Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/19342
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMacGregor, J. F.-
dc.contributor.authorBurn, Nicholas J.-
dc.date.accessioned2016-05-24T19:05:12Z-
dc.date.available2016-05-24T19:05:12Z-
dc.date.issued1986-06-
dc.identifier.urihttp://hdl.handle.net/11375/19342-
dc.description.abstract<p> The models derived from classical light scattering theory for predicting Rayleigh light scattering contain useful parameters such as polymer weight average molecular weight, z-average radius of gyration and virial coefficients. The methods used to estimate these model parameters have not been based on sound statistical principles. It is with improved statistical estimation methods for these parameters that this thesis is concerned with. The methods of linear least squares, non-linear least squares and error propagation were applied to the analysis of wide angle and low angle laser light scattering data and the results compared.</p> <p> From the theory of dynamic light scattering, methods have been developed to reconstruct particle size distributions of unimodal, bimodal and polydisperse polymer solutions from the data accumulated in a single experiment. Some of these methods of reconstruction are based upon the estimation of the coefficients in a sum of exponentials. Estimating sums of exponentials is a highly ill-conditioned problem and the problems encountered thereof are examined in this thesis. Linear least squares, non-linear least squares and exponential sampling techniques were applied to experimental data from a number of simulated polymer distributions and the final results compared.</p>en_US
dc.language.isoen_USen_US
dc.subjectstatistical, analysis, light, scattering, data, polymer, characterization, linear, particleen_US
dc.titleThe Statistical Analysis of Light Scattering Data for Polymer Characterizationen_US
dc.typeThesisen_US
dc.contributor.departmentChemical Engineeringen_US
dc.description.degreetypeThesisen_US
dc.description.degreeMaster of Engineering (MEngr)en_US
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File Description SizeFormat 
Burn_Nicholas_J._1986Jun_Masters..pdf
Open Access
5.41 MBAdobe PDFView/Open
Show simple item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue