING

BY

Srinivas Subramanya Tamvada, M.E.

a thesis

submitted to the school of Computational Science and Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Srinivas Subramanya Tamvada, August 2020

All Rights Reserved



Doctor of Philosophy (2020) McMaster University

(Computational Science and Engineering) Hamilton, Ontario, Canada

TITLE: Big-Data Driven Optimization Methods with Applica-

tions to LTL-Freight Routing

AUTHOR: Srinivas Subramanya Tamvada

M.E.

SUPERVISOR: Dr. Elkafi Hassini

NUMBER OF PAGES: xviii, 155

ii



Lay Abstract

Less-than-truckload (LTL) freight transportation is a vital part of Canada’s econ-

omy, with revenues running into billions of dollars and a cascading impact on many

other industries. LTL operators often have to deal with large volumes of shipments,

unexpected changes in traffic conditions, and uncertainty in demand patterns. In an

industry that already has low profit margins, it is therefore vitally important to make

good routing decisions without expending a lot of time.

The optimization of such LTL freight networks often results in complex big-data

driven optimization problems. In addition to the challenge of finding optimal solutions

for these problems, analysts often have to deal with the complexities of big-data driven

inputs. In this thesis we develop several solution strategies for solving the LTL freight

routing problem including an exact model, novel heuristics, and techniques for solving

the problem efficiently on a cluster of computers.

Although the techniques we develop are inspired by LTL routing, they are more

generally applicable for solving big-data driven optimization problems from other

domains. Experiments conducted over the years in consultation with industry experts

indicate that our proposals can significantly improve solution quality and reduce

time to solution. Furthermore, our proposals open up interesting avenues for future

research.
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Abstract

We propose solution strategies for hard Mixed Integer Programming (MIP) problems,

with a focus on distributed parallel MIP optimization. Although our proposals are

inspired by the Less-than-truckload (LTL) freight routing problem, they are more

generally applicable to hard MIPs from other domains. We start by developing an In-

teger Programming model for the Less-than-truckload (LTL) freight routing problem,

and present a novel heuristic for solving the model in a reasonable amount of time

on large LTL networks. Next, we identify some adaptations to MIP branching strate-

gies that are useful for achieving improved scaling upon distribution when the LTL

routing problem (or other hard MIPs) are solved using parallel MIP optimization.

Recognizing that our model represents a pseudo-Boolean optimization problem

(PBO), we leverage solution techniques used by PBO solvers to develop a CPLEX

based look-ahead solver for LTL routing and other PBO problems. Our focus once

again is on achieving improved scaling upon distribution. We also analyze a tech-

nique for implementing subtree parallelism during distributed MIP optimization. We

believe that our proposals represent a significant step towards solving big-data driven

optimization problems (such as the LTL routing problem) in a more efficient manner.
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Chapter 1

Introduction

The advent of the internet has lead to an increased interest in the field of big-data

driven optimization. Broadly defined, big-data driven optimization deals with the

formulation and solution of optimization problems of unprecedented sizes and com-

plexity, based on information collected from various sources (Emrouznejad, 2016).

Big-data driven optimization is now being applied in many important disciplines

such as Computer science, Operations research, Agricultural engineering, Psychol-

ogy, Medicine and Biochemistry to name a few.

The popularity of big-data driven decision making and the scientific possibilities

it opens up have led to new opportunities and challenges for practitioners and re-

searchers alike. Practitioners are focused on collecting good quality data from their op-

erations and applying the insights gained from it to streamline their business (McAfee

et al., 2012). Researchers on the other hand have been preoccupied with develop-

ing tools and technologies for analyzing the data and translating it into actionable

insights (Saggi and Jain, 2018). To this end, big-data analytics platforms such as

Apache Hadoop and Apache Spark (Zaharia et al., 2010) have been integrated with
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powerful optimization engines in order to solve machine learning problems more effi-

ciently (Bosagh Zadeh et al., 2016; Cao and Sun, 2016; Sagratella, 2016).

Our work on this thesis started with the long term goal of integrating IBM’s state-

of-the-art MIP solver CPLEX (CPLEX, 2007) into Apache Spark. Soon after that, we

discovered that MIP solver parallelization was an active area of research with many

interesting and unanswered questions. In fact, efficient MIP solver parallelization is

a precursor for integrating any optimization engine into a big-data platform. Around

the same time, we also started our collaboration with a major Canadian Logistics and

Freight transportation company. Therefore it was natural choice to select a big-data

driven optimization problem from the Freight transportation industry as our use case

in this thesis.

The transportation problem we study in this thesis is called the Less-than-truckload

(LTL) route optimization problem (Özener, 2019; Hejazi and Haghani, 2007). This

routing problem is a pseudo-Boolean optimization problem (Eén and Sorensson,

2006), and has been studied extensively over the years given its impact on the freight

transportation industry. It exhibits the classic 4V’s of big-data, namely:

1. Volume: for LTL networks that transport large volumes of freight, the sheer

size of the problem can be too large to handle on a single computer.

2. Variety: there are different formats in which freight accepted for shipment can

be encoded. In some cases, manual intervention is required to ingest freight into

the system.

3. Veracity: owning partly to manual intervention and partly to the lack of adher-

ence to strict standards, some records can be incomplete or damaged.

2
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4. Velocity: last but not least, the rate at which freight records are ingested and

the rate at which routing decisions are made can both be quite high.

In addition, LTL operators also have to deal with unexpected changes in traffic

conditions and uncertain demand patterns, sometimes making it necessary to make

(or alter) routing decisions in real-time. Given these characteristics and its impor-

tance to the industry, the LTL routing problem is a good example of a big-data

driven optimization problem. Moreover, the problem is suitable for solving in a dis-

tributed fashion given its size and complexity, and represents an important class of

MIPs called pseudo-Boolean optimization problems (PBOs). In this thesis, we de-

velop computational techniques for solving the LTL routing problem that are also

applicable more generally.

1.1 Motivation and goals

Our primary motivation in this thesis is to take a step towards integrating big-data

processing platforms (such as Apache Spark) with powerful optimization engines (such

as CPLEX) by exploring effective techniques for MIP solver parallelization. Opti-

mization problems from the industry are often big-data driven (an example is the

aforementioned LTL routing problem). Moreover, the prescriptive stage of big-data

analytics (Delen and Ram, 2018) includes optimization and requires the most com-

putational effort. Therefore, it is beneficial to move towards a single, unified platform

both for solving large scale optimization problems and for processing big-data.

Since the turn of the century, online retailers and marketplaces such as Amazon,

EBay, and Alibaba are cutting into the market share of Brick-and-mortar businesses.
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Indeed, most large businesses such as Walmart, BestBuy, Ikea, and many others now

have a strong online presence (Bernstein et al., 2008). This has lead to an increased

burden on the freight transportation industry, with products ordered online adding

to conventional freight volume. Companies such as Amazon have even experimented

with designing their own freight transportation solutions, or have long term contracts

with LTL providers like our industry partner.

These changes, coupled with advances in technology, have led to businesses de-

manding faster and better solutions to the increasingly larger problems they face

in their day-to-day operations. The LTL routing problem is but one example of an

operational decision that is made everyday in the industry.

In this thesis, our goal is to develop both conventional and unconventional solu-

tions for the LTL routing problem. The conventional solutions are based on exact

models and hybrid heuristics. The unconventional solutions focus on solving the LTL

routing problem (and indeed other optimization problems) in a distributed fashion.

In our view, effective MIP solver parallelization is a vital first step towards integrating

them with big-data platforms.

1.2 Organization of the thesis

Chapter 2 begins with a brief description of the LTL freight transportation industry.

We present a literature review in this area of research as it pertains to our work. This

is followed by our model for routing LTL freight and novel heuristics for solving the

model. Results from experiments conducted in partnership with a major Canadian

LTL operator are presented at the end of the chapter.

Recognizing that our model is hard to solve, Chapter 3 identifies some properties

4
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of popular MIP branching strategies that can be leveraged and adapted for increased

speedups upon distribution (i.e., for improved scaling when such models are solved

in a distributed fashion). This chapter also sets the stage for the next two chapters

which expand on some of the proposals in the chapter.

Chapter 4 describes a specialized solver we developed for the LTL routing problem.

This solver incorporates branching heuristics from Boolean satisfiability problems

(SAT) (Marques-Silva, 1999) into a popular commercial MIP solver, and can be used

to solve other Pseudo-Boolean optimization problems (PBOs) (Eén and Sorensson,

2006). While the integration of SAT and MIP solution techniques is an active area

of research, our focus is on implementing a solver that can be parallelized more

efficiently.

Chapter 5 extends an existing technique for implementing subtree parallelism

in distributed MIP solver implementations. We show that for some hard MIPs, it

is beneficial to implement subtree parallelism using this technique rather than to

iterate through a collection of disjoint subproblems. The technique is evaluated by

integrating it into a commercial MIP solver.

Chapter 6 summarizes our achievements and results, and concludes the thesis by

discussing some opportunities for future research in addition to those mentioned at

the end of each chapter.

1.3 Contributions

Both LTL freight routing and MIP solver parallelization are active areas of research.

In this thesis, we have extended the body of literature in these areas of research as

follows:
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• We have developed an integer programming model for routing LTL freight.

While similar models exist in literature, we are the first to use our model for

finding a minimum cost directed Steiner-forest in a time-space network. This

minimum cost forest is subsequently used for developing a heuristic for routing

LTL freight.

• We show how search restarts can be applied to MIP solver parallelization by

constructing and using a central repository of variable pseudo-costs. To the best

of our knowledge, we are the first to apply search restarts in this manner for

MIP solver parallelization.

• We incorporate branching heuristics used for solving pseudo-Boolean optimiza-

tion problems into CPLEX, and show that this approach can be effective for

solving MIPs. This approach is based on our observation that branching strate-

gies can scale well upon distribution if they only use properties of the branch-

ing node. We also describe the notion of trigger equivalence and domination

for Boolean Constraint Propagation (BCP), which we found to be useful for

speeding up the BCP process.

• We analyze a technique for implementing subtree parallelism during MIP solver

parallelization. While this technique has been used in existing implementations,

we prove that it can be used to merge an arbitrary collection of search tree leaf

nodes by solving the smallest number of node relaxations. We also show how

this technique can be incorporated into a commercial MIP solver (CPLEX),

and used for dynamic load balancing.
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Chapter 2

An Integer Programming model

and heuristics for LTL routing

2.1 Introduction

Less Than Truckload (LTL) freight transportation is a multi-billion dollar industry,

with its operations having a significant impact on other industries (Hernández et al.,

2011; Özkaya et al., 2010). The principal task of LTL operators is to collect freight

from customers for delivery to the intended recipients within a specified timeline (i.e.,

within a service contract, or at a service level). Normally, freight is picked up from the

customers using small trucks and delivered to a regional End-of-line (EOL) terminal.

Freight from EOL terminals is carried by line-haul trucks to the nearest break-bulk

terminal (Katayama and Yurimoto, 2016; Powell and Sheffi, 1989). At each break-

bulk, freight is consolidated (i.e., sorted and reloaded) into trailers for transportation

to an adjacent break-bulk (i.e., to a break-bulk to which direct service is available).

Freight may travel through several intermediate break-bulks before eventually arriving
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at its destination EOL terminal, from where it is dispatched in small trucks to the

respective consignees. This last distribution operation is often referred to as last-

mile delivery. In countries like Canada and Spain, break-bulks also serve as EOL

terminals (Barcos et al., 2010).

Typically, the volume of freight travelling from a break-bulk to a destination EOL

terminal is less than the volume capacity of a standard trailer (hence the name, “Less-

than-truckload”). Consolidation of freight at the break-bulks is required in order to

properly utilize trailer capacity, since dedicating an entire trailer for each individ-

ual shipment is not cost effective. LTL networks are carefully designed to allow for

effective consolidation of freight at each break-bulk. Our goal in this chapter is to

minimize the cost of routing LTL freight given an operational network and a service

contract. Note that trailers that are fully packed with freight (all of it bound for the

same destination) are not considered part of the LTL problem because such trailers

do not participate in freight consolidation.

Each indivisible unit of shipment at each break-bulk is called a “skid”. A skid is

a wooden container marked with its weight and volume, a unique “pro-bill” number,

a destination, and a delivery deadline. Skids can differ in weight and volume but

are much smaller in size than the standard trailer capacity, and need to be packed

into trailers rented from third-party carriers. LTL operators often have long-term

contracts with these third-party carriers to guarantee the availability of trailers on

popular routes at reasonable prices. In addition to trailer rental costs, there are some

handling costs associated with packing skids into trailers at each break-bulk.

To summarize, the essence of the LTL routing problem is to pack skids at each
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break-bulk into trailers to minimize transportation and handling costs, while ensur-

ing that the route chosen for each skid meets its delivery deadline. In addition, it

is desirable that the average trailer capacity utilization exceeds a certain threshold.

More detailed descriptions of the design and operation of LTL networks can be found

in Crainic (Crainic et al., 1998), Erera et al. (Erera et al., 2013b), and Powell and

Sheffi (Powell and Sheffi, 1983).

In this chapter, we present a novel integer programming formulation for the LTL

freight routing problem. The key difference between our approach and most existing

approaches is that we do not restrict skids having the same origin and destination to

travel along the same route. Such restrictions are commonly used for routing freight

on large LTL networks, and are implemented using load plans as described later in

Section 2.2. Our model can easily be adapted to handle larger LTL routing problems,

and we use it as a foundation for developing a hybrid heuristic which is based on the

notion of a minimum cost directed Steiner-forest (Feldman et al., 2012). To the best

of our knowledge, we are the first to extend the notion of a directed Steiner-forest

to a time-space network and use it for routing LTL freight. Time-space networks are

described in some excellent papers on LTL routing (Erera et al., 2013a; Kennington

and Nicholson, 2010).

The rest of the chapter is organized as follows. We start with a brief survey of

existing literature in Section 2.2. Our model and heuristics appear in Section 2.3. Ex-

perimental results are presented in Section 2.4. We conclude the chapter and propose

future research directions in Section 2.5.
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2.2 Literature Review

Crainic (Crainic et al., 1998) present an excellent survey of all aspects of the LTL

freight scheduling problem, starting from network design and strategic issues to op-

erational decisions such as routing (which is our focus). The survey describes some

typical problems facing LTL routing such as the classic “back-haul problem”, the

unpredictability of future demand, and the need for making routing decisions in real

time. Of these, the back-haul problem can be understood as the accumulation of trail-

ers at a location because of large amounts of incoming freight and relatively smaller

amounts of outgoing freight, which can necessitate return trips with empty trailers

(“empties”). Juan et al. (Juan et al., 2014) note that back-hauls represent 25% of

road transportation activities in Europe. Both Juan et al. (Juan et al., 2014) and

Bailey et al. (Bailey et al., 2011) propose approaches based on cooperation between

carriers for addressing the back-haul problem.

We note that back-hauls are a concern for third-party carriers, and not for LTL

operators like our industry partner. Most third party carriers already factor in back-

hauls into the contracted rates for trailers offered to LTL operators. For this reason,

we do not explicitly address the back-haul problem, although it can easily be incor-

porated into our model by making back-haul trailers available at a discounted price

(in addition to the regular trailers that are available at the contracted price). Powell

and Sheffi (Powell and Sheffi, 1983) address back-hauls by solving a “balancing of

empties” sub-problem after routing, whereas more recent approaches from Erera et

al. (Erera et al., 2013a) and Lindsey et al. (Lindsey et al., 2016) guide load plans to

route freight along arcs with known “empties”.

The most common approach to routing LTL freight is to first generate a load plan,
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given an operational LTL network (Erera et al., 2013a,b; Powell, 1986). A load plan

identifies a single route for every origin-destination pair in the LTL network over which

freight must be routed. This results in all routes terminating at a given destination

forming an “in-tree”. At any break-bulk, freight destined for a given destination is

always forwarded to the same next transfer terminal (Erera et al., 2013b). Erera et

al. (Erera et al., 2013a) note that the in-tree requirement is becoming less important

with advances in technology and computing power. Jarrah et al. (Jarrah et al., 2009)

note that load plans are changed about four times every year to account for seasonal

patterns.

The LTL routing problem is a variation of the classic multicast routing problem.

Oliveira and Pardalos (Oliveira and Pardalos, 2005) present an excellent survey of the

applications of multicast routing. One approach to solving such problems is to use a

minimum cost directed Steiner-forest. Such forests have been studied extensively, for

example by Charikar et al. (Charikar et al., 1999), Feldman et al. (Feldman et al.,

2012), Chekuri et al. (Chekuri et al., 2011), and Berman et al. (Berman et al., 2013).

Our hybrid heuristic in Section 2.3 uses minimum cost directed Steiner-forests to

create load plans.

Most existing papers on directed Steiner-forests only consider the cost of each arc

in the network, but not the time required to traverse it. Our model can be used to

find the minimum cost directed Steiner-forest in a time-space LTL network, which is

then used as a load plan. See (Kennington and Nicholson, 2010; Erera et al., 2013a)

for a description of time-space networks. As noted by Jarrah et al. (Jarrah et al.,

2009), when multiple service levels are allowed, load plans can be generated for each

service level (a similar approach is used in our hybrid heuristic, see Section 2.3.4).
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In a classic paper, Powell (Powell, 1986) presents a two-phased approach to LTL

routing. During the first “network design” phase, network arcs are identified over

which direct service should be offered, and the number of trailers that should be

made available on those arcs. In the second phase a load plan is generated for the

network, and freight is routed in accordance with the load plan. The network model

used does not have an explicit time dimension, and service contracts are implemented

by ensuring a minimum number of trailers on each arc. Such “flat network” models

are also used in related papers by Powell and Sheffi (Powell and Sheffi, 1983, 1989)

and Powell and Koskosidis (Powell and Koskosidis, 1992). In contrast, we use a time-

space network to ensure that delivery deadlines are met, similar to the approach taken

by Erera et al. (Erera et al., 2013a,b). Powell (Powell, 1986) also describes a local

improvement heuristic which sequentially adds arcs to (and drops arcs from) the load

plan.

Erera et al. (Erera et al., 2013a) present an integer programming model for gen-

erating load plans. As in our model, they use a set of pre-calculated routes for each

origin-destination pair. However, they do not consider individual skids like we do. For

models that are large and difficult to solve, they present a heuristic for starting from

a feasible solution and solving the model by fixing most variables at their current

values. The fixed variables correspond to routes that carry relatively small amounts

of freight. The load plan is thus improved by re-routing freight for terminals to which

a lot of freight is destined, one terminal at a time. Lindsey et al. (Lindsey et al., 2016)

improve upon this heuristic by simultaneously adjusting freight transfer paths into

multiple terminals in a small sub-section of the network.

In variations of their basic approach, Erera et al. (Erera et al., 2013a) use their
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model to generate separate load plans each day. Moreover, by relaxing the in-tree

constraints, their model can be used to generate an “unrestricted” load plan.

Erera et al. (Erera et al., 2013b) present a two-phased approach to routing LTL

freight given a load plan. In the first phase freight is routed greedily on the cheapest

route available, starting with freight that has the tightest delivery deadline. Freight

can be held for a few days at intermediate break-bulks to achieve better consolidation.

In the second phase, the routing solution from the previous phase is improved upon

using a linear program whenever there is some freight that can be re-routed on longer

(and cheaper) routes. Our Greedy algorithm in Section 2.3 is very similar to their

first phase, except that we are not confined by a load plan.

Leung et al. (Leung et al., 1990) develop a non-linear model formulation for rout-

ing LTL freight. They decompose the model into two linear mixed-integer programs

(MIPs), each of which can be solved using Lagrangian relaxation. The first step in

their solution process is to assign a first and last break-bulk for freight between every

origin and destination. The second step is to find optimal routes for all the freight,

given the first and last break-bulks from the previous step. The routing problem (i.e.,

the second step) is a multi-commodity network-flow problem.

Hejazi and Haghani (Hejazi and Haghani, 2007) present a model for routing LTL

freight that uses a time-space network, similar to our work. The key difference be-

tween their model and ours is that we use variables that refer to a set of pre-calculated

routes for each origin-destination pair (see Section 2.3). This allows us to restrict the

size of the model by ignoring routes which anyway cannot meet skid deadlines. Rec-

ognizing that the model is often too large to solve in real-time with commercial MIP

solvers such as CPLEX (CPLEX, 2007), Hejazi and Haghani propose three heuristic
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approaches. The first of these heuristics is a local improvement heuristic that starts

from a feasible solution, and uses a Greedy approach to improve the solution. The

second heuristic enhances the first one by using meta-heuristics (simulated anneal-

ing), to avoid getting stuck at local optima. The third heuristic constructs the model

using network arcs only from some of the shortest routes for each origin-destination

pair.

In addition, Hejazi and Haghani calculate a lower bound on the routing cost on

a given day by assuming a limitless number of trailers. In contrast, we calculate a

lower bound on the routing cost by only considering a few skids (see Section 2.3 for

details).

Katayama and Yurimoto (Katayama and Yurimoto, 2016) model the LTL freight

routing problem as a multi-commodity network-flow problem, and solve it using La-

grangian relaxation. Akyilmaz (Akyilmaz, 1994) describes a heuristic which identifies

routes that carry a relatively small amount of freight over long distances, using a met-

ric called “empty ton-kilometers”. Shipments along these routes are re-routed to be

consolidated with other shipments, thereby improving the value of the metric. Barcos

et al. (Barcos et al., 2010) develop an ant-colony meta-heuristic approach for LTL

routing. They make the assumption that there is no limit on the number of trailers

available, and that the transit time from the origin break-bulk to the destination

terminal is not more than two days.

In addition to routing costs, other concerns for LTL operators include the tempo-

rary non-availability of important arcs in the network, underutilized trailer capacity,

and carbon dioxide emissions to name a few. These concerns are highlighted in a
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broader context by some recent papers on effective supply chain management. Mar-

golis et al. (Margolis et al., 2018) develop a multi-objective optimization model for

supply chains that can be used to evaluate the trade-off between cost minimization

and improved network connectivity. Another multi-objective model (for maritime ves-

sel scheduling) is described by Dulebenets (Dulebenets, 2018) where the cost of carbon

dioxide emissions is considered. Dulebenets and Ozguven (Dulebenets and Ozguven,

2017) model the transportation of perishable items using decay costs.

Haass et al. (Haass et al., 2015) note that shipping of “empties” not only adds to

routing costs but also increases carbon dioxide emissions. Using a simulation, they

show that losses due to the decay of perishable items and carbon dioxide emissions

can both be minimized with “intelligent containers”. Dulebenets (Dulebenets, 2019)

considers the problem of scheduling inbound and outbound trucks at cross-docking

terminals such as LTL break-bulks. A mixed integer program and an evolutionary

algorithm are proposed to solve the problem.

To conclude this section, we note that the state-of-the-art in LTL routing is to

start with a load plan. The load plan is essentially “static”; i.e., for a given LTL

network it is created in response to the skids received for shipment on that day. The

load plan could even be seasonal and based largely on the LTL operator’s knowledge

of traffic patterns and trailer availability. Since routing costs are heavily influenced by

the underlying load plan, we propose that load plans should be changed dynamically

during routing (for example when trailer capacity is exhausted on some arc). Based

on this proposal, we develop a heuristic that frequently regenerates load plans by

constructing the minimum cost directed Steiner-forest for the remaining skids. We

also present an integer programming model which shows that the LTL freight routing
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problem is a tightly coupled combination of load plan generation and routing based

on the load plan. Our model and heuristic are described in the next section.

2.3 Model and Heuristic Algorithms

Before presenting our integer programming model, we note that every node in our

industry partner’s LTL network plays the dual role of an EOL terminal and a break-

bulk. We only consider freight movement between these nodes, i.e., every skid travels

between a pair of these nodes. In addition, our implementation completes the following

preliminary tasks that are required for building the model:

• All possible routes between any two break-bulks are enumerated in advance.

For a pair of origin-destination break-bulks, we only consider routes having a

limited number of intermediate break-bulks. Similar pre-calculation of routes

has also been used by Hejazi and Haghani (Hejazi and Haghani, 2007), Erera

et al. (Erera et al., 2013a), and Lindsey et al. (Lindsey et al., 2016).

See Appendix A for configuration parameters that can be used to control route

enumeration.

• The skids received on previous days are routed so that, on the day for which we

intend to find the least cost routes, we start with a “saturated” network. In other

words, we inherit a network where some trailers have already been deployed,

and routes already assigned for skids received on previous days. The Greedy

algorithm described later in this section is used for saturating the network.
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2.3.1 Notation

We make use of the following notation in our model formulation:

m Index on the number of carriers. All the available carriers

are enumerated in advance.

d Index on the day number.

(p, q) The arc identifier, denoting an arc from break-bulk ‘p’

to break-bulk ‘q’.

r Index on the skids received for shipment on a given day.

kr Index on the possible routes for the ‘rth’ skid, consid-

ering only the skid’s origin and destination. Possible

routes for every origin-destination pair of break-bulks

are enumerated in advance. Therefore, for a given r, the

number of routes Kr available to the skid are known in

advance, and kr = 1, ..., Kr.

akr Index on the arc sequence number in the ‘kr
th’ route

for the ‘rth’ skid. Here, akr = 1, ..., Akr , where Akr is

the number of arcs in the ‘kr
th’ route. The sequence

of arcs in every route is known in advance. For exam-

ple, a route from Toronto to Vancouver with a stopover

at Winnipeg has two arcs (i.e., Akr=2); with the first

arc from Toronto to Winnipeg, and the next one from

Winnipeg to Vancouver.
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T(p,q) The time required to traverse the network arc (p, q), in

days. This time depends only on the two endpoints ‘p’

and ‘q’. For example, the transit time for direct service

from Toronto to Vancouver is always 5 days.

T r
krakr

The time required to traverse the ‘akr
th’ arc of the ‘kr

th’

route of the ‘rth’ skid. This time equals T(p,q), where ‘p’

and ‘q’ are the endpoints of the arc. For example, this

time equals 5 days for the second arc of the route from

Montreal to Vancouver which has a single stopover at

Toronto.

Lr Deadline (in days) within which the ‘rth’ skid must be

delivered. A 5 day deadline on a skid implies that this

skid must be delivered to its destination EOL terminal

no later than 5 days after it was received at its origin

EOL terminal.

Er Entry day for the ‘rth’ skid, i.e., the day on which it is

received at an EOL terminal.

vr Volume of the ‘rth’ skid measured in cubic feet.

V mdt
(p,q) Remaining volume of the ‘tth’ trailer supplied by the

‘mth’ carrier on the ‘dth’ day on arc ‘(p, q)’. If this trailer

has not been assigned to carry any freight, then its vol-

ume equals the standard trailer volume. Volume is mea-

sured in cubic feet.
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smd
(p,q) Number of trailers available from the ‘mth’ carrier on

the ‘dth’ day on arc ‘(p, q)’.

t Index on the trailer number available from a carrier, on

a given arc on a given day. Here t = 1, ..., smd
(p,q). Always

used in conjunction with the carrier index, arc identifier,

and day index.

cmd
(p,q) Cost of a trailer from the ‘mth’ carrier on the ‘dth’ day

along the network arc ‘(p, q)’. Note that this cost is

non-zero only when a new trailer is rented. For a trailer

that has already been rented and assigned to carry some

skids, this cost is zero. The unit of cost is Canadian

Dollars.

hp Handling (cross-docking) cost at break-bulk ‘p’. Cur-

rently a constant independent of ‘p’.
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2.3.2 Model Formulation

Let

xmdrt
krakr

=


1, if the ‘tth’ trailer of the ‘mth’ carrier is used for carrying the ‘rth’

skid on the ‘athkr ’ arc of its ‘kr
th’ route on the ‘dth’ day

0, otherwise

yrkr =


1, if the ‘rth’ skid is scheduled on the ‘kr

th’ route for this skid’s origin

and destination

0, otherwise

zmdt
(p,q) =


1, if the ‘tth’ trailer from the ‘mth’ carrier is commissioned on the ‘dth’

day on arc ‘(p, q)’

0, otherwise.
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Our integer programming formulation for minimizing the cost of routing on a given

day is as follows:

min
∑
m

∑
d

∑
(p,q)

∑
t

cmd
(p,q) ∗ zmdt

(p,q) +
∑
m

∑
d

∑
r

∑
kr

∑
akr

∑
t

xmdrt
krakr

∗ hp (2.3.1)

s. t.
∑
r

∑
kr

xmdrt
krakr

∗ vr ≤ V mdt
(p,q) ∗ zmdt

(p,q) ∀m, d, (p, q), t (2.3.2)

∑
m

∑
d

∑
t

xmdrt
krakr

= yrkr ∀r, kr, akr (2.3.3)

∑
kr

yrkr = 1 ∀r (2.3.4)

∑
t

zmdt
(p,q) ≤ smd

(p,q) ∀m, d, (p, q) (2.3.5)

∑
m

∑
d

∑
t

xmdrt
krAkr

∗ (d + T r
krAkr

) ≤ Er + Lr ∀r, kr (2.3.6)

∑
m

∑
d

∑
t

xmdrt
krakr

∗ (d + T r
krakr

) ≤
∑
m

∑
d

∑
t

xmdrt
kr(1+akr )

∗ d ∀r, kr, akr = 1, . . . , (Akr − 1)

(2.3.7)

zmdt
(p,q) ≥ z

md(t+1)
(p,q) ∀m, d, (p, q), t = 1, . . . , (smd

(p,q) − 1) (2.3.8)

xmdrt
krakr

, yrkr , z
mdt
(p,q) ∈ {0, 1} ∀m, d, (p, q), t, r, kr (2.3.9)

2.3.2.1 The objective function

The objective is to minimize the routing cost on a given day. The first term of the

objective function is the sum of the costs of trailers deployed to route the skids. Note

that some of these trailers are deployed on a later date at an intermediate break-

bulk, for onward routing. The second term of the cost is the cross-docking cost at the

break-bulks. Recall that cross-docking is only done at the intermediate break-bulks.

Therefore, this term overestimates the cross-docking cost by a constant amount equal
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to hp times the number of skids. In practice, this second term tends to be much

smaller than the first term and is ignored to make the formulation simpler.

Note that skid induction and delivery costs (which are handling costs in addition

to cross-docking costs) depend only on the number of skids being routed on that

day, and are therefore not shown in the objective function. Although these costs were

set to zero in this chapter, they were added to the objective function in subsequent

chapters. This has no effect on the optimization problem but results in a different

objective function value. Moreover, our tests in different chapters were conducted

over the course of several years. Small changes in the default values, the ordering of

skids, and varying software versions can all lead to a slightly different formulation

(even though the general structure of the problem remains the same).

It is also important to preserve the order of the summations as shown in the

objective function. This is because the number of trailers on offer depends on the

carrier, the day, and the arc. Similarly, the arcs included in a route can only be

iterated over once the route is chosen. In turn, the routes for a skid can be iterated

over only after the skid is chosen.

2.3.2.2 The constraint set

Constraints in the constraint set (2.3.2) are trailer volume capacity constraints. The

sum of the volumes of the skids packed into a trailer cannot exceed the remaining

volume capacity of that trailer. Recall that trailers already commissioned are available

free of charge, but will have some of their volume already filled. These constraints

assume the existence of a function that accepts an arc identifier ‘(p,q)’ and a route

number ‘kr’ for skid ‘r’, and returns the arc index ‘akr ’ (if it exists in the route).
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Although not shown in the model, an identical constraint set also applies to the

trailer weight.

Constraint set (2.3.3) ensures that, if a route is selected for a skid, then all the

arcs of the route will be traveled in some trailer belonging to some carrier on some

day. Constraint set (2.3.4) simply states that, of all the routes available to a skid,

exactly one must be chosen. Since the routes are enumerated in advance, we know

the minimum duration of travel along every route. Therefore, when preparing the

model we can ignore routes that cannot meet the deadline for a given skid. This

helps reduce the number of variables and constraints in the model.

Constraint set (2.3.5) ascertains that the number of trailers of a given carrier used

on an arc on any given day cannot exceed the number of trailers that the carrier has

on offer on that day on that arc. During implementation, this constraint set can be

omitted and enforced implicitly by limiting the number of ‘z’ variables created for

each carrier on a given arc on a given day.

Constraint set (2.3.6) ensures that skids are delivered by their due date. The day

on which a skid starts traveling the last arc of its route, plus the time required to

travel the last arc, must not be more than the skid’s entry day plus its deadline.

Constraint set (2.3.7) applies to all but the last arc of the route chosen for each

skid. It ensures that the day on which the skid starts traveling the next arc on this

route is not before the day on which this arc was started plus the time it takes to

travel this arc. In other words, this constraint enforces the travel time associated with

every arc. These inequality constraints can be changed into equality constraints to

prevent break-bulks from holding skids for a few days before routing them onward.
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Constraints in set (2.3.8) are symmetry breaking constraints that impose a se-

quence order on the available trailers. They ensure that a second trailer from any

carrier cannot be used before its first one is commissioned. This constraint set applies

only when the number of trailers is more than one.

2.3.3 Greedy Heuristic

Our greedy approach to LTL routing arranges skids by ascending order of “deadline

slack”, and routes the skids one-by-one on the cheapest route available. Here, the

deadline slack is defined as the skid’s deadline (in days) minus the duration of the

fastest route available to its destination (also in days). This approach is based on

the observation that skids with larger deadline slacks are better suited for taking

advantage of already deployed trailers, since they can be scheduled on convoluted

routes without violating deadlines. Our Greedy heuristic can also hold skids for a few

days at break-bulks to find cheaper routes for them.

Our implementation is similar to the GRASP heuristic described by Erera et

al. (Erera et al., 2013b), although we run only one iteration of the Greedy heuristic.

In fact, even Erera et al. (Erera et al., 2013b) use only a single Greedy iteration in

their tests. Unlike their heuristic however, our Greedy heuristic does not use a load

plan. Moreover, our Greedy heuristic can be forced to find routes without adding

any new trailers, a feature that we use in the bin-packing sub-problem of our hybrid

heuristic (see Section 2.3.4).

One advantage of the greedy approach is that it can route most of the skids, even

if some skids cannot be routed due to lack of trailer capacity. The model on the

other hand cannot route any of the skids if the problem is infeasible. We use this
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observation to always remove those skids from the problem which were not routed by

the Greedy heuristic, to ensure that our model is feasible.

2.3.4 Directed Steiner-Forest Heuristic

Our directed Steiner-forest heuristic is a hybrid heuristic inspired by techniques from

functional decomposition. Observe that, if trailers had unlimited capacity, then the

LTL routing problem would simply become a routing problem in a time-space network.

Additionally:

• the solution to the LTL routing problem on a given day would be the minimum

cost directed Steiner-forest in a time-space network.

• the routing cost would be the sum of the costs of the arcs in the time-space

network used to route skids received for shipment on that day.

• arc cost would equal the rental cost of the cheapest trailer available on the arc

on the day the arc was used. Arcs in the time-space network already being used

for routing skids would cost nothing when used again on the same day.

Of course, in reality the capacity of each trailer is limited. Moreover, the assign-

ment of skids to trailers can influence the set of additional trailers needed for routing

all the skids, when already rented trailer capacity is exhausted. Therefore, the LTL

routing problem becomes a combination of a routing problem and a bin-packing prob-

lem.

Based on these observations, our hybrid heuristic decomposes the LTL routing

problem into a series of simpler sub-problems. The first of these is a “routing sub-

problem” which solves our model using only a few carefully selected skids. If an
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optimal solution is found, then the selected skids are routed as dictated by the optimal

solution (this can include the commissioning of new trailers). These routes, along

with any other arcs in the time-space network on which trailers have already been

commissioned, are presented as a “load plan” to the next stage of the heuristic which

is a “bin-packing sub-problem”.

Each bin-packing sub-problem routes skids in accordance with the load plan it is

given. Note that the bin-packing sub-problem is not allowed to add any new trailers

when using the load plan. Trailers on each arc included in the load plan are used for

routing skids, until no more skids can be routed using only these trailers. At this

stage, any remaining skids (i.e., skids that have not been assigned routes so far) are

used to generate another load plan by solving another routing sub-problem.

This iterative solution process is repeated a few times, after which any remaining

skids are routed greedily (allowing trailer addition). The Greedy heuristic is also

used for routing all the remaining skids if the routing sub-problem is unable to find a

feasible solution. A pseudo-code block for our hybrid heuristic appears in Algorithm 1.

2.3.4.1 Routing sub-problem

The objective of this sub-problem is to identify the lowest cost directed Steiner-forest

for the skids being routed. Once this forest is identified, trailers are commissioned as

needed along its arcs (line 10, Algorithm 1) for use by the subsequent bin-packing sub-

problem. The actions of the routing sub-problem are reminiscent of an ant leaving a

strong pheromone trail along the preferred route for other ants in the colony to follow

during the subsequent bin-packing phase of the algorithm.
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Algorithm 1: Directed Steiner-forest heuristic

1 Initialization:
2 R ← All skids on this day, iterationCount ← 1,

3 isFeasible ← true, MaxIterations ← Maximum number of

iterations

4

5 while (iterationCount ≤ MaxIterations) ∧ isFeasible ∧ (R is not empty) do
6

// First solve the routing sub-problem

7 S ← Select skids from R for preparing the model

8 Prepare the model using skids in S, and solve it

9 if (model is feasible) then
10 Use optimal solution to commission new trailers and route

skids in S

11 R ← R - S

12 Load plan ← Trailers already deployed on the time-space

network

13 else
14 isFeasible ← false

15 end
16

// Now solve the bin-packing sub-problem

17 if (isFeasible) then
18 Route skids in R using the Load plan (no new trailers can

be commisioned)

19 Remove from R the skids that were successfully routed

(i.e., packed into bins)
20 end
21

22 iterationCount ← iterationCount + 1

23 end
24 Route any remaining skids in R using the Greedy heuristic

(allow trailer addition).

Routing sub-problems are constructed using our model by selecting only a few

skids for routing according to the following rules:

1. Only one skid must be selected for each remaining origin-destination pair.
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2. Each selected skid must have the tightest deadline among all the remaining

skids with the same origin and destination. Ties must be broken in favor of the

skid with the smallest volume.

The justification for these rules is as follows:

• any load plan that can route the tightest deadline skid for each remaining origin-

destination pair can also route every other skid received on that day, without

violating any deadline.

• the lowest cost solution to the routing sub-problem continues to be a feasible

(although possibly non-optimal) solution even if the volume of a skid is arti-

ficially reduced. Here, we use the term “artificial” to describe any change we

make to the test data obtained from our industry partner. Hence, the cheapest

solution to the routing sub-problem will always be found when considering the

smallest volume skids.

Observe that, if we artificially reduced the volume of all the selected skids to nearly

zero before solving the model, then we would find the minimum cost directed Steiner-

forest in the time-space network. However, in our implementation we retain the true

volume of each selected skid. This ensures that the resulting solution can be used to

route at least one skid for every origin-destination pair. In addition, observe that we

need not consider all the trailers being offered by every carrier while solving for the

load plan, since we are routing a very limited number of skids. This observation can

be used to further reduce the size of the model.

We use the cost of the solution from the first routing sub-problem as a lower bound

on the cost for routing all the skids on a given day. Ideally, if all the skids could be
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routed using the solution produced by this sub-problem, then this solution would be

the optimal solution to the overall routing problem.

2.3.4.2 Bin-packing sub-problem

The objective of this sub-problem is to route as many skids as possible, only using

trailers that have already been deployed along the optimal routes. Given a load plan,

we simply use our Greedy heuristic for routing (thereby packing trailers with skids).

More sophisticated schemes could be used for such “bin-packing”, but our approach is

simple and similar to the GRASP heuristic used by Erera et al. (Erera et al., 2013b).

All the skids that cannot be routed for lack of trailer capacity are handed over to the

next routing sub-problem for generating another load plan.

2.4 Experimental Evaluation

In order to evaluate the performance of our algorithms, we ran them on our industry

partner’s Canadian LTL network with real data from their operations in March 2016.

Their network has 17 nodes and 67 arcs. We routed the skids on several days using all

three algorithms (namely the Greedy heuristic, the directed Steiner-forest heuristic,

and CPLEX). In addition, we also changed some parameters (see Appendix A) and

studied the effect of those changes on solution quality.

All our tests were executed on a virtual machine running Windows Server 2016

standard edition, with 32GB RAM and four Intel Xeon E5-2680 CPUs at 2.70 GHz

each, using CPLEX 12.8 and Java 1.8. CPLEX’s solution time limit was set to one

hour. The results of our tests are summarized below.
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Days
prior

CPLEX Steiner-
forest

Greedy Lower
bound

7 62.631 68.431 74.821 40.483
8 54.976 55.623 63.048 36.782
9 39.022 39.22 40.935 23.74
10 68.224 71.575 71.575 42.366
14 56.801 65.657 72.968 44.757
15 55.131 57.1 62.079 42.571
16 52.023 53.207 58.242 39.957
17 69.397 76.856 77.319 36.348

Table 2.1: Results from the base test (costs in thousands of dollars).

(i) Routing costs and trailer volume utilization: In this “base” test, we used our

default configuration and our industry partner’s data without any modifications.

We saturated our industry partner’s LTL network by routing skids greedily for

a few days. Then we routed skids on the next day using all three approaches.

The results are shown in Table 2.1 and Figure 2.1(a).

Our industry partner confirmed that the routing plans produced by our Greedy

heuristic were marginally lower in cost compared to their actual routing costs.

However, because the Greedy heuristic randomly picks one feasible solution

among many, its performance on larger LTL networks is not expected to be

good. CPLEX found the lowest cost routing schedules on all 8 days and although

it could not prove optimality within one hour, the solutions were within 1% of

the best bound (this is called the “MIP-gap”). The number of constraints in the

model (after CPLEX pre-solve) was about 15000, and the number of variables

was about 120000. We note that number of variables and constraints depends

on the number of skids being routed on that day. It took about 30 minutes just

to create the model using CPLEX Java APIs.
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(a) Base test

(b) Repeating traffic pattern

Figure 2.1: Routing costs and Average trailer volume utilization

The cost of the solution found by CPLEX ranged from 86.5% to 99.5% of the

cost of the solution found by the directed Steiner-forest heuristic. The Steiner-

forest heuristic ran to completion more than ten times faster than CPLEX. The

lower bound on the cost suggested by the first iteration of the Steiner-forest

heuristic was always 50% or more than the cost of CPLEX’s solution.

The average number of skids received for routing each day was about 900, with

about 10% of them removed from the problem because the Greedy heuristic

could not route them. The hybrid heuristic was sometimes unable to route a

few skids for which the Greedy heuristic found a feasible route. This is because
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the trailers commissioned by the Greedy heuristic are different from the trailers

commissioned by the hybrid heuristic. Regardless of which algorithm is used for

LTL routing, there can always be a few skids that must be removed from the

problem to find a feasible solution using the selected trailers.

Trailer volume utilization on the day of routing was satisfactory with all three

algorithms. Our industry partner expects an average trailer volume utilization

of 50% or more, with 60% or more considered good and 70% or more considered

excellent.

(ii) Repeating traffic patterns : We use the term “repeating traffic” to refer to skids

with the same origin and destination accepted for shipment almost every day.

Routing strategies that use load plans (such as our hybrid heuristic) can be

very effective when traffic patterns repeat. This is because trailers that are

commissioned to route skids from previous days are on valid routes for skids

being routed on latter days. This can facilitate freight consolidation at the

intermediate break-bulks. Moreover, recall that our hybrid heuristic uses routes

that form a minimum cost directed Steiner-forest. Repeated use of such forests

can result in cost savings.

To test this hypothesis, we replaced the skids received by our industry part-

ner at every EOL terminal on every day, with skids received on the first day.

Then we routed the skids using all three algorithms. The results are shown in

Figure 2.1(b). With repeating traffic patterns, the performance of the directed

Steiner-forest heuristic improved relative to the Greedy heuristic (compare Fig-

ure 2.1(a) with Figure 2.1(b), and was always within 9% of CPLEX’s solution.

As before, CPLEX produced the cheapest schedules but did not always result
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in the best trailer volume utilization.

(iii) Sort-to-Bin: A relatively new technique for packing skids into trailers is called

“Sort-to-Bin”. This technique is currently being tested by our industry partner.

In this scheme, several skids are packed into a single “Bin” and then the Bins are

packed into trailers. Combining skids into Bins can facilitate last mile delivery

at the EOL terminals. In our tests, we implemented a preliminary version of

this scheme using 95 cubic feet Bins, allowing up to 60 skids per Bin (with every

skid in a Bin required to have the same destination and deadline). This reduced

the number of entities being routed from about 900 a day to about 500 a day.

In practice, the restriction that all the skids in a Bin have the same deadline

is relaxed, leading to a much larger reduction in the number of entities being

routed.

The results of our tests are shown in Figure 2.2(a). Observe that the perfor-

mance of our hybrid heuristic seems to be erratic in comparison to the Greedy

heuristic. This behavior can be attributed to the difficulty of packing large Bins

compactly into trailers, which affects both the Greedy heuristic as well as our

hybrid heuristic.

(iv) Increased network densities : In order to test on a denser network, we artificially

increased the number of arcs in the network by about 10% to 75. These new

arcs connected towns in the geographical center of the network to each other,

or to large towns like Toronto and Vancouver. The carrier capacity available on

these arcs, and the time required to travel them, were assumed to be the same

as those for similar arcs (for example, the new arc from Vancouver to Saskatoon

inherited its attributes from the existing arc from Vancouver to Regina).
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(a) Sort-to-bin (b) Denser network

(c) Short routes (d) Very short routes

Figure 2.2: Routing costs for variations of the base test

We also doubled the number of skids on each day by creating a “twin” for each

skid, and doubled the number of trailers being offered by each carrier. The

resulting MIPs were far larger than the MIPs in the base test, and required

more than two hours to construct using the CPLEX Java APIs. The pre-solved

MIPs had about 30000 constraints and 400000 variables, a significant increase

in size compared to the MIPs in the base test. In comparison, the pre-solved

model used by the first iteration of the hybrid heuristic’s routing sub-problem

had about 5000 constraints and variables, and it could be formulated and solved

within minutes. This illustrates the difficulty of using the full model on large
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Days
prior

CPLEX Steiner-
forest

Greedy Lower
bound

7 109.067 116.909 121.411 45.258
8 96.723 97.691 108.706 53.295
9 83.979 86.712 91.048 44.530
10 103.596 115.018 112.042 46.257
14 99.980 107.833 116.891 55.117
15 98.377 109.432 117.895 44.684
16 82.350 82.748 85.489 42.930
17 110.711 121.219 122.144 44.262

Table 2.2: Results with increased network density (costs in thousands of dollars).

networks, and underscores the utility of our hybrid heuristic.

Table 2.2 and Figure 2.2(b) show the results of running our algorithms on these

problems. While CPLEX produced the cheapest routes after one hour, the

MIP-gaps were usually more than 5% (compared to MIP-gaps of within 1% in

the base test). Our hybrid heuristic was again more than 10 times faster than

CPLEX, and produced good quality solutions in 7 out of 8 tests. On day 11,

the hybrid heuristic produced a solution that was 2% more expensive than the

Greedy solution.

(v) Reduced route sizes : As pointed out by Erera et al. Erera et al. (2013b), many

skids have tight deadlines and have to be routed along short routes with very few

intermediate break-bulks (the same is true of our data set). To take advantage

of this observation, we reduced the maximum number of arcs in any route to 2

more than the shortest route (down from the default value of 3), and then to 1

more than the shortest route. The results of running our algorithms with these

shorter route sizes are shown in Figure 2.2(c) and (d) respectively. Observe that

CPLEX’s solution costs were consistently more than 80% (and often more than
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90%) of our hybrid heuristic’s solution costs. Our hybrid heuristic found near

optimal solutions on several days. CPLEX was able to solve these smaller MIPs

to optimality within 1 hour.

2.5 Conclusions and Future Work

In this chapter, we proposed an integer programming model for routing LTL freight.

We tested our model on our industry partner’s Canadian LTL network and found that

it can significantly lower their routing costs. Our model can also be solved with a few

carefully selected skids to generate a load plan and a lower bound on the routing cost

for each day. The lower bounds we found were always more than 50% of CPLEX’s

solution cost on our industry partner’s LTL network.

Our model can be difficult to formulate and solve on larger LTL networks. To

address this issue, we developed a routing heuristic that extends the notion of a

minimum cost directed Steiner-forest to a time-space network. Our heuristic used

ideas from functional decomposition to separate the model into a routing sub-problem

and a bin-packing sub-problem. Using the heuristic we were able to find low cost routes

in a fraction of the time needed to solve the model with CPLEX. Our heuristic proved

particularly effective with repeating traffic patterns and when the number of arcs in

each route was limited to a small number.

The key managerial insight from our experiments is that exact solution approaches

can be used for smaller Canadian LTL networks, but heuristic approaches are needed

for larger networks. The load plan should be regenerated frequently to account for

possible changes in the structure of the lowest cost directed Steiner-forest (for example

when a trailer’s capacity is exhausted).
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Some possibilities for extending our work in this chapter are as follows:

• other objectives can be included in addition to total costs, such as maximizing

trailer capacity utilization and reducing carbon dioxide emissions.

• existing heuristics for constructing minimum cost directed Steiner forests can be

extended to generate such forests in time-space networks. This would eliminate

our dependency on an MIP solver such as CPLEX.

• more sophisticated approaches can be used for bin-packing, instead of simply

using the greedy heuristic.

Another interesting topic for further exploration is how to checkpoint and restart

the computation in the face of sudden changes in the input. For example, an important

network arc may suddenly become unavailable due to traffic or weather conditions.

The Apache Spark big-data processing framework includes a mechanism (Zaharia

et al., 2012) that could be leveraged for this purpose. The following chapters focus on

solving the LTL routing problem (and other optimization problems) in a distributed

fashion on a cluster of computers, such as an Apache Spark cluster.
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Chapter 3

Search restarts for MIP solver

parallelization

3.1 Introduction

MIP solvers use a powerful algorithmic technique called Branch-and-bound (Lawler

and Wood, 1966) for solving Mixed Integer Programs (MIPs) such as the LTL routing

problem. Several commercial and open-source MIP solvers based on this technique

are available, such as CPLEX (CPLEX, 2005, 2007), Gurobi (Gurobi Optimization,

2018), and SCIP (Achterberg, 2009). These solvers proceed by repeatedly branching

the remaining subproblems in the MIP on an integer variable, where each remaining

subproblem is represented by a leaf node in the search tree (see Figure 3.1). The set

of remaining subproblems is sometimes referred to as the frontier (as in DryadOpt).

A leaf node can be pruned out of the frontier when it is established that it is incapable

of producing a solution superior to the incumbent. The computation completes when

the frontier is empty.
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Figure 3.1: A branch-and-bound search tree being explored by a MIP solver
(frontier shown shaded). In the text, a node numbered “i” is referred to as “Nodei ”.

3.1.1 MIP solver Parallelization

For MIPs that are very complex and difficult to solve on a single computer, the

problem can be distributed on a cluster of computers by first “ramping it up” into

a suitably large frontier1. The frontier is then partitioned into roughly equal sized

subsets, and one such subset is migrated to each computer in the cluster. Some leaf

nodes may be held in a node pool for later assignment.

On each computer, there is a single worker process that is responsible for sequenc-

ing the subproblems (i.e., the leaf nodes) that migrated to it. Each worker prioritizes

its subproblems using heuristics such as best-first or depth-first. The highest pri-

ority subproblem is solved for a pre-configured time quantum by assigning it to a

MIP solver, before the next subproblem in the priority sequence is given a turn (see

Figure 3.2). The same subproblem (which is now a tree rooted at a leaf node that mi-

grated to this computer) may get multiple turns at solution if the other subproblems

continue to have lower priority as per the sequencing heuristic. Any integer feasible

1There are many variations to the simple theme for distribution we describe here. See Ralphs et
al. (Ralphs et al., 2018) for other variations, terminology, and details pertaining to MIP distribution.
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Figure 3.2: Flow chart for sequencing a collection of subproblems.

solution found by the MIP solver is used to update the local incumbent, which is the

best solution known to the worker. The local incumbent also serves as a cutoff while

solving the subproblems. A subproblem is completely solved when all its leaves get

pruned.

This prioritized sequencing of subproblems on each computer is paused period-

ically when a synchronization point is reached, during which all the workers in the

cluster are synchronized with each other by a master process. At this stage, load

across the cluster can be balanced as needed by collecting some leaf nodes from bur-

dened workers and migrating those nodes away to relatively less burdened workers

(or into a node pool). The local incumbents are compared and the best one is saved

as the global incumbent – the best solution found thus far. The new global incumbent

is then used to update the local incumbent on every worker before starting another

solution iteration. As in the sequential (i.e., non-distributed) case, the computation

completes (and these iterations stop) when there are no leaf nodes left to branch, and

all the workers become idle.
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3.1.2 Adapting branching strategies for MIP distribution

Implementations of distributed MIP usually treat the MIP solver as a “black-box” –

attention is mainly focused on orchestrating the distributed computation. Attempts

are made to minimize the network communication overhead (as in ALPS (Xu et al.,

2005)), and to fully utilize the available compute capacity by using dynamic load

balancing as in ParaLEX (Shinano and Fujie, 2007). Different pooling strategies are

used to maintain collections of pending subproblems. For example, ParaLEX uses

node pools while DryadOpt uses subtree parallelism, and ParaSCIP (Shinano et al.,

2016b) uses a combination of both.

We take the view that the internal workings of MIP solvers need to be taken

into careful consideration for effective MIP distribution. In particular, new branch-

ing strategies need to be devised (and existing ones adapted as needed) in order to

make distribution more effective. This is because existing branching strategies were

not designed with distribution in mind. For example, the popular Pseudo-cost based

branching strategy (Bénichou et al., 1971) relies on information updates from various

parts of the search tree. Such updates are not readily available during a distributed

computation. This can lead to a large number of inaccurate branching decisions and

(consequently) to sublinear speedups upon distribution.

In this chapter, we discuss how popular branching strategies can be adapted for

MIP distribution. We start with a review of existing literature in Section 3.2. A cat-

egorization of branching strategies appears in Section 3.3, along with some proposed

extensions. Section 3.4 details a simple distributed implementation we used to test

one of our proposals. We present results from our experiments in Section 3.5, and

conclude in Section 3.6.
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3.2 Literature Review

Ralphs et al. (Ralphs et al., 2018) present an excellent summary of the state-of-the-

art in distributed MIP. They note that “most state-of-the-art [MIP] solvers generate

a wide range of information while searching one part of the tree that, if available,

could inform the search in another part of the tree”. Since information updates are

not instantly available in a distributed computation, its search tree usually contains

more nodes than the search tree of the corresponding sequential (i.e., non-distributed)

computation. This phenomenon is called redundant work, and it results in sublinear

speedups upon distribution (Ralphs et al., 2003, 2018).

One aspect of the search that can be adversely effected by the lack of instant

information updates is the branching strategy. An example is the popular Pseudo-

cost based branching strategy introduced by Benichou et al. (Bénichou et al., 1971).

Pseudo-cost branching keeps a history of the success of variables on which branching

has already happened (Achterberg et al., 2005). Pseudo-costs must be estimated for

variables that do not have any branching history associated with them, for example by

using objective function coefficients (Linderoth and Savelsbergh, 1999; Glankwamdee

and Linderoth, 2006). However, poor branching decisions made using inaccurate esti-

mates can double the size of the search tree with each bad decision, especially when

these decisions are made near the root of the search tree (Glankwamdee and Lin-

deroth, 2006; Forrest et al., 1974; Linderoth and Savelsbergh, 1999).

This problem can be more serious in a distributed computation than in a sequen-

tial one because Pseudo-cost information can only be shared periodically when all the

computers in the cluster are synchronized with each other. In the meantime, inaccu-

rate branching decisions can be made on every computer. A more detailed discussion
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of Pseudo-cost branching can be found in (Linderoth and Savelsbergh, 1999).

Patel and Chinneck (Patel and Chinneck, 2007) develop branching strategies that

only use properties of the node under branch by basing their branching decision on

the constraint structure at the node. These strategies are especially useful for find-

ing feasible solutions to MIPs. Patel and Chinneck also cite the following important

observation from Linderoth and Savelsbergh (Linderoth and Savelsbergh, 1999) and

Bénichou et al. (Bénichou et al., 1971):

“Pseudo-costs of an integer variable in a particular branch direction remain the

same in a branch-and-bound tree, with the exception of a few nodes. This means that

once the Pseudo-cost of a variable is computed, it can be used throughout without

having to recompute it at other nodes”.

Another popular branching strategy that only uses the properties of the node

under branch is full strong branching. Strong branching was introduced in CPLEX

7.5 and is discussed in (Achterberg et al., 2005; Applegate et al., 1995; Refalo, 2004;

Klabjan et al., 2001). Based on Patel and Chinneck’s observation, a variable that

has been a strong branching candidate at one node need not be considered again for

strong branching at another node because its Pseudo-costs can be computed at the

first node where it was a candidate, and reused thereafter. This variation of strong

branching can be used to speed up full strong branching and is an example of the

reliability branching technique proposed by Achterberg et al. (Achterberg et al., 2005),

with every initialized Pseudo-cost considered reliable throughout the computation.

However, CPLEX API’s currently do not allow users to restrict the strong branching

candidate set by excluding variables whose Pseudo-costs have already been initialized.

An important class of MIPs called satisfiability propositions (SAT problems) have
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very effective branching heuristics that are based only on the properties of the node

under branch. These heuristics include the DLIS and MOMS heuristics and their

variants (Marques-Silva, 1999). Pseudo-Boolean optimization problems are another

important class of MIPs that can be converted into SAT problems and solved using

the same branching heuristics (see Eén and Sorensson (Eén and Sorensson, 2006) for

details).

In Section 3.3, we discuss some modifications to existing branching strategies

which can make them more suitable for use in distributed MIP. We also outline a

technique for a-priori decomposition of the MIP. A-priori decomposition of MIPs is

discussed in detail by Bussieck et al. in (Bussieck et al., 2009).

A simple implementation of distributed MIP that we have used to test our pro-

posals appears in Section 3.4. It uses a variation of the static decomposition approach

described by Malapert et al. (Malapert et al., 2016). The master machine decomposes

the original problem into a collection of subproblems that are then distributed to the

workers. Details of our implementation appear in Section 3.4.

CHiPPS (Xu et al., 2009) can be used for distributing tree search algorithms.

It includes BiCePS (which supports relaxation based branch-and-bound algorithms)

and a library called BLIS that provides functionality for solving MIPs. Detailed de-

scriptions can be found in (Xu et al., 2009). ParaSCIP (Shinano et al., 2011, 2016b)

is a distributed implementation of the SCIP solver. Other projects in ParaSCIP’s

family include ParaLEX (Shinano and Fujie, 2007; Shinano et al., 2008) which dis-

tributes CPLEX over an MPI based cluster, ParaExpress (Shinano et al., 2016a), and

PUBB (Shinano et al., 2003). DryadOpt (Budiu et al., 2011) is an implementation of

distributed MIP over the data-parallel cluster Dryad (Isard et al., 2007). Some other
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noteworthy implementations of distributed MIP include FATCOP (Chen and Ferris,

2001), PEBBL (Eckstein et al., 2015), and BOB++ (Galea and Le Cun, 2007).

3.3 A Categorization of Branching Strategies

In general, branching strategies that do not rely on information from other parts of

the search tree can be more suitable for MIP distribution. Such strategies could result

in every node producing the same two children regardless of whether the computation

is distributed or not (as long as the cuts and any preprocessing being applied at every

node are the same in both computations). This in turn could lead to less redundant

work because the search trees of the distributed and sequential computations would

be almost identical. Based on this intuition, branching strategies can be categorized

as follows:

i) The first category includes strategies that only use properties of the node under

branch. Several such branching strategies are already available in CPLEX. One

example is the aforementioned full strong branching strategy which makes very

accurate branching decisions but can be time consuming. Strong branching is

useful for making important branching decisions (e.g., near the root node of the

search tree).

Another strategy is to branch on the least infeasible variable in the linear re-

laxed solution of the branching node. CPLEX documentation notes that least

infeasible branching is useful for finding feasible solutions but is slow to reach

the optimal integer solution. It is therefore of limited utility, even though it

makes branching decisions quickly.
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Lastly, the branching strategies of Patel and Chinneck fit into this category, as

do SAT branching heuristics such as DLIS and MOMS. In Chapter 4, we use

SAT branching heuristics to solve pseudo-Boolean problems.

ii) The second category includes branching strategies which rely on information

from other parts of the search tree, but can be modified to reduce their reliance

on such information. One example is Pseudo-cost based branching. As noted

in Section 3.2, a variation of this strategy could be to initialize the Pseudo-

costs for a large number of variables using strong branching, before starting

the distributed computation. A central repository of unchanging Pseudo-costs

could be created and used throughout the distributed computation. We test this

variation of Pseudo-cost branching in Section 3.5.

Observe that the process of initializing the Pseudo-costs can itself be distributed

relatively easily. This can be done for example by partitioning the set of variables

in the model, and assigning one subset to each computer in the cluster for

Pseudo-cost initialization.

iii) As in any distributed computation, an attempt could be made to partition the

subproblems of the orignal MIP into independent subsets, so that the subprob-

lems in every subset have no variables in common with the subproblems in any

other subset. If one such subset were assigned to each computer in the cluster, it

would obviate the need for information exchange between the computers as far

as branching is concerned. Independent subsets would also need to be identified

every time dynamic load balancing is performed.

To the best of our knowledge, none of the existing branching strategies fit into
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this category. CPLEX’s branching strategies emphasize improvement in the dual

bound, especially when the user’s emphasis is not on finding feasible solutions

(refer to CPLEX documentation for the available emphasis configurations). It

can be beneficial to prioritize variables that not only tighten the dual bound, but

also help us quickly arrive at a set of leaf nodes that can easily be partitioned

into independent subsets as above.

Of course, such partitioning is hard to achieve in practice. Nonetheless, some

relief is offered by the observation that most of the variables in a MIP are never

used for branching. Therefore, only some of the most “important” variables

could be considered when creating the independent subsets. Pseudo-cost esti-

mates could be used to separate important variables from the relatively less

important ones. Another approximation could be to consider only those vari-

ables that are fractional in the linear relaxed solution of at least one subproblem.

Since SAT branching heuristics emphasize constraints containing a small num-

ber of variables, some constraints could be ignored when partitioning a SAT or

Pseudo-Boolean problem.

In Chapter 5 we analyze a technique called Controlled Branching which can be

used to combine all the subproblems in a given “independent” subset into a

single tree, thereby partitioning the MIP search tree into a collection of inde-

pendent search trees.
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3.4 Test setup

We distributed CPLEX over a small TCP-IP cluster in order to test our proposal of

using a central repository of Pseudo-costs as described in Section 3.3. Our implemen-

tation can be considered an extension of the static decomposition approach described

by Malapert et al. (Malapert et al., 2016). Various aspects of our implementation are

described below in more detail.

3.4.1 Map and Reduce

Our distributed implementation is built on top of a TCP-IP cluster and uses a “Map-

Reduce” (Dean and Ghemawat, 2008) paradigm. One each computer, there is single

worker responsible for sequencing the subproblems assigned to it during the Map

cycle. Subproblems are prioritized in a best-first manner and the selected subproblem

is assigned to CPLEX for a preconfigued time quantum (default 2 minutes). Each Map

cycle lasts 10 minutes (this is configurable) during which time multiple subproblems

can be assigned to the MIP solver.

Each subproblem has a unique ID and a status associated with it. The status

can take on the values “completed”, “in-progress”, or “untouched”. A completed

subproblem is one which has been solved to provable optimality or infeasibility. An

in-progress subproblem is one that has been assigned to CPLEX, but is neither solved

to provable optimality nor proven infeasible. An untouched subproblem is a set of

branching conditions representing a leaf node. These branching conditions can be

applied on the original MIP model and the updated model assigned to CPLEX.

At the end of the Map cycle, every worker sends a status report to a master

machine (this is the “Reduce” step). The status report includes the lowest dual bound
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Worker
Before After

Completed In progress Untouched Completed In progress Untouched

Worker1 S1, S2 S3 S4, S5 S1, S2 S3 S8

Worker2 S6, S7 None S8 S6, S7 None S4, S5

Worker3 None S9, S10 None None S9, S10 None

Table 3.1: An example of workload reassignment with 3 workers in the cluster.

of all the subproblems assigned to the worker, the best feasible solution solution known

to the worker (if any), and the ID and status of each subproblem that is currently

assigned to it. The master machine waits until status reports have been received

from all the workers, and updates the global incumbent and the lowest known dual

bound. In preparation for the next Map cycle, the master then sends each worker

the updated global incumbent and a new assignment of subproblems. The new global

incumbent is used to update the local incumbent on every computer, and is used as a

cutoff during the next Map cycle. These Map-Reduce cycles stop when every worker

reports that all its assigned subproblems are complete.

3.4.2 Load balancing

The procedure for reassigning subproblems to each worker is as follows. First, a list is

assembled with the IDs of all the untouched subproblmes in the cluster. The master

also makes a note of the in-progress subproblems on each worker. The untouched

subproblems are then assigned one by one to the worker with the smallest remaining

number of pending subproblems. Here, pending subproblems include both in-progress

subproblems and untouched subproblems that have just been reassigned.
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An example of this procedure appears in Table 3.1, where we assume 3 workers

in the cluster. Worker1 is reporting that subproblems S1 and S2 are complete, S3

is in-progress, and S4 and S5 are untouched. Similarly Worker2 is reporting that

subproblems S6 and S7 are complete, while S8 is untouched. Worker3 is reporting

that S9 and S10 are both in-progress.

First, a list of untouched subproblems is prepared with S4, S5, and S8 included in

it. The in-progress subproblems are left with the same worker that was solving them.

Since Worker2 has no pending subproblems, an untouched subproblem (say S4) is

assigned to it. The next untouched subproblem S5 is assigned to either Worker1 or

Worker2, since both of them now have 1 pending subproblem. If S5 gets assigned to

Worker2, then the last untouched subproblem S8 gets assigned to Worker1 which only

has 1 pending subproblem. Table 2 shows the result of this reassignment operation,

where every worker ends up with 2 pending subproblems.

Upon receiving its updated assignment, each worker prioritizes its new assign-

ment of subproblems which are either already in-progress, or untouched.

3.4.3 Ramp-up

Our ramp-up is run on the master computer until the number of leaf nodes reaches a

certain threshold. This threshold is configured to a moderately large number to allow

for some dynamic load balancing during the early stages of computation. Our default

is to assign 30 subproblems to each computer in the cluster.

All the leaf nodes are sent to every worker in the cluster at the end of ramp-up.

Each leaf node has a unique ID and is represented by the branching conditions needed

to arrive at it. Every worker is informed of its assignment, which is an equal share of
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the leaf node set. This ramp-up operation is not very expensive because our cluster

is small. On larger clusters a subproblem should be copied to a worker only if it is

assigned to that worker.

Note that a subproblem can benefit from cut generation and presolve routines

being reapplied on it once the distributed computation starts, especially when the

number of branching conditions needed to create the subproblem is large. However,

we do not expect this to be a factor in our tests since our ramp-ups are limited to

about 150 leaves.

3.4.4 Pseudo-cost repository

In order to create a repository of Pseudo-costs, the MIP is solved using CPLEX for 1

hour. A control callback is used in single-threaded mode to collect the up and down

Pseudo-costs for each variable that is being branched upon. For all such variables, the

up and down Pseudo-costs are combined into a single Pseudo-cost using a weighted

average (the weight is configurable). Weighted averaging is needed because CPLEX

API’s do not provide a single Pseudo-cost value for each variable.

There are many possibilities for weighted averaging of the Pseudo-costs. We simply

use the larger of the up and down Pseudo-costs, an option that is also available

in GAMS/XPRESS. This choice of weight works reasonably well for some MIPs in

Section 3.5. The weights used by SCIP are mentioned by Achterberg et al. (Achterberg

et al., 2005). Other possibilities for combining the up and down Pseudo-costs are noted

by Atamtürk and Savelsbergh (Atamtürk and Savelsbergh, 2005).

Our Pseudo-cost repository is implemented using CPLEX variable priority lists. A

branching priority is established for all the variables that were branched upon using
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the weighted Pseudo-costs calculated above, with higher priority given to the larger

Pseudo-cost values. Our implementation can also be configured truncate the resulting

priority list to a smaller number of variables.

This priority list is used during ramp-up, and is also attached to every subproblem

in the cluster once the distributed computation begins. Note that we configure CPLEX

to use Pseudo-cost based branching both while collecting the Pseudo-costs, and during

the distributed computation.

3.4.5 Distributed mip-gap

By default, CPLEX treats the incumbent solution as optimal when it is within 0.01%

of the dual bound. This configurable percentage is called the relative mip-gap. In our

implementation, the master computer can halt the distributed computation when the

dual bound is within a configurable percentage of the global incumbent. We call this

parameter the distributed mip-gap.

Recall that each worker supplies its local incumbent as a cutoff to CPLEX (and

not as a mip-start)2. Therefore, individual subproblems are still solved until it is

established that they cannot produce a solution superior to the cutoff. An alternate

implementation could be to discard subproblems when their dual bound is within

0.01% of the cutoff, or to use such subproblems only for finding feasible solutions.

2Note that feasible solutions for one subproblem are not valid mip-starts for another subproblem.
This is because subproblems are created by changing variable bounds in the MIP model.
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3.5 Experimental results

The objective of our experiments is to verify that using a Pseudo-cost repository

leads to good scaling upon distribution. We used the distributed implementation

outlined in the previous section with CPLEX 12.10 as our MIP solver. We tested

with some hard problems from MipLib’s Benchmark collection Gleixner et al. (2019);

Koch et al. (2011) using pre-solved versions of the MIPs. CPLEX’s search strategy

was configured to “traditional” and its solution finding heuristics were disabled. The

branching strategy was set to “Pseudo-costs”.

Our tests were conducted on a cluster of 5 Dell PowerEdge R330 Servers running

CentOS 7.4, each equipped with 192 GB of RAM and two Intel Xeon E3-1240 v5

3.5GHz CPUs having 8 cores each. These hyper-threaded cores allow CPLEX to run

32 threads on each server. Our tests are written in Java 1.8 and the source code is on

the public internet. Log files from our tests are available upon request.

Results are shown in Table 3.2 and Table 3.3, where only Table 3.2 uses variable

priority lists. Columns T1 and T2 show the time taken to solve the MIP to provable

optimality using the CPLEX emphasis shown. All times are in minutes. Speedup due

to distribution was calculated as equal to T1/T2. Ideally, we would like the speedup

to be 5.

The column “Ramp-up” shows the number of leaves in the ramped-up tree. The

number of subproblems assigned to each worker initially is therefore one-fifth of this

number. The columns “Solution” show the best integer-feasible solutions found. The

time taken to find the optimal integer-feasible solution (pending proof of optimality)

is shown in column Topt.

The column TQ shows the time quantum duration. This value was increased from

53



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

its default value of 2 minutes when more time was needed to generate cuts and run

preprocessing routines at the root node of the MIP. Not allowing CPLEX sufficient

time can result in an infinite-loop problem, with root node preprocessing attempted

repeatedly but never completed successfully.

For some tests, we first ran the distributed computation for 10 minutes with

CPLEX emphasis set to feasibility and only 1 subproblem assigned to each worker.

The best feasible solution found (shown in the “Init” column) was treated as the

starting solution known before ramp-up. This small investment of time can result

in significantly less non-critical work performed during the distributed computation.

Non-critical work is the work that would never have been done if the optimal solution

was known in advance (Ralphs et al. Ralphs et al. (2003)).

The “Efficiency” column shows the fraction of time the distributed computation

spent doing some work (as opposed to simply idling). This value is calculated using

the formula 1− (TQ ∗N/T2), where N is the average number of time quanta wasted

by each worker for lack of work. Note that our formula is only an estimate, since

workers can report that they are idle even if the time remaining in a Map cycle is less

than the time quantum. Similarly, workers can report that they are “working” even

if they are wasting time doing non-critical work.

Observations from our experiments in Table 3.2 are summarized below:

1. Our distributed computation produced good speedups when compared to the

corresponding sequential computation that used the same variable priority list.

However, one problem is the poor utilization of cluster resources as indicated by

the low efficiency. Another problem is the amount of non-critical work performed

by the distributed computation, which can be large when a strong solution is
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MIP
Sequential Distributed

T1 Solution Emphasis Ramp-up Init TQ T2 Solution Topt Speedup Efficiency

cryptanalysiskb128n5obj16 710 None 0
25 None 20 180 None None 3.9 0.64

25 None 20 180 None None 3.9 0.58

dws008-01 2091 37412.60 0
150 None 2 290 37412.60 260 7.2 0.79

750 None 2 190 37412.60 150 11.0 0.75

neos-3754480-nidda 552 12941.74 0
150 None 2 80 12941.74 40 6.9 0.33

750 None 2 30 12941.74 10 18.4 0.57

neos-4954672-berkel 546 2612710 0

150 None 2 200 2612710 20 2.7 0.25

750 None 2 160 2612710 10 3.4 0.45

1500 None 2 130 2612710 10 4.2 0.55

neos-5093327-huahum 206 6260 0
150 None 2 60 6260 20 3.4 0.61

750 None 2 50 6260 30 4.1 0.90

opm2-z10-s4 39 -33269 0

150 None 2 50 -33269 50 0.8 0.46

150 -32286 2 40 -33269 40 1.0 0.33

150 -33269 2 20 -33269 10 2.0 0.66

25 None 2 40 -33268 30 1.0 0.55

25 -32286 2 30 -33269 30 1.3 0.48

25 -33269 2 20 -33269 10 2.0 0.30

roi5alpha10n8 1292 -52.32 0
150 None 2 500 -52.32 440 2.6 0.54

150 -46.41 2 340 -52.32 230 3.8 0.75

LTL 11 March 2016 162 75082.81 2
150 75082.8083 2 80 75082.8083 10 2.0 0.57

750 75082.8083 2 70 75082.8083 10 2.3 0.81

splice1k1 3218 -394 2 150 None 5 210 -394 70 15.3 0.45

b1c1s1 3181 24544.25 3
150 None 2 270 24544.25 210 11.8 0.75

750 None 2 200 24544.25 60 15.9 0.93

sing326 74 7753697.91 3 150 7753714.75 5 30 7753678.54 20 2.5 0.83

traininstance2 4533 71820 3 750 None 5 1750 71820 1720 2.6 0.65

Table 3.2: Solving benchmark problems with CPLEX (using variable priority lists).
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MIP
Sequential Distributed

T1 Solution Emphasis Ramp-up Init TQ T2 Solution Topt Speedup Efficiency

cryptanalysiskb128n5obj16 688 None 0
25 None 20 60 None None 11.5 0.20

25 None 20 80 None None 8.6 0.40

dws008-01 236 37412.60 0
150 None 2 100 37412.60 60 2.4 0.38

750 None 2 140 37412.60 20 1.7 0.40

neos-3754480-nidda 691 12941.74 0 150 None 2 30 12941.74 30 23.0 0.51

neos-4954672-berkel 1365 2612710 0 150 None 2 960 2612710 300 1.4 0.37

neos-5093327-huahum 285 6260 0 150 None 2 90 6260 20 3.2 0.35

opm2-z10-s4 600 -33269 0 150 None 2 250 -33269 250 2.4 0.35

roi5alpha10n8 118 -52.32 0 150 None 2 310 -52.32 180 0.4 0.69

LTL 11 March 2016 120 75083.61 2 150 75082.8083 2 220 75082.8083 10 0.55 0.35

splice1k1 104 -394 2 150 None 5 90 -394 30 1.2 0.27

b1c1s1 657 24544.25 3
150 None 2 90 24544.25 70 7.3 0.76

750 None 2 130 24544.25 100 5.1 0.90

sing326 60 7753691.13 3 150 7753714.75 5 80 7753676.17 40 0.8 0.91

traininstance2 224 71820 3 750 None 5 40 71820 20 5.6 0.75

Table 3.3: Solving benchmark problems with CPLEX (no priority lists).
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not found quickly. Both of these problems can result in reduced speedups.

2. The problem of low efficiency can sometimes be solved by increasing the number

of leaf nodes assigned to each worker. This allows for load balancing well after

the ramp-up, and can result in higher efficiency and speedups. Examples include

neos-3754480-nidda, neos-5093327-huahum, and neos-4954672-berkel. How-

ever, increasing the number of leaf nodes assigned to each worker can also be

counterproductive for some MIPs if more non-critical work is performed as a

result. An example is the MIP opm2-z10-s4 where a lot of time was needed to

find a strong solution, thereby resulting in more non-critical work.

3. A large value of Topt (almost equal to T2) usually indicates a large amount of non-

critical work. Examples include the MIPs opm2-z10-s4 and roi5alpha10n8.

Starting with a good feasible solution can increase the speedup by reducing

non-critical work. In fact, the highest speedups for opm2-z10-s4 were obtained

when the distributed computation was deliberately initialized with the well-

known optimal solution for the MIP.

Finding a strong solution quickly can even lead to a super-linear speedup (for

e.g., splice1k1 and neos-3754480-nidda). It can also be useful for reducing

the mip-gap.

4. With CPLEX emphasis set to “best-bound”, the computation resembles a best-

first search. In fact, for b1c1s1 the sequential computation found a feasible solu-

tion only after 40 hours. The corresponding distributed computation benefited

from finding a good solution sooner.
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5. The MIP cryptanalysiskb128n5obj14 was ramped-up to only 25 leaves be-

cause its ramp-up was slow. Both the time quantum and Map cycle time had

to be increased to 20 minutes to allow sufficient time for cut generation3. While

non-critical work is not a concern for infeasible MIPs, efficiency continues to be

an important consideration. Dynamic load balancing should be used to achieve

better efficiency. Our tests also indicate that performance variability is a concern

for this MIP when a branching priority list is not used.

6. Best-first sequencing is effective in iterating through a collection of subproblems

when the dual bounds of the subproblems can be tightened steadily. Examples

include neos-3754480-nidda and neos-4954672-berkel. However, for some

MIPs there can be a large number of subproblems with the same linear relax-

ation objective (e.g., when there are no variables in the objective function). For

other MIPs it could be difficult to tighten the best subproblem’s dual bound

quickly. This can result in some subproblems getting multiple turns at the MIP

solver while other subproblems wait indefinitely.

In such cases, good feasible solutions in the waiting subproblems can be at risk

of not being discovered for a long time. This in turn can make it harder to

narrow the mip-gap quickly. The node sequencing strategy should be altered to

set a limit on the number of consecutive turns at the MIP solver a subproblem

is given.

Comparing the results from Table 3.3 with those in Table 3.2 leads to the following

observations:

3Our implementation includes the option of disabling cut generation.
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• When variable priority lists were not used (Table 3.3), speedups seemed to de-

crease for some MIPs with more leaves in the ramp-up. This decrease in speedup

can be attributed to more redundant work being performed by the distributed

computation, due to a larger number of sub-optimal branching decisions being

made across the cluster. Examples include the MIPs b1c1s1 and dws008-01 –

observe the reduced speedup in spite of improved efficiency.

On the other hand, speedups improved for some MIPs due to improved effi-

ciency when variable priority lists were used (Table 3.2). An example is the

MIP neos-4954672-berkel.

• In Table 3.3, the speedups achieved for some MIPs were very low. Examples in-

clude neos-4954672-berkel, roi5alpha10n8, and sing326. In general, higher

speedups were achieved in Table 3.2.

• A simplified version of the LTL routing problem (with routes allowed to have at

most 3 arcs) was also used as a test case. We were able to achieve much better

speedups when variable priority lists were used. For this problem, we limited

the priority list to 20 variables.

3.6 Conclusions and Future Work

In this chapter, we categorized some branching strategies often used for solving Mixed

Integer Programs. We tested our proposal of using a central repository of Pseudo-

costs. Results indicate that our proposal can help achieve good speedups upon dis-

tribution. However, inefficient use of cluster resources (due to static load balancing)

and non-critical work can both reduce the speedup. Our recommendation is to use
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dynamic load balancing, and to spend some time initially finding feasible solutions

(regardless of the user’s choice of MIP emphasis).

A more sophisticated scheme is needed for combining the up and down Pseudo-

costs. One possibility is to learn how to combine the up and down Pseudo-costs by

recording those values and the corresponding branching decisions made by CPLEX at

several nodes for many benchmark MIPs. Other properties of the node under branch

may also influence the branching decision. We are currently working on this project.

Search restarts are a powerful feature of commercial MIP solvers. CPLEX dynamic

search implements search restarts by using information obtained from the current

search tree. Our approach of using a central repository of pre-caluclated pseudo-costs

is an example of such a restart. In a distributed computation, restarts can be enhanced

to utilize information obtained from search trees on other computers as well.

Another important avenue for future research is to devise strategies for partition-

ing a given MIP into independent subsets of leaf nodes, as discussed in Section 3.3.

One approach for binary MIPs could be to represent the MIP as a graph with variables

at the vertices, and links in the graph joining variables that occur together in some

constraint. Independent subgraphs could then be identified using graph partitioning

heuristics.

Testing on larger clusters is a future work item for us. Our proposals can also be

integrated into existing implementations such as ParaLEX and ParaSCIP.
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Chapter 4

CLTL: A CPLEX based solver for

the LTL routing problem

4.1 Introduction

In this chapter, we describe an unconventional approach to solving the LTL routing

problem with CPLEX. By incorporating branching heuristics used for solving satisfia-

bility propositions (Marques-Silva, 1999) into CPLEX, we show that the LTL routing

problem and some other pseudo-Boolean problems from the MIPLIB library (Koch

et al., 2011; Gleixner et al., 2019) can be solved in times comparable to CPLEX in its

default configuration. Motivation for taking this approach to branching comes from

our observation in Chapter 3 that branching decisions made only using the properties

of the node being branched can be beneficial for achieving improved scaling upon

distribution.

In our experience, some important routing problems tend to be Pseudo-Boolean

Optimization Problems (PBOs) (Roussel and Manquinho, 2009; Eén and Sorensson,

61



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

2006). A similar observation is made by Aloul et al. (Aloul et al., 2002a) who use

routing problems for testing their PBO solver (Aloul et al., 2002a,b). Our formulation

of the LTL routing problem is a PBO and was described in Chapter 2. PBOs are MIPs

in “n” binary variables having the following structure:

Minimize cTx

s.t. Ax ≥ b

where xi ∈ {0, 1}, ∀i ∈ {1..n}

Equality constraints can be represented by a pair of inequalities. Each constraint

in a PBO with “m” constraints is therefore of the following form:

aj1x1 + aj2x2 + ... + ajnxn ≥ bj, ∀j ∈ {1..m}

There are three popular approaches for solving PBOs (Aloul et al., 2002a):

1. The first approach is to treat the problem as a generic MIP, and assign it directly

to an integer programming solver like CPLEX or Gurobi.

2. Another approach is to use a native support solver like PBS (Aloul et al., 2002b)

or Pueblo (Sheini and Sakallah, 2005).

3. The third approach is to convert the problem into a Satisfiability Proposition

(SAT) problem, and then use a SAT solver like zChaff (Fu et al., 2004), Satz (Li

and Anbulagan, 1997), Glucose (Audemard and Simon, 2009), or Sato (Zhang,

1997). The reader is referred to (Aloul et al., 2002a; Eén and Sorensson, 2006) for

details of the conversion process. SAT problems are a special class of Constraint

Programming problems (Freeman, 1995; Marques-Silva, 1999; Zhang and Malik,

2002; Gomes et al., 2008; Heule and van Maaren, 2009).
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In this chapter, we develop a CPLEX based solver called CLTL which uses a SAT

converted version of the PBO to guide CPLEX’s branching for some time. In sec-

tion 4.2 we present an overview of SAT, PBO, and MIP literature with a focus on

branching heuristics. Section 4.3 describes our notion of trigger equivalence and dom-

ination. Section 4.4 details the implementation of CLTL. Results from computational

experiments are presented in section 4.5. We conclude in section 4.6.

4.2 Literature Review

Aloul et al. (Aloul et al., 2002a) note that PBO solvers need to answer the following

two basic questions:

1. How should Pseudo-Boolean constraints be handled?

2. How should the objective function be accounted for?

One approach for handling Pseudo-Boolean constraints is to convert them into

SAT constraints in the conjunctive normal form (CNF), using well known techniques

such as Tseitin transformations (Eén and Sorensson, 2006), binary decision diagrams

(BDDs) (Eén and Sorensson, 2006), or Boole’s expansion theorem (Brown, 2012).

This is the approach taken by MINISAT+ (Eén and Sorensson, 2006). A linear time

algorithm for transforming linear inequalities into SAT constraints appears in (Warn-

ers, 1998). The resulting SAT problem can then be solved using SAT solvers such as

Chaff (Moskewicz et al., 2001).

Specialized PBO solvers such as PBS (Aloul et al., 2002b) and Pueblo (Sheini and

Sakallah, 2005) can work with Pseudo-Boolean constraints directly, without any need

to convert them into CNF format. Nonetheless, they are still “SAT powered” (Aloul
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et al., 2002a) (i.e., they rely on many of the techniques used for solving SAT prob-

lems). Since SAT solvers are not equipped to handle an objective function, a common

strategy is to solve the problem repeatedly – each time adding a constraint requiring

the next feasible solution (if any) to have a better objective value than the current so-

lution. This strategy is used by both PBS (Aloul et al., 2002b) and MINISAT+ (Eén

and Sorensson, 2006).

An alternate way to handle the objective function is to use a bounding tech-

nique, such as the linear relaxed objective of the search tree node. Other options

include Lagrangian relaxation and reduced costs. Although it is inefficient to use

these techniques when the problem has no objective function (Sheini and Sakallah,

2005), Branch-and-Bound based MIP solvers become a viable alternative when an

objective function is present. Brady and Catanzaro (Brady and Catanzaro, 2008)

solve PBOs using CPLEX, but invoke MINISAT+ periodically in order to check if

the current solution is optimal.

4.2.1 Heuristics for branching

Both MIP and SAT literature recognize the impact of branching strategies on solution

time. Achterberg et al. (Achterberg et al., 2005) note that the success of a Branch-

and-Bound algorithm strongly depends on the strategy used to select the variable to

branch on. Silva (Marques-Silva, 1999) discusses the impact of branching strategies

on SAT solvers, and details the MOMS (Freeman, 1995; Zabih and McAllester, 1988),

BOHM (Buro and Büning, 1992), Jeroslow-Wang (Jeroslow and Wang, 1990), and

literal count heuristics such as DLIS and its variants.

In a classic paper, Barth (Barth, 1995) describes the OPBDP solver for PBOs and
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notes the need for branching strategies that simultaneously reduce the search space

and improve the dual bound. OPBDP branches on the variable with the maximal

coefficient in the PBO’s objective function. Our experiments indicate that branch-

ing decisions for PBOs can be made solely based on the constraint structure at the

branching node. In other words, it is adequate to remove a large amount of infeasible

space from the branching node which is selected in a best-first manner by the MIP

solver1.

Look-ahead based solvers for SAT (Heule and van Maaren, 2009) use Boolean

Constraint Propagation (BCP) for making branching decisions. BCP can result in

more accurate branching decisions because it takes into account all the variables that

get fixed at a value as a result of the branch. On the flip side, BCP can be time

consuming. Freeman (Freeman, 1995) describes BCP in more detail along with some

simplifications that can be used to speed up the process, such as binary BCP which

only considers constraints having 2 variables. Another approach is to restrict the set of

variables using which BCP is performed; an example is the PROP heuristic developed

by Li and Anbulagan (Li and Anbulagan, 1997). CLTL is a look-ahead based solver

and its branching heuristics use the notion of trigger equivalence and domination to

restrict the variable set for performing BCP (see Section 4.3).

Heule et al. (Heule et al., 2011) show that it can be beneficial to use look-

ahead techniques near the root node of the search tree. Branching literature for

MIPs also recognizes the importance of making accurate branching decisions near

the root of the search tree. Forrest et al. (Forrest et al., 1974) and Glankwamdee

and Linderoth (Glankwamdee and Linderoth, 2006) note that branching decisions

1CPLEX can be configured to search in a strict best-first manner, although this is not its default
configuration.
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made earlier on in the solution process are more important than the ones made later.

Inaccurate branching decisions made near the root of the search tree can double its

size with each bad decision (Glankwamdee and Linderoth, 2006; Forrest et al., 1974;

Linderoth and Savelsbergh, 1999).

Strong branching is a look ahead based branching technique for MIPs that was

introduced in CPLEX 7.5, and is discussed in (Achterberg et al., 2005; Applegate

et al., 1995; Refalo, 2004; Klabjan et al., 2001). Like BCP, strong branching is time

consuming. Thus it can be useful to restrict the number of variables which are con-

sidered as strong branching candidates. Although CPLEX currently does not permit

users to select strong branching candidates, we envision that variables shortlisted for

BCP can be used as strong branching candidates in the future. Moreover, either BCP

or strong branching could be used for making branching decisions for PBOs depend-

ing on which one is faster for the given problem. We reiterate that both full strong

branching and BCP only use properties of the node under branch.

Patel and Chinneck (Patel and Chinneck, 2007) develop branching strategies

for MIPs that also try to eliminate infeasible space from the search tree as quickly

as possible, using only the constraint structure at the branching node. However,

their strategies are designed for generic MIPs and they do not use SAT branching

techniques like CLTL does.

Achterberg (Achterberg, 2004) describes the SCIP solver which integrates MIP

and Constraint programming techniques. SCIP includes the inference history branch-

ing rule which maintains a history of the average number of deductions2 obtained

after branching on a variable. Variables which lead to many deductions are preferred

for branching. The goal of inference history branching is similar to our goal, namely

2Here, a deduction can be the tightening of another variable’s bound as a result of this branch.
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to quickly eliminate a large number of infeasible vertices with good objective values

(thereby tightening the dual bound). Unlike SCIP however, CLTL bases the branch-

ing decision only on the properties of the node under branch, and not on historical

information.

4.2.2 Integrating MIP and SAT solution techniques

Several papers have integrated MIP and SAT solution techniques. Devriendt et al. (De-

vriendt et al., 2020) integrate MIP cut generation into a PBO solver that uses conflict-

driven clause learning (CDCL). CDCL based PBO solvers are discussed and enhanced

by Elffers and Nordstrom (Elffers and Nordstrom, 2018). Wolfman and Weld (Wolf-

man and Weld, 1999) develop a PBO solver called LPSAT which is based on their

LCNF language. LPSAT uses an LP engine to construct nogood constraints. Nieuwen-

huis (Nieuwenhuis, 2015) shows how clause learning can be beneficial not only for solv-

ing Pseudo-Boolean problems, but also generic MIPs. Sandholm and Shields (Sand-

holm and Shields, 2006) develop a technique for learning nogood constraints for MIPs.

A similar approach from Achterberg (Achterberg, 2007) generates nogood constraints

and is used to strengthen the constraint set for their SCIP solver (Achterberg, 2004).

In this paper, we show that incorporating SAT branching heuristics into a MIP

solver can be beneficial for solving PBOs.

4.3 Trigger Equivalence and Domination

A key component of CLTL is its implementation of trigger equivalence and domination

for selecting variables with which to perform BCP. Consider a search tree node in a
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SAT problem, where setting a variable x1 to 0 or 1 initiates a “large” amount of BCP.

We refer to the variable x1 and its fixing (say at 0) as a “trigger”, represented by

(x1 ↪→ 0). Our challenge is to identify a trigger that causes a large amount of BCP,

without explicitly performing BCP on every variable at this node that appears in

constraints having exactly two variables.

Given a search tree node where “n” variables x1 to xn are not yet fixed to any

value, and a trigger (xi ↪→ v), i ∈ {1..n} and v ∈ {0, 1}, CLTL uses the trigger to

perform BCP and records all the variable fixings it leads to. The resulting variable

fixings are represented by a set of tuples, where each tuple (xj, vj) in the set represents

the variable xj fixed to vj ∈ {0, 1}, j ∈ {1..n}, j 6= i. Observe the following:

(a) if the trigger (xj ↪→ vj) leads to the fixing (xi, v), then the two triggers (xj ↪→ vj)

and (xi ↪→ v) are equivalent. That is, both triggers (when applied on the con-

straint set at this node) will lead to the same final set of variable fixings.

(b) if the trigger (xj ↪→ vj) does not lead to the fixing (xi, v), then it must be true

that the trigger (xi ↪→ v) leads to at least as many variable fixings as the trigger

(xj ↪→ vj).

Therefore, it follows that the trigger (xi ↪→ v) dominates (i.e., always leads to at

least as many variable fixings as) any of the triggers (xj, vj), j ∈ {1..n}, j 6= i. If we

know the result of BCP due to the trigger (xi ↪→ v), we need not perform BCP on the

dominated triggers (xj, vj), j ∈ {1..n}, j 6= i. CLTL uses this observation to limit the

number of triggers using which BCP is performed, and picks a variable for branching

that leads to the “largest” amount of BCP in either the up or down branch. The

following points should be noted :
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• A heuristic is needed to measure the amount of BCP caused by a trigger. One

option is to simply count the number of variables fixed by the trigger. CLTL’s

heuristic is similar to Jeroslow-Wang’s heuristic, and is described in more detail

in Section 4.4.

• When using trigger equivalence and domination to make a branching deci-

sion, CLTL only considers the amount of BCP on one side of the branch. It

is more common to consider a weighted sum of progress on both sides of the

branch, for example by averaging the up and down Pseudo-costs in Pseudo-

cost branching (Atamtürk and Savelsbergh, 2005; Achterberg et al., 2005).

GAMS/XPRESS can be configured to branch on the variable having the largest

Pseudo-cost on either the up or down branch.

• If a trigger dominance relation is established at a node “N”, then the relation

continues to hold at every descendant of “N”. This is because additional branch-

ing conditions can only result in more variable fixings. This observation can be

used to further speed up the BCP implementation (although we do not use it

currently).

4.4 Implementation Overview

Several aspects of CLTL’s implementation are key to its performance. These are

detailed below.
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Branching condition List of hypercubes
x1 = 0 (x2 = 0) , and

(x3 = 0, x4 = 0, x5 = 1) , and
(x4 = 1)

x1 = 1 (x3 = 0, x4 = 0, x5 = 1) , and
(x4 = 1) , and (x2 = 1, x3 = 0, x4 = 0)

Table 4.1: Infeasible hypercubes in the child nodes.

4.4.1 Constraint representation

In preparation for making branching decisions, CLTL converts the constraints at the

root node into infeasible hypercubes using Boole’s expansion theorem. These hyper-

cubes are nogood constraints that represent an infeasible region of the search space.

For example, the constraints:

x1 + x2 ≥ 1 , and

x3 + x4 + (1− x5) ≥ 1 , and

3x1 + 5.1x2 − 4.2x3 + 10x4 ≤ 5.4

are converted into the infeasible hypercubes:

(x1 = 0, x2 = 0) , and

(x3 = 0, x4 = 0, x5 = 1) , and

(x4 = 1) , and (x1 = 1, x2 = 1, x3 = 0, x4 = 0)

Equality constraints are converted into a pair of upper and lower bound con-

straints, and Boole’s expansion theorem is applied on both. We define the “size” of

an infeasible hypercube as equal to the number of variables in it.

Starting from the root node, every node in the search tree stores a list of infeasible

hype-cubes. When a node branches on a variable, it passes its list of hypercubes to
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both child nodes. Each child node uses the list inherited from its parent and prepares

its own list of hypercubes, which it passes on to its own children, and so on.

Continuing with our example, if the parent node branches on variable x1, then

each child node applies its branching condition (and any other discovered variable

fixings, as indicated by CPLEX) on the hypercubes inherited from its parent, and

ends up with the hypercubes shown in Table 4.1. Although we show hypercubes with

a single variable in Table 4.1, such hypercubes are excluded from the list unless the

corresponding variable fixing is not discovered by CPLEX. The following points are

evident:

i) child nodes discard references to hypercubes that are in conflict with their vari-

able fixings. A child node’s variable fixings include its branching conditions,

plus any additional variable fixings that may have resulted from BCP.

ii) when the node variable fixings partly match the conditions in a hypercube, a

new hypercube is created by omitting the matching conditions. The child node

then includes a reference to this new hypercube in its list of hypercubes.

iii) when the node variable fixings do not match any of the conditions in a hyper-

cube, the hypercube is included as it is by the child node in its list of hypercubes

(i.e., a new hypercube is not created). This is important to keep CLTL’s mem-

ory usage within limits.

At each child node, the list of variables that are fixed at either 0 or 1 is obtained

from CPLEX. This of course includes the branching conditions of the node, in addition

to any variable fixings found by CPLEX. Child nodes inherit their parent node’s

variable fixings, and only work with their own variable fixings that are in addition to
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their parent’s fixings.

4.4.1.1 Capacity constraints

CLTL treats capacity constraints from the LTL problem in a special manner. The

constraint:

a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x3 + . . . + an ∗ xn − b1 ∗ y ≤ 0

where the coefficients a1 to an and b1 are all positive (with b1 much larger than

all the other coefficients) is represented by the infeasible hypercubes:

(x1 = 1, y = 0) , (x2 = 1, y = 0), . . . and (xn = 1, y = 0).

For purposes of branching, CLTL ignores the resulting capacity constraint when

y = 1. This is because the size of the smallest infeasible hypercube resulting from

the constraint when y = 1 is quite large, and is therefore unimportant for making

branching decisions. This is similar to the behavior of the MOMs heuristic.

In general, CLTL can be configured to ignore some constraints altogether during

the process of hypercube collection at the root node (see Appendix B for CLTL config-

uration). This is needed because the application of Boole’s expansion theorem on some

constraints can result in an extremely large number of infeasible hypercubes (Aloul

et al., 2002a).

4.4.1.2 Merge and absorb

CLTL can be configured to repeatedly merge hypercubes that differ in only 1 variable

fixing. For example, the hypercubes (x = 1, y = 0, w = 0) and (x = 0, y = 0, w = 0)

can be merged into the single hypercube (y = 0, w = 0). Similarly, the hypercube
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(x = 1, y = 0, w = 0) can be absorbed into the hypercube (x = 1, y = 0). However,

these operations are time consuming and CPLEX presolve routines should be used

whenever possible.

4.4.2 Boolean constraint propagation

CLTL’s BCP implementation first applies the given trigger on hypercubes of size

2. Any resulting variable fixes are repeatedly applied on hypercubes of size 2, until

there are no more variable fixings. At that stage, all the variable fixings found so far

(including the original trigger) are applied on hypercubes of size 3. Once again, any

new variable fixings found are collected. If new variable fixings are found at any stage,

CLTL “climbs down” to hypercubes of size 2 (if some of them don’t already have all

variables fixed), and re-applies the known variable fixings on those hypercubes. CLTL

“climbs up” one level only when the current level is not yielding any new fixings. The

BCP process is complete when no new fixings are found by applying the known

fixings on hypercubes of any size. The pseudo-code for this implementation is shown

in Algorithm 2. Note that any variable fixings found due to BCP reduce the size of

every hypercube that contains any of those variables.

The BCP implementation halts at once if it detects a conflicting fixing resulting

from the trigger, which indicates that this trigger will lead to infeasibilty. In such

a case, CLTL instantly branches on the variable included in the trigger, expecting

CPLEX to detect infeasibilty in one of the child nodes created by the branch.
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4.4.2.1 BCP metric

The purpose of the BCP metric is to construct a measure of progress if the variable in

a trigger is selected for branching. CLTL’s BCP metric has three components which

are calculated as follows:

i) First, CLTL assembles the hypercubes at this node for which every variable

gets fixed as a result of this trigger. The volumes of these cubes are summed

and added to the metric. The volume of an individual cube is set equal to 2−n,

where n is the size of the hypercube. This metric is similar to the one used

by Jeroslow-Wang’s heuristic. For problems in which every hypercube has the

same size, this volume is simply set equal to 1.

ii) Next, CLTL identifies the hypercubes where some variables are not fixed by

BCP, but at least one variable is in conflict with the variables fixings resulting

from this trigger. The volumes of these hypercubes are summed as well, and

added to the metric.

iii) Optionally, our BCP metric also considers hypercubes of size 3 where one of

the variable fixings is matching, and no variable is in conflict with the fixings

resulting from this trigger. Such hypercubes correspond to infeasible space

that has been partly eliminated. In this case, the amount of infeasible space

eliminated is set equal to 0.5 ∗ 2−3 = 2−4. We ignore hypercubes of size 4 or

more, because the infeasible space they represent is small.

Referring back to our example in Section 4.4.1, the trigger (x2 ↪→ 0) would fix

(x1 = 1), resulting in the elimination of the hypercube (x1 = 0, x2 = 0) which has
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volume = 2−2. Next, the hypercube (x1 = 1, x2 = 1, x3 = 0, x4 = 0) also gets elimi-

nated because of the mismatch on the value of x2, even though x3 and x4 are not

fixed by the trigger. The volume of this cube equals 2−4 and is added to the metric.

The final value of the metric is therefore 0.3125. Note that our metric overestimates

the volume of infeasible space removed by BCP since it assumes that the hypercubes

do not have any variables in common, and that their volumes can simply be added

together.

By default, CLTL greedily chooses to branch on the variable whose metric has the

largest value on one side (we call this the “one-sided BCP metric”). In case there are

several such variables, CLTL attempts to break the tie by choosing the variable whose

metric in the other branch has the largest value. This metric may not be available

for both the up and down branches, if BCP was not performed on the corresponding

trigger (recall that some triggers are eliminated from consideration for BCP by trigger

equivalence). In such cases, the value of the metric on the missing side is assumed to

be zero.

When trigger equivalence is not used, this metric is available for both the up and

down branches, and CLTL can be configured to use the sum of the metric on the

up and down branches to make the branching decision. We call this the “two-sided

BCP metric”. Using a weighted sum of the progress on either side (as described

in (Achterberg et al., 2005)) is also an option for future implementations.

4.4.2.2 Variables for BCP

By default, CLTL performs BCP with every variable that appears in a hypercube of

size 2. However, CLTL includes configuration parameters which can be used to reduce
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the number of variables that are considered. These are listed in Appendix B.

Algorithm 2: CLTL’s BCP implementation

1 Initialization: level←2, Set S ← the initial trigger.

2 while level ≤ (size of the largest remaining hypercube) do
3 Apply variable fixings in S on hypercubes having size = level

4 Set U ← new variable fixings found

5 Set S ← (S ∪ U)

6 if (U is empty) then
7 level ← level + 1

8 else
9 level ← 2

10 end

11 end

4.4.3 Heuristics for branching

CLTL’s base heuristic for branching is as follows. At the branching node, if any

hypercube having exactly 1 variable is discovered, then that variable is branched

on at once (this corresponds to CLTL discovering a variable fixing before CPLEX).

If there are hypercubes with 2 variables, then BCP is performed on some of these

variables and one of them is picked for branching. If there are no hypercubes at

a node with 2 or fewer variables in them, we use a variant of MOMS heuristic as

described below. If for any reason we cannot arrive at a branching variable decision,

we simply default to CPLEX’s branching decision. Note that a variable is considered

for branching a node only if it is fractional in the linear relaxed solution at the node.

For some MIPs such as the LTL routing MIP, the objective function only includes

some of the variables in the model. For such MIPs, CLTL can be configured to branch

only on those variables that do appear in the objective function (see Appendix B for

a description of the available configuration parameters).

If our heuristics suggest more than one variable for branching at a given node,
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then one of these variables is selected at random. This can be a source of performance

variability.

4.4.3.1 MOMS heuristic

Our variation of MOMS heuristic counts the frequency of variables in hypercubes

having exactly 2 variables. If some variable occurs with the highest frequency in

such hypercubes, then it is chosen for branching. In case of a tie, we only use the

highest frequency variables as candidates, and check which candidate has the highest

frequency among hypercubes having the next largest size. This process is repeated

until there is only a single candidate left, or until there are no hypercubes left. A tie

that remains unbroken at the end of this process is broken at random.

4.4.3.2 Jeroslow-Wang heuristic (JW)

We have implemented our version of the one-sided Jeroslow-Wang heuristic. Our im-

plementation closely follows the description in Silva (Marques-Silva, 1999), although

we only consider hypercubes whose size is (T + n) or less, where n is the number of

variables in the smallest size hypercube at a given node. The threshold value T is

user configurable and defaults to 10.

4.4.4 Integration with CPLEX

Our strategy for integration with CPLEX is to overrule CPLEX’s branching decisions

with the branching suggestions from our heuristics for the first few hours. We call this

CLTL’s “ramp-up” phase. The downside of our approach is that CLTL is slower than

CPLEX initially, since BCP is expensive and because we always overrule CPLEX’s
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branching decision after it has been made. However, experiments indicate that the

time invested in making good branching decisions at the outset compensates for the

initial time investment (recall that the first few branching decisions are the most

important ones).

Since we maintain infeasible hypercubes in every node of the search tree, our ap-

proach is also memory intensive. This is another reason why we only use our heuristics

for the first few hours before allowing CPLEX to take over completely.

4.4.5 Sources of performance variability

There are several sources of performance variability in CLTL:

i) whenever our heuristics suggest more than one candidate branching variable,

the tie is broken using a pseudo-random configuration parameter.

ii) even a few seconds of difference in the time spent on “ramp-up” can influence

the number of nodes processed before Cplex takes over completely.

iii) the hyper-cubes collected using Boole’s expansion theorem are influenced by the

ordering of the variables in the constraints. This can effect branching decisions.

iv) lastly, any performance variability inherent in CPLEX is automatically inherited

by CLTL.

4.5 Experimental Evaluation

In order to demonstrate the effectiveness of CLTL, we solved some PBOs from MipLib

2010 and 2017 (Koch et al., 2011; Gleixner et al., 2019), LTL routing problems using
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real data from our industry partner, and one problem from the SAT 2009 competition

used in (Heule et al., 2011). These PBOs have many constraints that can be converted

into a small number of infeasible hypercubes using Boole’s expansion theorem. Our

goal is to show that CLTL can match the performance of CPLEX (version 12.9)

on these hard-to-solve instances. The tests were executed on Dell PowerEdge R330

Servers running CentOS 7.4, equipped with 192 GB of RAM and two Intel Xeon

E3-1240 v5 3.5GHz CPUs having 8 cores each. These hyper-threaded cores allow

CPLEX to execute up to 32 threads on each server.

Since CLTL’s heuristics are implemented in a CPLEX branch callback, an empty

branch callback was used when solving these MIPs with “pure” CPLEX (i.e., without

any intervention). This allows for a fair comparison between CLTL and CPLEX.

As mentioned previously, CLTL has several parameters that can be used to control

its behavior. In the tests below, we make a note of any parameters that were changed

from their default values. Since it is not possible to vary every parameter for every

test, we have selected representative results for each MIP. Our parameter choices also

offer guidance for future parameter selection when solving other MIPs.

(i) LTL routing problems : We solved the LTL routing problem for 3 different

days in March 2016 using real data from our industry partner. CLTL was able

to solve the problem to provable optimality faster than CPLEX. The results are

shown in Figure 4.1(a), (b), and (c). As expected, CLTL is slow to start because

it invests time in performing BCP for the first hour. However, the quality of

the branching decisions is better than CPLEX (in its default mode), leading to

faster convergence.
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(a) LTL routing, 18 March 2016 (b) LTL routing, 17 March 2016

(c) LTL routing, 11 March 2016 (d) 1 hour ramp-up

(e) Performance variability (f) 2-sided metric with a 2 hour ramp-up

Figure 4.1: Solving LTL routing problems and eq.atree.braun.12.unsat with
CLTL.
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(ii) eq.atree.braun.12.unsat: This is an infeasible MIP from the SAT 2009 com-

petition (Heule et al., 2011). CLTL proved that this MIP is infeasible faster

than CPLEX (Figure 4.1(d)) when considering the volume removed by partly

matched hyper-cubes in the BCP metric. The Jeroslow-Wang heuristic was

more effective than both CPLEX and CLTL. Some performance variability was

observed with 2 different random seeds used for breaking ties while making

branching decisions (Figure 4.1(e)). The 2-sided BCP metric appears to be less

effective than the 1-sided metric, even with the ramp-up duration doubled (Fig-

ure 4.1(f)).

(iii) 2club200v15p5scn: This is a feasible Pseudo-Boolean problem from MipLib.

Figure 4.2(a) shows that CLTL was able to solve the problem to optimality in

about 3 days after a one hour ramp-up. CPLEX (in its default configuration)

was not able to solve the MIP to provable optimality even after 4 days.

Figure 4.2(b) shows the progress in dual bound when the ramp-up duration was

changed. For this MIP, the time to solution did not change considerably with

ramp-up duration. Figure 4.2(c) shows that the memory consumption increased

with increasing ramp-up duration. This is expected since infeasible hypercubes

are held in memory for longer. Memory usage was measured by running the

vmstat program every six minutes.

Figure 4.2(d) shows very little performance variability with 3 random seeds.

Finally, Figure 4.2(e) shows that the 2-sided BCP metric was quite effective for

this MIP.

(iv) reblock354: This is an extremely hard feasible problem from MipLib. In an
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(a) 1 hour ramp-up (b) Increasing ramp-up duration

(c) Memory consumption (d) Performance variability

(e) 2-sided BCP metric (f) reblock354, 48 hour ramp-up

Figure 4.2: Solving 2club200v15p5scn and reblock354 with CLTL.
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attempt to solve it to provable optimality, we used a huge ramp-up (48 hours).

Even then, neither CLTL nor CPLEX could solve the problem to optimality

after several days (although CLTL achieved better dual bound than CPLEX).

The results are shown in Figure 4.2(f), with a constant (39 million) added to

the bound. Observe the huge “boost” to the dual bound at the conclusion of

the ramp-up.

CLTL was configured to ignore the capacity constraints in the MIP, effectively

treating it like a 2-SAT problem.

(v) opm2-z12-s8: As with reblock354, CLTL was configured to ignore the capacity

constraints for this MIP. In two runs with different random seeds and a ramp-up

duration of 1 hour, we solved this problem to provable optimality under 10 hours

(Figure 4.3(a)). With trigger equivalence turned off, we were still able to solve

the problem faster than CPLEX but it took almost 10 hours (Figure 4.3(b)).

With no BCP, the MOMS heuristic also performed quite well with the ramp-up

time configured to 2 hours (Figure 4.3(c)).

With full strong branching used for the first 2 hours, CPLEX solved the problem

faster than in its default configuration (Figure 4.3(c)). This underscores the

similarities between strong branching and using the results of BCP to make

branching decisions.

(vi) opm2-z12-s7: We were able to solve this MIP to provable optimality faster than

CPLEX using 1 hour ramp-ups. As with opm2-z12-s8, CLTL was configured

to ignore capacity constraints. Figure 4.3(d)) shows the results with trigger

equivalence switched on, and then switched off.
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(a) 1 hour ramp-up, 2 random seeds (b) Trigger equivalence turned off

(c) MOMS heuristic, and full strong
branching

(d) Trigger equivalence turned on, and off

Figure 4.3: Solving opm2-z12-s8 and opm2-z12-s7 with CLTL.
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(vii) bnatt500: This is an infeasible Pseudo-Boolean problem from MipLib. We

solved this MIP with the ramp-up duration set to 2 hours. CLTL proved infea-

sibility slightly faster than both CPLEX and Jeroslow-Wang’s heuristic (Fig-

ure 4.4(a)). When we varied the random seed, some performance variability

was seen (Figure 4.4(b)). Figure 4.4(c) shows the results with trigger equiva-

lence turned off and ramp-up duration reduced to 1 hour.

Next, we turned on the switch for considering the volume removed by partly

matched hypercubes, which seemed to slow down the computation. The results

are shown in Figure 4.4(d).

(viii) p6b: This is a feasible 2-SAT problem from MipLib. With a 1 hour ramp-up

using 2 different random seeds, the results are shown in Figure 4.5(a). With the

ramp-up duration increased to 2 hours, the results are in Figure 4.5(b) where

one of the tests turned off trigger equivalence and used the two sided BCP

metric. In all four tests, we outperformed CPLEX.

(ix) seymour-disj-10: We used the presolved version of this problem, since CPLEX

pre-solving eliminates a lot of redundant constraints for this MIP. With a 1 hour

ramp-up, the results are shown in Figure 4.5(c).

Next, we increased the ramp-up duration to two hours. By ignoring all con-

straints that resulted in more than 10 hyper-cubes when Boole’s expansion was

applied on them, we essentially ignored the larger constraints while making

branching decisions. The results are shown in Figure 4.5(d), where we used two

random seeds. We outperformed CPLEX in all our tests with this MIP.

(x) wnq-n100-mw99-14: When collecting hyper-cubes for this MIP, we ignored the
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(a) 2 hour ramp-up (b) Performance variability

(c) 1 hour ramp-up, trigger equivalence
switched off

(d) Volume removed by partly matched
hypercubes considered

Figure 4.4: Solving bnatt500 with CLTL.

few constraints that have more than two variables. Then we solved this MIP by

performing BCP for 1 hour on variables that occurred with the highest frequency

in the collected hypercubes. These simplifications were needed because this MIP

has a very large number of constraints.

The results are shown in Figure 4.5(e). Note that MOMS heuristic also per-

formed quite well for this MIP. Given the large number of constraints, this

problem required a lot of memory to solve (Figure 4.5(f)). Note the sudden

drop in memory usage after the first hour (i.e., when the ramp-up was halted).
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(a) 1 hour ramp-up (b) 2 hour ramp-up

(c) 1 hour ramp-up (d) 2 hour ramp-up

(e) 1 hour ramp-up (f) Memory consumption

Figure 4.5: Solving p6b, seymour-disj-10, and wnq-n100-mw99-14 with CLTL.
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4.6 Conclusions and Future Work

In this chapter we described CLTL, a CPLEX based solver for the LTL routing

problem and some Pseudo-Boolean optimization problems. By comparing the per-

formance of CLTL with CPLEX in its default configuration, we demonstrated that

CLTL can outperform CPLEX on some hard-to-solve instances. We conclude that

SAT branching techniques can be quite effective for MIPs which have a constraint

structure similar to the problems we solved. Using SAT branching heuristics (and

BCP) to make branching decisions can compliment MIP lookahead techniques such

as strong branching.

CLTL is able to make good branching decisions independently of CPLEX us-

ing only the properties of the node under branch. This can be useful when solving

hard problems in a distributed fashion. Implementing a distributed version of CLTL

remains a future work item for us.
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Chapter 5

Merging leaves from the search

tree of a mixed integer program

5.1 Introduction

In some implementations of distributed MIP, the workers are not assigned collec-

tions of individual leaf nodes. Instead, each worker is assigned a single tree that

contains a subset of leaf nodes from the frontier. This approach to MIP distribution

is called subtree parallelism (Ralphs et al., 2018), and its variations have been used

in DryadOpt (Budiu et al., 2011) and ParaSCIP (Shinano et al., 2011, 2016b).

Subtree parallelism offers some advantages over the sequencing approach of Fig-

ure 3.2 used in Chapter 3. For example it allows the workers to assign their tree to

the MIP solver as a single unit, thereby freeing the workers from the responsibility of

having to sequence leaf nodes. Another benefit is that there is no need to periodically

exchange cutoff and other information between the subproblems assigned to a worker.

Ralphs et al. (Ralphs et al., 2018) provide a more detailed discussion.
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In this chapter, we analyze two simple schemes which can be used to implement

subtree parallelism. The first scheme, which we call the LCA scheme, is based on the

notion of a Lowest Common Ancestor introduced by Aho et al. in (Aho et al., 1976).

This scheme is somewhat restrictive and we identify the conditions under which it

can be used. The second scheme, which we call Controlled Branching, extends the

LCA scheme and overcomes its restrictions.

The rest of the chapter is organized as follows. In Section 5.2 we review existing

literature as it pertains to our work. In Section 5.3 we analyze the LCA scheme.

This is followed by a description of the Controlled Branching scheme in Section 5.4.

Section 5.5 includes an outline of our implementation and details our testing strategy.

We present results from our experiments in Section 5.6, and conclude in Section 5.7.

5.2 Literature Review

Our work in this chapter can be viewed as an extension of the leaf merging strategies

used in ParaSCIP (Shinano et al., 2011, 2016b) and DryadOpt (Budiu et al., 2011).

ParaSCIP uses the Ubiquity Generator (UG) framework (Shinano, 2018) to distribute

SCIP over an MPI (Message Passing Interface) based cluster. It merges leaf nodes

into a single node by loosening the bounds on some variables that may be tightly

bounded in some of the leaves. In effect, this approach discards some work that is

already complete by moving up in the search tree from a given subset of leaf nodes

to their LCA node. This can result in a significant amount of work being repeated

when the LCA node is used instead of the leaf nodes in the subset. As a safeguard,

ParaSCIP uses the LCA node only when the linear relaxation objective of the LCA

node does not change significantly as a result of the merging. As we show in this
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paper, our approach for merging complements ParaSCIP in situations where simply

using the LCA node is not an option.

ParaSCIP concludes that the benefits of merging leaf nodes are due to the “re-

rooting” of the problem which usually results in the MIP solver reapplying pre-solve

routines on the merged node. In fact, for a minimization problem the linear relaxation

objective of the merged node can even increase due to the reapplication of pre-solve

routines. In our experiments (Section 5.6) we use pre-solved versions of the MIPs and

disable CPLEX pre-solve routines in order to show that merging leaf nodes can be

beneficial even in the absence of pre-solving. Moreover, we disable solution finding

heuristics which can introduce an element of luck into the computation.

ParaSCIP is the latest implementation in a family of projects (Shinano and Fujie,

2007; Shinano et al., 2011, 2016a, 2003, 2016b, 2008). In this family, ParaLEX (Shi-

nano and Fujie, 2007; Shinano et al., 2008) distributes CPLEX over an MPI based

cluster using the master-worker paradigm (Ralphs et al., 2018). ParaLEX selects an

unsolved leaf node from a central node pool and assigns it to a worker that is idle.

DryadOpt (Budiu et al., 2011) is an implementation of distributed MIP on the

data-parallel cluster Dryad (Isard et al., 2007). DryadOpt merges several leaf nodes

selected at random from the frontier into a single subproblem. However, unlike in

our approach DryadOpt still selects one leaf node at a time from this merged sub-

problem and assigns it to a user-defined solver method. In contrast, we delegate node

sequencing entirely to CPLEX and assign the merged subproblem to it as a single

entity requiring solution. The leaf selection heuristics implemented by DryadOpt are

depth-first and breadth-first, and it alternates between them depending on how many

leaf nodes are pending.

91



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

CHiPPS (Xu et al., 2009) is a framework for distributing tree search algorithms.

It includes a library called ALPS (Xu et al., 2005), which can be used to implement

distribution frameworks for specific problem domains, such as distributed MIP. In-

stead of moving individual leaves between computers, ALPS moves entire subtrees

where each leaf is represented as a difference (i.e. its branching condition) from its

parent. Since ALPS is designed for data intensive applications, it is concerned about

the compactness of subtree representation during data movement. Our schemes are

also useful for compacting data that needs to be migrated between computers.

ALPS requires application developers to implement methods for sequencing leaf

nodes, and also for processing each leaf. In contrast (and as already mentioned),

we assign a single merged subproblem to CPLEX and delegate node sequencing to

it entirely. ALPS includes a generic MIP solver called ABC (ALPS branch-and-cut)

that implements best-first sequencing of leaf nodes. In addition to ALPS, CHiPPS

includes BiCePS (which supports relaxation based branch-and-bound algorithms) and

a library called BLIS that is derived from it (which provides functionality for solving

MIPs). Detailed descriptions can be found in (Xu et al., 2009).

Many implementations of distributed MIP maintain node pools of pending sub-

problems. Crainic et al. (Crainic et al., 2006) categorize pool management strategies

according to where nodes from the frontier are held. One approach is to have a

distributed strategy where every computer holds some frontier nodes (for example,

in PEBBL (Eckstein et al., 2015) every worker can have its own pool). In SYM-

PHONY (Ralphs et al., 2003), BOB++ (Galea and Le Cun, 2007) with its global

priority queues, and ParaLEX and ParaSCIP, frontier nodes are managed in a cen-

tralized manner.
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The reader is referred to papers by Aho et al. (Aho et al., 1976), Harel et al. (Harel

and Tarjan, 1984), and Bender et al. (Bender et al., 2005) for an exposition of the

lowest common ancestor (LCA) concept. The idea of merging several leaf nodes into

a single tree using LCA nodes is similar to the advanced parallelization technique of

tree contraction mentioned in Bader et al. (Bader et al., 2005), who also note the

benefits of hybrid node sequencing heuristics.

5.3 The LCA Scheme

The LCA scheme simply substitutes a collection of leaf nodes with their Lowest Com-

mon Ancestor node. A worker process in a distributed MIP computation can then be

assigned the LCA node instead of assigning it the collection of leaves. By doing so,

some computation that is already complete is wasted (equivalently, some work will be

repeated once the LCA node is assigned to a MIP solver by the worker). As an exam-

ple, the subset of leaf nodes S = {Node7, Node10, Node12, Node16, Node17} from the

tree in Figure 3.1 can be substituted by the nonleaf node Node4. The wasted compu-

tational effort is represented by the time needed to branch Node4 and its descendants

in order to arrive at the leaf nodes in S.

Of course, such substitution cannot always be made. We need to carefully choose

which leaves to include in every subset that is selected for merging. For example, the

two subsets of leaves Q = {Node10, Node16} and T = {Node12, Node17} cannot

both be chosen for merging from the tree in Figure 3.1 with the intention of assigning

them to workers in a distributed MIP computation. This is because the LCA node

of one subset is an ancestor of the LCA node of the other subset.

In another example, if we choose to merge the leaves in subset R = {Node7,
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Node14, Node18, Node19} and replace them with their LCA node Node2, then we

have the following two problems:

1. There are two nodes (Node5 and Node8) under the LCA node that have only one

active branch. We do not know exactly how much time was needed to fathom

the missing branches. If these branches took a long time to fathom (or if there

are many such branches), then simply using the LCA node Node2 could result

in a massive amount of repeated work when Node2 is assigned to a MIP solver.

ParaSCIP addresses this problem indirectly by checking the change in the linear

relaxation objective as a result of substituting the leaves with their LCA node

(see Section 3.2). However, sometimes even a small change in the linear relax-

ation objective can represent several hours worth of computation. Moreover,

ParaSCIP’s safeguard becomes ineffective when there are few or no variables in

the objective function. We present a more robust safeguard in Section 5.3.1.

2. The LCA node also includes several leaf nodes that we do not intend to include

in the set R, namely nodes Node10, Node12, Node16, and Node17. This prob-

lem is similar to the previous one – only this time we have an unwanted branch

(the left branch of Node4) instead of the missing branches. In our analysis, we

treat unwanted branches like missing branches that need to be avoided.

5.3.1 Packing Factor

Our observation is that individual LCA nodes are safe to use when they have no

descendant nonleaf nodes having only one branch (or having an unwanted branch).

For such LCA nodes, the amount of wasted computational effort due to merging can
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be accurately estimated, and is in fact equal to the time taken for branching the LCA

node and all its nonleaf descendants. This time is linear in the number of leaf nodes

being merged, as we prove shortly.

It is useful to define a metric for each LCA node that we call the “packing factor”.

Definition 1. The packing factor of an LCA node is the number (N) of nonleaf nodes

(including itself) in the subtree rooted at the LCA node, divided by the number of leaf

nodes (L) in the subtree that we intend to merge. The packing factor of a subtree is

the packing factor of its root node.

Definition 2. An LCA node is perfect if it has a perfect packing factor N/L =

1− (1/L). In other words, it has the property that N + 1 = L.

Proposition 1. In a binary tree with L leaf nodes, the number of nonleaf nodes

N ≥ L − 1. Therefore, N/L ≥ 1 − (1/L). Equality holds when every nonleaf node

has two branches.

Proof. The proof is by induction. Clearly, the proposition is true when the root node

branches into at most two child nodes. Subsequently, to increase the number of

leaf nodes by one, an existing leaf node must branch into two leaves, thereby also

adding to the count of nonleaf nodes by one. Therefore, whenever the count of leaf

nodes increases by one, the count of nonleaf nodes also increases by one. Hence, the

inequality N ≥ L− 1 holds throughout. If any node branches to a single child, then

N increases without increasing L, and the inequality becomes a strict inequality. On

the other hand, if every nonleaf node branches twice, then the equality N = L− 1 is

maintained throughout.

If a leaf node having a sibling is pruned from the tree, then L decreases without
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changing N . If the pruned leaf had no sibling, then L and N both decrease by one.

In either case, the inequality continues to hold.

Corollary 1. In a binary tree with N nonleaf nodes and (L = N + 1) leaf nodes,

there cannot be any nonleaf nodes with only one branch.

Proof. The proof is by contradiction. Assume that a binary tree B with N nonleaf

nodes and L leaf nodes has a perfect packing factor, and also K > 0 nonleaf nodes

with a single branch. Any node N1 with a single branch can be skipped over by

branching its parent directly to its child. By doing so, we eliminate N1 from the tree,

and decrease the value of N by 1 without altering the value of L. Continuing in this

manner, we can eliminate all nonleaf nodes from the tree that have only one branch,

eventually reducing the number of nonleaf nodes to (N − K). At the end of this

process, we have a binary tree all of whose nonleaf nodes have two branches. From

Proposition 1, this tree must have a perfect packing factor, so (N − K) + 1 = L.

For any K > 0, it therefore cannot also be true that N + 1 = L, contradicting our

assumption that the root node of B was perfect.

Observe that whenever a leaf node gets pruned from a binary tree, all the ancestors

of the leaf node are rendered imperfect (i.e., they cannot have perfect packing factors).

5.3.2 Reconstructing LCA Nodes

LCA nodes are represented by the branching conditions that need to be applied

to the original MIP. In a distributed MIP computation, one way for a worker to

reconstruct an LCA node is to change the variable bounds accordingly in the original

MIP model (this is the approach we use in our tests). The downside of this approach
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is that feasible solutions found by one worker are not feasible on any other worker

(recall that every subproblem is necessarily conflicting in at least one variable bound).

For the same reason, solution finding heuristics can become less effective because a

feasible solution in one region of the feasible space cannot be “grown” into a better

solution in another region of the feasible space. On the other hand, this approach to

reconstruction is compatible with CPLEX dynamic search since it can be implemented

without using control callbacks. Moreover, cut generation and pre-solve reductions can

be reapplied on every node.

An alternate way to create an LCA node is to branch to it from the root node

of the original MIP, instead of modifying the original model (a single, multi-variable

branch can be used). This ensures that the feasibility region of every subproblem in

a distributed MIP computation is the same as that of the original MIP, which can be

useful when warm starting the workers.

5.3.3 Finding Perfect LCA nodes

A simple algorithm for decomposing a given search tree into a collection of perfect

LCA nodes (and any leftover leaves) is shown in Algorithm 3 (Appendix C). The

method GetLCANodes() is invoked on the root node in order to identify all the per-

fectly packed nodes. Applying this algorithm on the tree in Figure 3.1 yields the

perfect LCA nodes Node4 and Node11, and the leftover leaf Node3.

This algorithm assumes that the tree structure is available in memory (see Sec-

tion 5.5 for details), and that the linear relaxation objective of every leaf node is

available from the MIP solver (the linear relaxation objective is useful for best-first

sequencing). Since every branch in the tree is traversed twice (moving downwards on
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lines 10 and 11, and then back upwards with the return statement on line 32), the

time complexity of this algorithm is O(N) where N is the number of nonleaf nodes

in the tree.

In general, the difficulty with using the LCA scheme is that large search trees may

have very few perfect LCA nodes that represent a sufficiently large number of leaves.

A significant amount of time may have been spent establishing the infeasibility of

certain branches. During dynamic load balancing in a distributed MIP computation,

it is important to assign an idle worker a large portion of the remaining work. In such

situations the Controlled Branching scheme can be better suited for distributing the

workload. We describe this scheme next.

5.4 Controlled Branching

Controlled Branching is a scheme for combining an arbitrary subset of leaf nodes

into a single tree. Our objective is to create a subproblem having exactly the leaves

we want, and then assign this subproblem in its entirety to CPLEX as a single unit

requiring solution. This scheme is useful when a given set of leaf nodes cannot simply

be substituted by their LCA node.

Controlled Branching exploits the fact that the branching conditions for every leaf

node are already known; so we can use these known branching conditions to arrive at

the leaves we want by branching on multiple variables at a time if necessary, skipping

past any nonleaf nodes that have leaves of interest on only one side.

Logically, this scheme works as follows. Let LCAS be the LCA node of the leaves

in a given subset S of the frontier. Let LCAL and LCAR be the LCA nodes of the

leaves in S to the left and (respectively) to the right of LCAS. From LCAS, two
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branches are created, one to LCAL and the other to LCAR. This procedure is applied

recursively at LCAL and LCAR. If there is only one leaf from S on a given side of

any LCA node, then that leaf is created and the recursive step is not applied on that

side. At the end of this process, we have a single tree whose frontier includes all the

leaves in S.

We reiterate that the purpose of Controlled Branching is to skip over all the

nonleaf nodes that have only one branch of interest (i.e., nonleaf nodes that have

leaves from S on only one side). Therefore, the recursive step in the procedure

above is not needed under any intermediate nonleaf node that already has a perfect

packing factor. We present an example later in this section. For now, we state some

propositions regarding trees created with Controlled Branching:

Proposition 2. Controlled Branching creates trees where the number of leaf nodes L

exceeds the number of nonleaf nodes N by one, i.e. N + 1 = L.

Proof. By construction, every nonleaf node in a tree created with Controlled Branch-

ing is an LCA node that branches into two child nodes (each of which is either another

LCA node, or a leaf). From Proposition 1, such a tree will have N + 1 = L.

Corollary 2. In a tree created with Controlled Branching, there are no nonleaf nodes

that have a single branch (they have all been skipped over).

Proof. This follows from Proposition 2 and Corollary 1.

Proposition 3. Controlled Branching creates a tree having the specified set of leaves

by computing the smallest number of linear relaxations possible.

Proof. From Proposition 1, it follows that the smallest number of linear relaxations
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that must be computed to create a tree with L leaves is N = L− 1. Therefore, this

proposition follows from Proposition 2.

The reader should note that nonleaf nodes in a tree created with Controlled

Branching are nodes that had imperfect packing factors in their tree of origin. If

chosen for assignment to a worker in a distributed MIP computation, such nodes

may include a massive amount of work that was carefully skipped over by Controlled

Branching. We present a solution in Section 5.4.1.3.

5.4.1 CB Instruction Trees

To create a tree that only has the leaves we want, we encode a set of instructions

into a tree format we call the CB instruction tree. A worker in a distributed MIP

computation can force its MIP solver to execute these instructions in order to cre-

ate its search tree. The procedure for constructing CB instruction trees appears in

Section 5.4.1.1, and the procedure for executing them in Section 5.4.1.2.

5.4.1.1 Constructing CB Instruction Trees

The CB instruction tree is a recursive data structure each node of which minimally

includes:

• the node ID of the LCA node it represents.

• the node ID of the LCA node (or leaf) on either side of this node.

• the branching condition required to arrive at the LCA node (or leaf) on either

side. Note that the branching condition may involve more than one variable.
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• the CB instruction tree (if any) to its left, and to its right.

We illustrate the procedure for constructing CB instruction trees with an exam-

ple. Suppose we want to merge leaves in the set R = {Node7, Node14, Node18,

Node19}. The root node of the CB instruction tree represents the LCA node Node2.

It stores the ID of the LCA node (namely the string “Node2”), plus instructions on

how to branch to Node7 on its left and to Node11 on its right. This is achieved by

traversing the first branch on the appropriate side, and then skipping past all the

nonleaf nodes that have only one branch of interest. Also, when a node is skipped

over, continued direction of movement is indicated by the side which does have leaves

of interest. We continue accumulating the branching conditions as we skip past nodes.

When we reach a leaf node, or a nonleaf node “P” that has leaves of interest on both

sides, we halt and record the accumulated branching instruction. We then apply the

same procedure on “P” so that we can identify the branches it needs to make, and

so on.

In our example, the left side branching instruction stored at the root of the CB

instruction tree is the branching condition from Node2 to Node4, appended with

one more branching condition (that from Node4 to Node7, since Node4 needs to be

skipped over). Similarly, the right side branching instruction stored at the root of the

CB instruction tree is the branching condition from Node2 to Node5, appended with

two more branching conditions (from Node5 to Node8, and from Node8 to Node11,

because both Node5 and Node8 need to be skipped over).

This procedure is repeated at every nonleaf node that is not skipped over, until the

CB instruction tree has instructions for creating every leaf in the set R. The resulting

CB instruction tree is shown in Figure 5.1(a). In our implementation we recognize
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Figure 5.1: Two equivalent Controlled Branching instruction trees for set
R={Node7, Node14, Node18, Node19}

.

that Node11 has a perfect packing factor, and do not assemble any instructions for

branching it. The resulting CB instruction tree is shown in Figure 5.1(b), where

Node11 appears as a leaf node.

If there are two more sets of leaves we want to merge, say Q = {Node10, Node16}

and T = {Node12, Node17}, then the same procedure can be repeated to construct

the CB instruction trees for these two sets. The resulting CB instruction trees are

shown in Figure 5.2. Observe that unlike in the LCA scheme, there are no restrictions

on how the sets Q and T can be composed (as long as a chosen leaf node appears in

only one set).

The pseudo-code for constructing CB instruction trees appears in Appendix D.

The first step (shown in Algorithm 4) is to start from each selected leaf and move up

towards the subtree root, marking each nonleaf node (N) encountered along the way

with the following “reference counts”:

• the number of selected leaves on either side of N. We call these the left (and

right) leaf reference counts for N.

• the number of nonleaf nodes that will be encountered on either side N while
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Figure 5.2: Controlled Branching instruction trees for sets Q={Node10, Node16}
and T={Node12, Node17}.

moving up from the selected leaves to N. We call these the left (and right)

nonleaf reference counts for N.

These reference counts are used by the methods shown in Algorithm 5. To create

the CB instruction tree, we invoke the method CreateInstructionTree() on the

root node of the MIP. This method uses reference counts to identify perfectly packed

nonleaf nodes, and does not assemble any instructions for branching them (on line 12).

Also note that we start from the root node of the MIP, and create a single branch

from it to the LCA node of the selected leaves (in case the LCA node is not already

the root node of the MIP).

These algorithms can also be used for decomposing a tree into perfect LCA nodes,

and are much faster in practice than Algorithm 3 because reference counts are used

to identify perfectly packed nodes on the downward path (Algorithm 5).

5.4.1.2 Executing CB Instruction Trees

Logically, the procedure for executing CB instruction trees is as follows. We start by

computing the linear relaxation of the node corresponding to the root node of the

CB instruction tree. When the node is ready to branch, the MIP solver’s branching

decisions are replaced with the branching instructions for the left and right children

from the root node of the CB instruction tree. We make a note of the node IDs of the
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child nodes thus created, and the corresponding child node IDs in the CB instruction

tree. Recall that the node IDs in the CB instruction tree are from the tree of origin.

As long as there is a leaf node in the (under construction) merged tree whose

node ID corresponds to a nonleaf node in the CB instruction tree, the MIP solver is

redirected to one such node. Once again, when this node is ready to branch, the MIP

solver’s branching decisions are replaced with those from the corresponding node in

the CB instruction tree. When this process is complete, we have a single tree with all

the desired leaves; and we can stop controlling the MIP solver’s node selection and

branching.

We have implemented this logic as follows:

(i) to each node of the (under construction) merged tree, we attach a CB instruction

tree which the node uses to overrule CPLEX’s branching decisions. In turn, each

child node is attached with the CB instruction tree it needs to use, and so on.

Recall that the CB instruction tree is a recursive data structure, so every parent

knows the CB instruction tree each of its children should use.

(ii) if CPLEX selects a leaf node where the branching instructions in the attachment

do not require an overrule of CPLEX’s branching (equivalently, if this node

corresponds to a leaf node in the CB instruction tree), then we redirect CPLEX

to another leaf (if any) where the branching instructions do require overruling

CPLEX. Our merge operation is complete when none of the leaves in the (under

construction) merged tree require CPLEX’s branching to be overruled.

In practice, the second step of this procedure can result in CPLEX’s node selec-

tion being overruled frequently. Moreover, this implementation is not safe for use
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in multi-threaded environments. An alternate merging scheme that addresses these

issues appears in Section 5.4.1.3.

5.4.1.3 Deferred Execution of CB Instruction Trees

In this variation, we do not control CPLEX’s node selection. As in Section 5.4.1.2,

CB instruction trees are attached to nodes in the (under construction) merged tree.

If CPLEX selects a node having an attachment, its branching decision is overruled as

per the attached CB instruction tree. If the selected node has no attachment, then

CPLEX’s branching decision is accepted. This strategy is equivalent to embedding

the search tree with the knowledge that certain branches need not be explored again,

and overruling CPLEX’s branching “just in time”.

Deferred Execution allows us to treat every node in the (under construction)

merged tree like a normal node, with predetermined branching conditions attached

to nodes that correspond to nonleaf nodes of the CB instruction tree. Such nodes

can even be migrated to another worker in a distributed MIP computation as long as

the CB instruction tree attached to the node is migrated along with it, and is used to

continue overruling CPLEX’s branching.

5.4.1.4 A CB Instruction Tree Variant

Recall that the branching instructions in the CB instruction tree are multi-variable

branches (this is what enables us to skip over several nonleaf nodes with a single

branch). For example, the branch from Node2 to Node7 in Figure 5.1(a) requires

branching on two variables at once. A variation of this strategy is to branch on

only one variable at a time exactly as in the original tree of Figure 3.1, instantly
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Figure 5.3: CB Instruction tree for set R={Node7, Node14, Node18, Node19}
using only one variable per branch.

pruning the unwanted leaf. This variation can be useful for MIP solvers that only

allow branching on one variable at a time.

The resulting CB instruction tree is shown in Figure 5.3. Testing with this vari-

ation is a future work item for us. Observe that the progression from Figure 5.3 to

Figure 5.1(a) to Figure 5.1(b) is an example of tree contraction (as described in Bader

et al. (2005)).

5.4.2 A Note about Overruling CPLEX Branching

We conclude this section by noting that there is no need to compute the linear relax-

ations of the nodes while overruling CPLEX’s branching. This can result in significant

time savings for some MIPs where computing the linear relaxation is time consum-

ing. Information from the tree of origin could be supplied as a warm start, including

any information that was gained by computing linear relaxations of nodes. However,

CPLEX currently does not permit such an implementation .
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5.5 Implementation Outline and Test Sets

In our implementation, we first ramp-up the MIP using CPLEX control callbacks.

The control callbacks enable us to record the following information:

• the node ID of each child and the branching condition used to create it.

• a reference from each child node back to its parent.

Our ramp-up can be configured to run for a certain amount of time, or until the

number of leaf nodes exceeds a threshold. Its objective is to run for a long time and

create a search tree with a very large number of leaf nodes. The ramp-up is single

threaded, and the heavy use of control callbacks can make it slow for some MIPs.

At the end of the ramp-up we travel upwards from each leaf and build references

from parent nodes to their surviving child nodes. This organization makes it easy for

us to traverse the ramped-up tree at will. The best solution found (if any) during the

ramp-up is recorded and used as a starting cutoff for the following test sets:

(a) The Optimality Test-set: The objective of these tests is to establish the

utility of the Controlled Branching scheme for large search trees when the user’s

emphasis is on proving optimality. First, the MIP is ramped-up for a few hours

and all the leaves are merged using Controlled Branching. Then the original

MIP and its merged counterpart are both solved for several hours with the best

solution found during ramp-up (if any) applied as a cutoff. CPLEX emphasis

is set to either “best bound” or “optimality”, and the improvement in the dual

bound is recorded after every hour.

The merged tree is expected to improve the dual bound faster for MIPs in

which a lot of time was spent fathoming branches during the ramp-up. CPLEX
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is restricted to its single-threaded mode for these tests so that the ramp-up

duration can be compared to the solution duration.

(b) The Feasibility Test-set: The objective of these tests is to demonstrate the

utility of the LCA scheme when CPLEX’s emphasis is configured to “hidden

feasibility”. Popular sequencing heuristics like best-first and depth-first are not

suitable for identifying nodes that might lead to feasibility. Therefore, it is useful

to merge the leaf nodes into a single tree and delegate node sequencing entirely

to CPLEX. Note that the estimated objective value of each leaf node can be

obtained using CPLEX control callbacks (for “best-estimate-first” sequencing).

However, it is impractical to get this value for every leaf given the sheer number

of leaves.

It is expected that searching for feasible solutions in the merged tree will yield

better solutions faster when large sections of the ramped-up tree have been

fathomed due to several leaf nodes being infeasible. On the other hand, simply

using the LCA node (with any solution found during ramp-up applied as cutoff)

should be more efficient when the search tree has very few fathomed branches.

(c) The Balanced Test-set: The objective of these tests is to highlight some

of the drawbacks of sequencing through a collection of leaf nodes. First, the

MIP is ramped-up to a large number of leaves. Then the ramped-up up tree

is decomposed into a collection of perfect LCA nodes (and any leftover leaves)

using Algorithm 3. This collection of nodes is sequenced as per the flow chart

of Figure 3.2 using the best-first heuristic. CPLEX’s MIP emphasis is set to

”balance optimality and feasibility”.
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Next, the deferred merging scheme from Section 5.4.1.3 is used with CPLEX’s

emphasis configured once again to ”balance optimality and feasibility”. The

MIP is solved for a few hours, with the progress in the dual bound and the best

solution found recorded after every hour. It is expected that better progress will

be made when using the merged tree, for reasons we describe in Section 5.6.3.

CPLEX is allowed to use up to 32 threads for this test-set.

5.6 Experimental Evaluation

We tested with several hard MIPs from MipLib’s Benchmark collection Gleixner et al.

(2019); Koch et al. (2011) using pre-solved versions of the problems. As mentioned in

Section 3.2, CPLEX solution finding heuristics and pre-solve routines were disabled.

The time quantum was set to 6 minutes when sequencing subproblems using the best-

first heuristic. Pseudo-cost branching was used throughout. The MIP supportcase10

was solved with cut generation disabled and pseudo-reduced cost branching in order

to increase its branching rate.

Our tests were conducted on Dell PowerEdge R330 Servers running CentOS 7.4,

each equipped with 192 GB of RAM and two Intel Xeon E3-1240 v5 3.5GHz CPUs

having 8 cores each. These hyper-threaded cores allow CPLEX to run 32 threads on

each server. The vmstat program was used to measure memory consumption.

All our tests are written in Java 1.8 using CPLEX 12.10 APIs. Our source code

is on the public internet, and is available upon request along with the log files from

our test runs.
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5.6.1 Results from the Optimality Test-set

The results from our Optimality test set are shown in Table 5.1 and Table 5.2. The

CB instruction tree execution scheme from Section 5.4.1.2 was used. All the times are

in minutes.

The first three columns show the ramp-up duration, the number of leaf nodes in

the search tree, and the number of nodes explored during ramp-up. The next two

columns show the time needed for merging all the leaves from the ramped-up tree,

and the leaf count in the merged tree. Table 5.1 also shows the number of times

CPLEX’s node selection was redirected during merging.

The next two columns show the time for which CPLEX was used to solve the

original MIP and the dual bound it achieved. The two columns after that show the

amount of time spent solving the merged tree and the best bound achieved. Recall

that any solution found during ramp-up is applied as a cutoff for both.

The time allocated for solving the merged tree was equal to (or less than) the time

allocated for solving the original MIP minus the time needed for merging. Note that

the allocated times were all multiples of 5 hours, with more time allocated to harder

problems. MIPs that were solved to completion (i.e., to infeasibility or optimality)

are marked with a (+) sign. Tests in which solving the original MIP improved the

bound faster are marked with an asterisk (∗).

The last column of Table 5.2 also shows the improvement in the solution found by

Controlled Branching over the solution found by solving the original MIP. A negative

value in this column would indicate that Controlled Branching found the better (i.e.,

lower) solution.

For some MIPs we used the deferred execution scheme from Section 5.4.1.3 without
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MIP
Ramp-up Merge Original CB

Time Leaves Nodes Time Leaves Redirects Time Bound Time Bound

bab6∗ 600 26008 27111 40 894 883 600 -284336.29 540 -284336.52

LTL 11 March 2016 1500 3535 3717 168 635 629 600 109159.68 420 109206.76

neos-3656078-kumeu 600 3469 3851 189 734 702 600 -13375.63 360 -13364.12

neos-3754480-nidda 600 7596600 7644415 5 62069 61926 600 -83776.24 600 -52819.34

neos-4338804-snowy 300 1859134 2044608 91 172113 172111 600 1449.39 300 1449.93

neos-4387871-tavua 600 63701 64331 2 2038 2015 600 29.33 600 29.69

neos-5114902-kasavu 600 10193 10212 98 30 22 600 634.33 480 639.16

nursesched-medium-hint03∗ 600 6882 6913 34 648 629 600 101.87 540 98.94

opm2-z10-s4
600 51 54 204 15 11 600 -42509.74 360 -42218.62
900 6029 6045 447 34 27 900 -41216.90 420 -35368.46

radiationm40-10-02 600 5272 5304 47 295 292 600 155325 540 155326

sorrell3+ 300 5139 42596 9 2566 2560 300 -17.6 232 -16
600 3813 199298 8 1905 1900 300 -17.6 40 -16

Table 5.1: Controlled Branching (emphasis on best bound)

MIP
Ramp-up Merge Original CB

Time Leaves Nodes Time Leaves Time Bound Time Bound Solution

cryptanalysiskb128n5obj14+ 1500 12 4215 64 12 8294 Not Applicable 4365 Not Applicable Not Applicable

neos-5093327-huahum 300 7568 9265 203 7143 600 5425.9 360 5511.51 24

roi5alpha10n8∗+ 600 227145 228939 3 1795 517 -52.3275 600 -55.97 2.60

s100 600 4876 5146 31 817 600 -0.170195 540 -0.170158 0.00

sing44∗+ 300 48530 88827 44 19013 476 8128424.11 926 8128528.67 70.49

Table 5.2: Controlled Branching (emphasis on optimality)

MIP
Ramp-up Original CB (Deferred)

Time Leaves Overrides Time Nodes Bound Time Nodes Bound Pending

neos-3656078-kumeu∗ 600 3468 733 600 6135 -13375.63 600 5647 -13379.12 0

neos-3754480-nidda 600 7631961 62268 600 4629997 -83776.24 600 7345566 -46899.77 0

neos-4338804-snowy 300 1852114 171619 600 3496158 1449.39 600 4125332 1450.78 154

nursesched-medium-hint03∗ 600 6953 670 600 4373 101.87 600 4642 99.51 0

opm2-z10-s4 600 51 14 600 39 -42509.74 600 61 -41846.50 0

proteindesign121hz512p9 1500 862 532 1500 84 1441 420 59 1442 3

sing44+ 300 48563 19090 476 1013543 8128424.11 432 648343 8128480.30 0

splice1k1+ 1800 14851 9979 1200 21090 -1498.86 1094 108858 -394 0

sorrell3 300 5140 2565 300 35519 -17.6 300 115321 -17.09 0

traininstance2 600 170443 84213 600 748470 217.43 600 781649 242.35 159

Table 5.3: Controlled Branching (Deferred execution of CB instruction trees)
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(a) neos-3754480-nidda (b) opm2-z10-s4

(c) neos-4338804-snowy (d) sing44

(e) splice1k1 (f) neos-5093327-huahum

Figure 5.4: Progress in the dual bound with Controlled Branching.
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changing the MIP emphasis used for solving them in Table 5.1 or Table 5.2. In ad-

dition, proteindesign121hz512p9 and traininstance2 were solved with emphasis

set to “best-bound” while splice1k1 was solved with emphasis set to “optimality”.

The results are shown in Table 5.3, where the “Overrides” column shows the number

of nonleaf nodes in the CB instruction tree. The “Pending” column shows the number

of search tree nodes that were not automatically selected by CPLEX, but would have

resulted in CPLEX’s branching being overruled had they been visited. The “Nodes”

columns show the number of nodes explored.

Our tests indicate that using the merged tree is more effective than restarting

the search from the LCA node when there is a large percentage of pruned leaves in

the search tree (e.g., cryptanalysiskb128n5obj14), or when the linear relaxations

take a long time to compute (e.g., opm2-z10-s4). More importantly, the position

of the pruned leaves in the search tree should be such that the fathomed branches

include a large fraction of the explored nodes. If these conditions are not met, then it

is better to simply use the LCA node (as in ParaSCIP) instead of investing time in

Controlled Branching. For example, the search trees for bab6, neos-3656078-kumeu,

nursesched-medium-hint03, and roi5alpha10n8 had very few pruned leaves, mak-

ing Controlled Branching an inferior alternative to simply using the LCA node with

the cutoff applied.

Another observation from our tests is that Controlled Branching is not very useful

when branches are fathomed due to leaf nodes getting cutoff by a feasible solution

(e.g., sing44 with emphasis on optimality). Controlled Branching should be used

when a large number of leaf nodes are pruned due to infeasibility. For sing44, the
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performance of Controlled Branching improved significantly when the deferred exe-

cution scheme from Section 5.4.1.3 was used. Deferred execution was also quite useful

for MIPs in which the linear relaxations were taking a long time to compute (e.g.,

proteindesign121hz512p9 and opm2-z10-s4) or when the merge was taking a long

time to accomplish (e.g., splice1k1), and for MIPs with a large number of node

redirects in Table 5.1 (e.g., neos-4338804-snowy).

We used an LTL routing problem with increased network size as a test case (see

Chapter 2, Section 2.4 for a description of how the network size is increased). Con-

trolled Branching was useful for tightening the dual bound faster (see Table 5.1).

Figures 5.4(a) and 5.4(b) show the progress in the dual bound for the MIPs

neos-3754480-nidda and opm2-z10-s4, with and without deferred execution of CB

instruction trees. Figures 5.4(c), 5.4(d), and 5.4(e) show the progress for the MIP

neos-4338804-snowy, sing44, and splice1k1 with deferred execution of CB in-

struction trees. Figure 5.4(f) shows the progress for neos-5093327-huahum without

deferred execution, starting from the fifth hour (the merge took about 3.5 hours to

complete).

We conclude this section by noting that our performance comparisons should be

interpreted with caution. CPLEX may not make the same branching decisions every

time a MIP is solved, and even a small variation in the set of branching decisions (or

in their order) can lead to a vastly different search tree.

5.6.2 Results from the Feasibility Test-set

Results from our Feasibility test-set are shown in Table 5.4, where we compare the

LCA scheme with Controlled Branching. The first four columns show the ramp-up
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MIP
Ramp-up Original CB

Time Leaves Nodes Solution Time Nodes Solution Time Nodes Solution

bab2∗ 600 264360 361108 -357064.35
600 260030 -357478.74 600 462780 -357183.67

900 396223 -357478.74 900 682318 -357192.28

bab6∗ 300 107822 226324 -284187.45 120 789255 -284223.77 720 778890 -284218.14

comp21-2idx∗ 300 29366 32908 100 60 63378 85 480 52545 99

markshare2D∗ 300 11179400 321988937 10
300 351738292 8 300 325171319 8

600 699531900 4 600 642429800 5

neos-3754480-niddaD 300 17187342 36862523 13156.59
300 30208273 None 300 36712083 13116.81

600 48721986 13098.64 600 54628761 13095.95

neos-4954672-berkelD 300 16833508 18178595 2701039
300 6322036 2626733 300 8894220 2615849

600 14363541 2625793 600 15091849 2615849

nursesched-medium-hint03 300 78098 108504 259 300 122392 164 300 128817 164

s100 600 12605 17942 -0.16955 300 10885 -0.16967 300 13833 -0.16967

sing326∗ 300 79069 157534 7759247.66 300 45462 7753674.85 300 153841 7754021.49

traininstance2 300 773188 20624037 None
300 42867782 82500 300 33271027 80360

600 89143818 82500 600 76002105 80360

Table 5.4: Controlled Branching (finding feasible solutions, single-threaded mode).

MIP
Ramp-up Original CB

Time Leaves Nodes Solution Time Nodes Solution Time Nodes Solution

b1c1s1D+ 300 973050 1119382 25123.03 180 4670102 24640.97 180 3919144 24544.25

bab2∗ 300 91292 163821 -357032.62 240 1062311 -357457.76 240 410856 -357300.47

dws008-01D∗+ 300 5526678 8474164 39522.77
120 29301069 37412.60 120 30058062 None

300 Not Applicable Not Applicable 300 71819927 39060.91

highschool1-aigioD∗ 600 35350 36235 None 300 121992 321 300 69827 486

markshare2D 600 19696056 628031393 10 300 1160533647 7 300 845331686 7

neos-3754480-niddaD+ 300 17196052 36885683 13156.59 300 370015321 12941.74 300 217922932 12941.74

neos-4954672-berkelD∗+ 300 16874566 18223113 2701039 60 27276747 2612710 240 76915554 2627915

nursesched-medium-hint03∗ 600 147857 206774 218
300 576505 132 300 264441 148

600 905744 130 600 579953 134

s100D 600 12551 17882 -0.169552 300 90787 -0.169663 300 105705 -0.169667

splice1k1∗ 600 20941 48522 -82 300 180293 -350 300 340302 -308

supportcase10+ 300 31 54 8 180 100 8 180 69 7

Table 5.5: Controlled Branching (finding feasible solutions, multi-threaded mode).
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duration, the number of leaves in the search tree, the number of nodes explored, and

the best solution found. The next six columns show the duration for which CPLEX

was run with the ramp-up solution applied as cutoff, using the original MIP and then

Controlled Branching. The number of nodes explored and the best solution found are

also shown.

We repeated some tests with CPLEX allowed to use up to 32 threads after ramp-

up. The results are shown in Table 5.5. In both Tables, the time awarded to Controlled

Branching was reduced by the amount of time used up for merging. The deferred ex-

ecution scheme from Section 5.4.1.3 was used for some tests, as indicated by the

superscript (D). Tests in which Controlled Branching produced a comparatively in-

ferior solution are marked with an asterisk (∗), and tests in which the best possible

solution was found are marked with a (+).

In general, MIPs used in this test-set can be broadly classified into the following

two categories:

1. MIPs for which there is a large fraction of infeasible nodes in the search tree.

These nodes need to be identified and pruned in order to reveal a feasible vertex.

MIPs from MipLib’s feasibility collection fit into this category. We ramped-up

some of these MIPs for a long time in order to eliminate a large number of

infeasible nodes from their search tree. However, we still could not find a feasible

solutions for them in a reasonable amount of time. Examples include the MIPs

fhnw-binpack4-48, fhnw-sq2, and gfd-schedulen180f7d50m30k18.

The benchmark MIPs supportcase10 and traininstance2 appear to fit into

this category.

2. MIPs in which very few infeasible nodes are encountered during the search for
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feasible solutions (e.g., highschool1-aigio). Sometimes leaves get pruned not

because they are infeasible, but because they are cutoff by a solution found

during the search (e.g., sing326). This phenomenon of a large number of leaves

getting cutoff by a feasible solution was also seen occasionally in the Optimality

test-set when CPLEX’s emphasis was set to optimality (an example is the MIP

sing44).

Most of the MIPs we used from MipLib’s benchmark collection fit into this

category. Many of them have multiple feasible solutions, with the lower quality

solutions often easy to find.

Our tests indicate that it is adequate to simply use the LCA node with the cutoff

applied for MIPs in the second category. Controlled Branching may be more useful

for MIPs that belong to the first category, so that a large number of infeasible nodes

can be skipped over. Testing with MIPs from MipLib’s feasibility collection remains

a future work item for us, and may require access to more powerful computational

resources.

5.6.3 Results from the Balanced Test-set

Representative results from our balanced test-set are shown in Figure 5.5. Figure 5.5(a)

compares the progress in the dual bound achieved by Controlled Branching with the

corresponding progress achieved by best-first sequencing for comp21-2idx. Similar

comparisons are shown in Figure 5.5(c) to Figure 5.5(f) for neos-4338804-snowy,

opm2-z10-s4, roi5alpha10n8, and s100 respectively. Figure 5.5(b) compares the

increase in memory consumption of Controlled Branching with that of best-first se-

quencing for comp21-2idx. The MIPs were ramped-up for 5 hours each.
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(a) comp21-2idx (b) comp21-2idx memory consumption

(c) neos-4338804-snowy (d) opm2-z10-s4

(e) roi5alpha10n8 (f) s100

Figure 5.5: Best-first sequencing versus Controlled Branching (balanced emphasis,
large ramp-up.)
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(a) b1c1s1 bound progress (b) b1c1s1 nodes explored

(c) b1c1s1 memory consumption (d) dws008-01 bound progress

(e) dws008-01 nodes explored (f) dws008-01 memory consumption

Figure 5.6: Best-first sequencing versus Controlled Branching (balanced emphasis,
small ramp-up).
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The key observation from these results is that it becomes practically impossible to

iterate through a large collection of LCA nodes in a reasonable amount of time, even

if each node represents a trivial subproblem that can be solved to completion within

seconds. This was the case for opm2-z10-s4 where the MIP solver generated new cuts

for each LCA node being sequenced, thereby improving its dual bound significantly.

But even after 5 hours there were still thousands of LCA nodes awaiting assignment

to the MIP solver, and therefore there was almost no improvement in the best bound

remaining. Controlled branching on the other hand solved the MIP to provable op-

timality within 2 hours. This problem was far more severe for neos-4338804-snowy

because there were more than 8 million LCA nodes with the same linear relaxation

objective value of 1447, all of them waiting to be assigned to the MIP solver. The

bound progress with best-first sequencing was better for s100, although only 37 out

of 1626 LCA nodes were solved to completion after 10 hours.

In order to limit the number of subproblems for best-first sequencing, we solved

the MIP b1c1s1 to provable optimality using a small ramp-up (200 leaf nodes). The

ramped-up tree was decomposed into 96 LCA nodes and leftover leaves. Figure 5.6(a)

compares the progress in the dual bound achieved by Controlled Branching with the

progress achieved by best-first sequencing. Figure 5.6(b) compares the number of

nodes explored after every hour, and Figure 5.6(c) shows the increase in memory

consumption. This test highlights some more drawbacks of sequencing a collection of

disconnected subproblems:

1. The total number of nodes explored by best-first sequencing is far larger than

the number of nodes explored by Controlled Branching. This is a well known

phenomenon in MIP distribution called redundant work. Redundant work is a
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consequence of partitioning a large search tree into a collection of disconnected

subproblems, thereby making it impossible to share information instantly be-

tween different parts of the search tree. This in turn leads to larger search trees

and sublinear speedups upon distribution (or in our test, increased solution

times upon best-first sequencing). Redundant work is discussed in detail by

Ralphs et al. Ralphs et al. (2018, 2003).

2. Memory consumption for best-first sequencing can quickly exceed that of Con-

trolled Branching. This is a consequence of having to retain several large search

trees in memory simultaneously during best-first sequencing.

Controlled Branching found a better feasible solution than best-first sequencing

for opm2-z10-s4 and neos-4338804-snowy. Both schemes found the best possible

solution for b1c1s1.

For some MIPs, it is actually quite useful to sequence through a small collection

of nodes. An example is shown in Figure 5.6(d) for dws008-01 which was ramped-up

to 200 leaves and decomposed into 90 LCA nodes and leftover leaves. The new cuts

generated for each of the 90 subproblems were so strong that all of them were solved

to completion within 2 one hour cycles. This is similar to the behavior observed by

ParaSCIP, as noted in Section 3.2. However, as with b1c1s1 the number of nodes

explored and the memory consumption were larger when using best-first sequencing

for the first two hours (Figure 5.6(e) and (f)). Our conclusion is that Controlled

Branching should be used instead of best-first sequencing unless the generation of new

cuts and the reapplication of pre-solve routines on each subproblem quickly results in

the MIP being solved to provable optimality.
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5.7 Conclusions and Future Work

In this chapter we analyzed two related schemes for merging leaf nodes from the

search tree of a Mixed Integer Program. We extended the leaf merging schemes of

ParaSCIP and DryadOpt by using CPLEX to accomplish the merging. We developed

a metric called the packing factor which is useful for identifying LCA nodes that are

safe for assignment to workers in a distributed MIP computation. We proved that an

arbitrary subset of leaf nodes can be combined into a single tree using the Controlled

Branching scheme, while only computing the smallest number of linear relaxations

possible.

Controlled Branching complements ParaSCIP’s approach of simply using the LCA

node. Our experiments indicate that Controlled Branching is particularly useful when

large sections of the search tree have been fathomed due to node infeasibility, or when

linear relaxations are taking a long time to compute. Controlled Branching is also

superior to best-first sequencing, especially when the search trees are large.

There are several ways in which our work can be extended:

1. Controlled Branching can be integrated into existing implementations of dis-

tributed MIP such as ParaSCIP or ParaLEX.

2. The variation of Controlled Branching mentioned in section 5.4.1.4 can be tested

with CPLEX, and also with MIP solvers that allow branching on only 1 variable

at a time.

3. We have assumed throughout that the ordered branching conditions for each

leaf node are available. It would be an interesting exercise to implement our

proposals when such ordered branching conditions are not available.
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Chapter 6

Summary and Extensions

The Less-than-truckload freight routing problem is interesting not only for its eco-

nomic impact, but also for its theoretical richness and complexity. In this thesis, we

proposed several solution techniques that can be used to solve this big-data driven

optimization problem. Our proposals proved quite effective at solving the LTL rout-

ing problem in a reasonable amount of time. Moreover, our proposals also proved

effective at solving other pseudo-Boolean optimization problems and generic mixed

integer programs in a distributed fashion.

Our journey started in Chapter 1 with the long term goal of integrating a pow-

erful commercial optimization engine (CPLEX) with a popular big-data analytics

platform (Apache Spark). Our goal was motivated by the observation that many con-

ventional optimization problems arising from day-to-day operations in the industry

are increasingly big-data driven. Therefore, it can be beneficial to integrate powerful

optimization engines with platforms for big-data analytics.

We selected the LTL routing problem as our use case. This problem was a natural
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choice for our project because it exhibits the 4V’s of big-data, and also has a signifi-

cant economic impact. Our collaboration with a major Canadian LTL operator gave

us valuable insights into the problems they face during their day-to-day operations.

In Chapter 2, we introduced the LTL routing problem and outlined some of the

existing approaches for solving it. We then developed an integer programming model

for LTL routing. We showed that this optimization problem can be hard to formulate

and solve on larger LTL networks, and developed a heuristic algorithm for solving it

quickly.

In Chapter 3, we identified some approaches that can be useful for solving hard

optimization problems (like the LTL routing problem) in a distributed fashion. While

distribution is an obvious alternative for solving any hard problem, our choice was

motivated by the observation that effective distribution is a vital first step towards

integrating MIP solvers with big-data platforms. In this chapter, we identified that

using branching strategies that only use properties of the branching node can be useful

for improved scaling upon distribution. Moreover, we showed how search restarts can

be applied to MIP solver parallelization by creating and using a repository of pseudo-

Costs.

In Chapter 4 we applied the theme proposed in the previous chapter to pseudo-

Boolean optimization problems. We developed an unconventional approach for solving

the LTL routing problem. We showed that for some pseudo-Boolean MIPs it is possible

to produce performance comparable to CPLEX (in its default mode) by employing

branching heuristics that only use properties of the branching node.

In Chapter 5 we continued with our theme of finding effective techniques for

distribution. We developed a metric that can be useful while implementing subtree
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parallelism, and used it to show that an arbitrary collection of leaf nodes can be

merged into a single tree by solving the smallest possible number of node relaxations.

We believe that our proposals represent a significant step towards achieving our

long term goal of integrating MIP solvers into big-data frameworks. In the shorter

term, our proposals are useful for solving the LTL routing problem and for improving

the performance of MIP solver parallelization.

Two proposals for extending our work appear below. These are in addition to the

opportunities for future work outlined at the end of each chapter. Early experiments

indicate that our proposals are promising and should be explored further.

6.1 A Game-theoretic approach for solving the LTL

routing problem

Rahwan et al. (Rahwan et al., 2015) present an excellent survey of coalition structure

generation. Here, a coalition is a grouping of agents which are collectively trying to

complete a task. The collection of all the coalitions formed is called the coalition

structure. Techniques for coalition structure generation are concerned with trying to

find the optimal coalition structure; i.e., a grouping of agents that maximizes a profit

function that has been defined in advance.

While each individual agent may have its own objective function, many coalition

structure generation problems try to optimize social welfare. In other words, all the

agents have a single shared objective and it is beneficial to all of them to optimize its

value. Therefore, the LTL routing problem (and possibly other optimization problems)

can be modeled as coalition structure generation problems, with the social welfare
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being the cost of routing skids received on a given day. A collection of skids that

travel together in the same trailer on a given arc can be treated as a coalition.

Many coalition structure generation problems are Partition function Games (PFGs).

In such games, the value of a coalition is influenced by other coalitions that make

up the coalition structure (Rahwan et al., 2015). The optimal value of social welfare

cannot be found unless all possible coalition structures are exhaustively enumerated

and the value of each coalition in each structure is calculated. This of course can be

very expensive.

In its full generality, the LTL routing problem is a partition function game. To

see this, observe that the contribution to the overall routing cost made by a routing

decision at one town is influenced by routing decisions made at other towns. However,

simplified versions of the LTL routing problem can be modeled as Characteristic

Function Games (CFGs) (Chalkiadakis et al., 2011), which are usually easier to solve

than PFGs (Rahwan et al., 2015).

For example, consider the simplified LTL routing problem with a single origin,

multiple destinations, and several intermediate transfer terminals available. Assuming

that the destinations and transfer terminals have no towns in common, and that

every route to any destination is allowed to have at most 1 transfer terminal, the

LTL routing problem becomes a simplified version of the Steiner-tree problem in a

time-space network.

Observe that this simplified version of the problem is a CFG. The cost of any

coalition is the cost of the first arc traversed (which is unique to the coalition), plus the

cost of any other arcs which start from the Steiner point used by this coalition. Hence,

there are no common arcs between the coalitions, and the arc costs which determine
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the characteristic function value of the coalition depend only on the members of that

coalition. There is no sharing of arcs (and therefore of arc costs) between coalitions.

It is conceivable that the LTL routing problem can be solved using a heuristic

which decomposes the underlying PFG into a series of easier to solve CFGs. In general,

application specific heuristics could be used to approximate hard PFGs with a series

of CFGs.

Coalition structure graphs can be used to arrange all possible coalition structures

in a tree-like formation (Sandholm et al., 1999; Larson and Sandholm, 2000). The

utility of this data structure is that it allows for finding “good” coalition structures

(i.e., those that are within a bound of the optimum) without the need for exhaustive

enumeration. Similar data structures (and algorithms that use them) are described

in (Rahwan et al., 2015).

These approaches may benefit from reorganizing their data structures based on the

following observation. For a CFG, the movement of a single agent from one coalition to

another leaves the value of all the other coalitions in the coalition structure unchanged.

Therefore, calculating the change in the value of a coalition structure can be faster

if adjacent coalition structures differ by only one agent that moved between two

coalitions.

6.2 Heuristic for set-partitioning problems

The approach of converting a constraint into infeasible hypercubes (see Chapter 4)

can be adapted for solving set-partitioning problems which have a small number (say

≤ 100) of variables per constraint. Recall from Section 2.4 that some LTL routing

problems had more than a hundred thousand variables and tens of thousands of
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constraints, with some constraints being set-partitioning constraints.

For such constraints, the lower bound portion of the equality constraint can be

represented by a single infeasible hypercube, and the upper bound portion of the

constraint by several hypercubes of size 2. For example, the constraint:

x1 + x2 + x3 + x4 = 1

can be converted into the lower bound constraint

x1 + x2 + x3 + x4 ≥ 1

and the upper bound constraints

x1 + x2 ≤ 1 , x1 + x3 ≤ 1 , x1 + x4 ≤ 1 , x2 + x3 ≤ 1 , x2 + x4 ≤ 1 , and x3 + x4 ≤ 1

and subsequently represented by the infeasible hypercubes

(x1 = 0, x2 = 0, x3 = 0, x4 = 0) , and

(x1 = 1, x2 = 1) , (x1 = 1, x3 = 1) , (x1 = 1, x4 = 1) , (x2 = 1, x3 = 1) ,

(x2 = 1, x4 = 1) , and (x3 = 1, x4 = 1)

Observe that valid constraints such as

x1 + x2 + x3 ≤ 1

need not be considered, because the corresponding infeasible hypercubes are absorbed

into the hypercubes already used for representing the set-partitioning constraint.

Following this conversion, the BCP implementation from Chapter 4 can be used

when making branching decisions. The rationale for identifying and collecting hy-

percubes of size 2 is to try and eliminate large regions of infeasible space from the

problem as quickly as possible (equivalently, to fix a large number of variables to

either 0 or 1 as quickly as possible).
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Appendix A

Configuration parameters for LTL

routing

The configuration parameters that can be used to customize our implementation are

shown in Table A.1, and described below.

1. Maximum route size in number of arcs : When enumerating all possible routes

from an origin break-bulk to a destination, routes having more arcs than this

number are ignored.

2. Maximum arcs in excess of the shortest route: Routes between any origin break-

bulk and a destination can have at most this many arcs more than the shortest

route for the same origin-destination pair. Here we define the “shortest route”

by considering the number of arcs in the route (and not the sum of the arc

transit times).

3. Schedule window : The number of days for which skids can be routed. With our

data-set, this window is March 1, 2016 to March 21, 2016. Includes an initial

129



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

Name Data type Default
Maximum route size in number of

arcs

Integer 4

Maximum arcs in excess of the

shortest route

Integer 3

Schedule window (days) Integer 21
Maximum days after the schedule

window (Greedy)

Integer 14

Maximum CPLEX window (days) Integer 10
Holidays List of Integers Weekends and holidays
Allow start on holidays Boolean False
Allow delayed scheduling Boolean True
Handling cost for cross-docking Real number 0
Maximum number of skids per day Integer 5000
Maximum days after deadline

(Greedy)

Integer 0

Days added to all deadlines Integer 0
Volume lowering factor Real number 0.9
Trailer volume capacity Real number 0.9* 3600 = 3240 cubic

feet
Trailer weight capacity Real number 46000 pounds
Saturation days Integer 7
Maximum number of DSF iterations Integer 3
Sort-to-Bin Boolean False
Bin volume capacity Real number 95 cubic feet
Bin count capacity Integer 60
CPLEX time limit (in seconds) Integer 3600
CPLEX file strategy Integer 3

Table A.1: Configuration parameters for LTL model generation and heuristics

“warm up” period during which the network is saturated.

4. Maximum days after the schedule window (Greedy): The Greedy heuristic is

allowed to schedule skids on trailers after the schedule window. This may be

required, for example, if routes are being found for skids that were received

at EOL terminals on the last day of the schedule window. Note however that
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trailer information is available only for March 2016.

5. Maximum CPLEX window : For any skid, travel along the last arc must not

start any later than this many days after the skid was received at the EOL

terminal. This number should be small enough to keep the model size under

control.

6. Holidays : A list of integers. Indicates how many days past the first day a

holiday or weekend falls. Since we start from Tuesday March 1, 2016, the first

two numbers in our holiday list are 4 (Saturday) and 5 (Sunday).

7. Allow start on holidays : When set, allows trailers to be dispatched on weekends

and holidays. In-transit trailers continue traveling on weekends and holidays,

and are not effected by this parameter.

8. Allow delayed scheduling : Allows skids to be held at break-bulks for a few days,

before onward routing.

9. Handling costs : Cross-docking at the break-bulks costs $1.08 per skid. For sim-

plicity, and because these costs tend to be much smaller than trailer rental costs,

we default these costs to 0.

10. Maximum skids per day : Currently set to 5000.

11. Maximum days after deadline (Greedy): When set to a non-zero number, forces

the Greedy heuristic to repeatedly increase a skid’s deadline by one day and try

to find a route for it, in case the previous routing attempt was unsuccessful.

12. Days added to all deadlines : Some days can be added to every skid’s deadline.
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13. Volume lowering factor : Accounts for the fact that some volume in every trailer

is lost due to structural restrictions.

14. Trailer volume capacity : Set to 90% of 3600 cubit feet.

15. Trailer weight capacity : Set to 46 thousand pounds. In practice, trailer weight

capacity is usually not a concern (trailer volume fills up much faster).

16. Saturation days : The number of days for which skids are routed using the

Greedy heuristic, before test measurements are made by routing skids on the

next day.

17. Maximum number of DSF iterations : Number of iterations of the directed

Steiner-forest heuristic, before iterations are stopped and Greedy routing is

used.

18. Sort-to-Bin: Set to “True” to use Sort-to-Bin.

19. Bin Volume capacity : Volume capacity of Bins used during Sort-to-Bin.

20. Bin count capacity : Maximum number of skids in a Bin when using Sort-to-Bin.

21. CPLEX time limit : Time given to CPLEX to find feasible solutions and prove

optimality.

22. CPLEX file strategy : CPLEX node files are saved to disk in compressed format

for large models.
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Appendix B

Configuration parameters for

CLTL

Table B.1 summarizes CLTL’s configuration parameters and their default values.

1. Enable Equivalent Trigger Check for BCP: Used to enable trigger equiva-

lence and domination check while selecting candidates for BCP.

2. Consider Partly Matched Cubes for Volume Removal: Refer to Section 4.4.2.1

for a description. In its default position, this parameter places a heavy emphasis

on removing hypercubes of size 2.

3. Enable Two Sided BCP Metric: Refer to Section 4.4.2.1 for a description.

4. BCP Level: Used to select variables from hypercubes of size 2 for performing

BCP. The options are to select all of them for BCP, or to select only those that

have above average frequency in these hypercubes, or only those that have the

maximum frequency. The fourth option is to turn off BCP completely, in which
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Table B.1: CLTL configuration parameters

Name Data type Default
ENABLE EQUIVALENT TRIGGER

CHECK FOR BCP

Boolean True

CONSIDER PARTLY MATCHED

CUBES FOR BCP VOLUME REMOVAL

Boolean False

ENABLE TWO SIDED BCP METRIC Boolean False
BCP LEVEL Enumerated All
CHECK DUPLICATES Boolean False
ABSORB COLLECTED HYPERCUBES Boolean False
MERGE COLLECTED HYPERCUBES Boolean False
MAX VARIABLES PER CONSTRAINT Integer Billion
MAX HYPERCUBES PER

CONSTRAINT

Integer Billion

DROP HYPERCUBES LARGER THAN

SIZE

Integer Billion

BRANCH ONLY ON VARIABLES IN

OBJECTIVE

Boolean False

RETAIN CUBES WITH VARIABLES

IN OBJECTIVE

Boolean False

LOOK AHEAD LEVELS (MOMS) Integer Billion
DEPTH LEVELS (Jeroslow-Wang) Integer 10
PERFORMANCE VARIABILITY

RANDOM SEED

Integer 0

RAMP-UP DURATION IN HOURS Integer 1

case the MOMS heuristic is used for branching.

5. Check Duplicates: Used to discard hypercubes that are identical to infeasible

hypercubes already collected from other constraints.

6. Absorb Collected hypercubes: Used to identify and discard infeasible hyper-

cubes if their ancestor hypercubes already exist.

7. Merge Collected hypercubes: Used to identify and repeatedly merge sibling

infeasible hypercubes into their parent hypercube.
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8. Max Variables per Constraint: Used to ignore all constraints which include

more variables than this parameter.

9. Max Hypercubes per Constraint: Used to ignore constraints that cannot be

translated into a reasonably small number of infeasible hypercubes using Boole’s

expansion theorem.

10. Drop hypercubes Larger Than Size: Used to discard all hypercubes whose

number of variables exceeds this value.

11. Branch Only on Variables Appearing in the Objective: Used to exclude

variables from consideration for branching if they do not appear in the objective.

12. Retain hypercubes with Variables Appearing in the Objective: Used to

discard hypercubes none of whose variables appear in the objective.

13. Look Ahead Levels (MOMS): Used to instruct the MOMS heuristic to ignore

all hypercubes whose size exceeds this value.

14. Depth Levels (Jeroslow-Wang): Used to instruct Jeroslow-Wang’s heuristic

to ignore all hypercubes whose size exceeds this value.

15. Performance Variability Random Seed: Used to randomly select a variable

for branching from a list of candidates, in case of a tie. This is used to test

performance variability.

16. Ramp-up Duration: The number of hours for which CLTL’s branching strate-

gies are used before allowing Cplex to take over completely.
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Appendix C

Decomposing a MIP Search Tree

into Perfect LCA Nodes

This algorithm assumes that an estimate is available for the linear relaxation objective

of each leaf.
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Algorithm 3: Decompose a tree into perfect LCA nodes

1 Initialization: An empty list PL of perfect LCA nodes
2 Function GetLCANodes(thisNode ):
3 isPerfectlyPacked ← false
4 if (thisNode is a Leaf) then

// every leaf is perfect

5 add thisNode to PL
6 isPerfectlyPacked ← true

7 else
8 if (thisNode has 2 child nodes) then
9

10 leftChildIsPerfect ← GetLCANodes (thisNode.leftChild)
11 rightChildIsPerfect ← GetLCANodes (thisNode.rightChild)
12 if (rightChildIsPerfect and leftChildIsPerfect) then
13

14 PL.append (thisNode)

15 PL.remove (thisNode.leftChild)

16 PL.remove (thisNode.rightChild)

17 isPerfectlyPacked ← true
18

19 x ← thisNode.leftChild.linearRelaxationObjective

20 y ← thisNode.rightChild.linearRelaxationObjective

21 thisNode.linearRelaxationObjective ← Minimum (x, y)

22 end
23

24 else
// look for perfect LCA nodes in the only branch

25 if (thisNode has a left child) then
26 GetLCANodes (thisNode.leftChild)
27 else
28 GetLCANodes (thisNode.rightChild)
29 end

30 end

31 end

32 return isPerfectlyPacked
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Appendix D

Algorithms Used in the

Construction of CB Instruction

Trees

As a first step in constructing CB instruction trees, Algorithm 4 is used for setting

reference counts in the nonleaf nodes. Subsequently, these reference counts are used

by the methods in Algorithm 5.
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Algorithm 4: Set reference counts

1 Initialization: S ← leaf nodes selected for merging, with all the refcounts in
every leaf set to 0.

2 The root node’s parent ← NULL.
3 Function SetRefcounts(S):
4 foreach (leaf L ∈ S) do
5 current node C ← L

6 isCurrentNodeALeaf ← true
7 P ← L.parentNode

8

9 while (P is not NULL) do
10 if (C is the left child of P) then
11 increment left leaf refcount for P
12 else
13 increment right leaf refcount for P
14 end
15

16 if (not isCurrentNodeALeaf) then
17 x ← left nonleaf refcount for C
18 y ← right nonleaf refcount for C
19 if (C is the left child of P) then
20 left nonleaf refcount for P ← (1 + x + y)
21 else
22 right nonleaf refcount for P ← (1 + x + y)
23 end

24 end
25

// Climb up

26 C ← P

27 P ← P.parentNode

28 isCurrentNodeALeaf ← false

29 end
30

31 end

32 return
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Algorithm 5: Create the CB instruction tree

1 Function CreateInstructionTree(thisNode ):
2 InstructionTree ← A new CB instruction tree
3 InstructionTree.ID ← thisNode.nodeID

4

5 L ← thisNode’s left leaf refcount + thisNode’s right leaf refcount
6 N ← 1+ thisNode’s left nonleaf refcount + thisNode’s right nonleaf refcount
7 isPerfectlyPacked ← false
8 if (L = N+1) then
9 isPerfectlyPacked ← true

10 end
11

12 if (thisNode is neither a leaf nor isPerfectlyPacked ) then
13 if (thisNode’s left leaf refcount > 0) then
14 (nextNode, InstructionList) ← GetNextNode (thisNode, “left”)
15 InstructionTree.leftChildID ← nextNode.nodeID

16 InstructionTree.leftSideBranchingInstruction ← InstructionList

17 InstructionTree.leftInstructionTree ←
CreateInstructionTree(nextNode)

18 end
19 if (thisNode’s right leaf refcount > 0) then
20 (nextNode, InstructionList) ← GetNextNode (thisNode, “right”)
21 InstructionTree.rightChildID ← nextNode.nodeID

22 InstructionTree.rightSideBranchingInstruction ← InstructionList

23 InstructionTree.rightInstructionTree ←
CreateInstructionTree(nextNode)

24 end

25 end

26 return InstructionTree

27

28 Initialization: Set the branching instruction list InstructionList to empty
29 Function GetNextNode(thisNode, direction ):
30 if (direction is “left”) then
31 nextNode ← thisNode.leftChild

32 else
33 nextNode ← thisNode.rightChild

34 end
35 InstructionList.add(branching condition of nextNode)
36

37 while (nextNode has a 0 leaf refcount on exactly one side) do
38 if (nextNode’s right leaf refcount is 0) then
39 nextNode ← nextNode.leftChild

40 else
41 nextNode ← nextNode.rightChild

42 end
43 InstructionList.add(branching condition of nextNode)

44 end

45 return (nextNode, InstructionList)
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Juan, A. A., Faulin, J., Pérez-Bernabeu, E., and Jozefowiez, N. (2014). Horizon-

tal cooperation in vehicle routing problems with backhauling and environmental

criteria. Procedia-Social and Behavioral Sciences, 111, 1133–1141.

148



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

Katayama, N. and Yurimoto, S. (2016). The load planning problem for less-than-

truckload motor: Carriers and a solution approach. In Developments in Logistics

and Supply Chain Management, pages 240–249. Springer.

Kennington, J. L. and Nicholson, C. D. (2010). The uncapacitated time-space fixed-

charge network flow problem: an empirical investigation of procedures for arc ca-

pacity assignment. INFORMS Journal on Computing, 22(2), 326–337.

Klabjan, D., Johnson, E. L., Nemhauser, G. L., Gelman, E., and Ramaswamy, S.

(2001). Solving large airline crew scheduling problems: Random pairing generation

and strong branching. Computational Optimization and Applications, 20(1), 73–91.

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E.,

Danna, E., Gamrath, G., Gleixner, A. M., Heinz, S., et al. (2011). MIPLIB 2010.

Mathematical Programming Computation, 3(2), 103.

Larson, K. S. and Sandholm, T. W. (2000). Anytime coalition structure generation:

an average case study. Journal of Experimental & Theoretical Artificial Intelligence,

12(1), 23–42.

Lawler, E. L. and Wood, D. E. (1966). Branch-and-bound methods: A survey. Op-

erations research, 14(4), 699–719.

Leung, J. M., Magnanti, T. L., and Singhal, V. (1990). Routing in point-to-point

delivery systems: formulations and solution heuristics. Transportation science,

24(4), 245–260.

149



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

Li, C. M. and Anbulagan, A. (1997). Heuristics based on unit propagation for sat-

isfiability problems. In Proceedings of the 15th international joint conference on

Artifical intelligence-Volume 1, pages 366–371. Morgan Kaufmann Publishers Inc.

Linderoth, J. T. and Savelsbergh, M. W. (1999). A computational study of search

strategies for mixed integer programming. INFORMS Journal on Computing,

11(2), 173–187.

Lindsey, K., Erera, A., and Savelsbergh, M. (2016). Improved integer programming-

based neighborhood search for less-than-truckload load plan design. Transportation

Science, 50(4), 1360–1379.
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tion structure generation with worst case guarantees. Artificial Intelligence, 111(1),

209–238.

Sheini, H. M. and Sakallah, K. A. (2005). Pueblo: A modern pseudo-boolean SAT

solver. In Proceedings of the conference on Design, Automation and Test in Europe-

Volume 2, pages 684–685. IEEE Computer Society.

Shinano, Y. (2018). The ubiquity generator framework: 7 years of progress in par-

allelizing branch-and-bound. In Operations Research Proceedings 2017, pages 143–

149. Springer.

Shinano, Y. and Fujie, T. (2007). ParaLEX: A parallel extension for the CPLEX

mixed integer optimizer. In European Parallel Virtual Machine/Message Passing

Interface Users Group Meeting, pages 97–106. Springer.

Shinano, Y., Fujie, T., and Kounoike, Y. (2003). Effectiveness of parallelizing the ilog-

cplex mixed integer optimizer in the pubb2 framework. In European Conference on

Parallel Processing, pages 451–460. Springer.

Shinano, Y., Achterberg, T., and Fujie, T. (2008). A dynamic load balancing mech-

anism for new ParaLEX. In 2008 14th IEEE International Conference on Parallel

and Distributed Systems, pages 455–462. IEEE.

153



Ph.D. Thesis – Srinivas Subramanya Tamvada McMaster University – CSE

Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., and Koch, T. (2011). ParaSCIP:

a parallel extension of SCIP. In Competence in High Performance Computing 2010,

pages 135–148. Springer.

Shinano, Y., Berthold, T., and Heinz, S. (2016a). A first implementation of ParaX-

press: Combining internal and external parallelization to solve mips on super-

computers. In International Congress on Mathematical Software, pages 308–316.

Springer.

Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., and Winkler, M.

(2016b). Solving open MIP instances with ParaSCIP on supercomputers using up

to 80,000 cores. In Parallel and Distributed Processing Symposium, 2016 IEEE

International, pages 770–779. IEEE.

Warners, J. P. (1998). A linear-time transformation of linear inequalities into con-

junctive normal form. Information Processing Letters, 68(2), 63–69.

Wolfman, S. A. and Weld, D. S. (1999). The LPSAT engine & its application to

resource planning. In IJCAI, volume 1999, pages 310–317. Citeseer.
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