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ABSTRACT

The models derived from classical light scattering theory for
predicting Rayleigh light scattering contain useful parameters such as
polymer weight average molecular weight, z-average radius of gyration
and virial coefficients. The methods used to estimate these model
parameters have not been based on sound statistical principles. It is
with improved statistical estimation methods for these parameters that
this thesis is concerned with. The methods of linear least squares,
non-linear least squares and error propogation were applied to the
analysis of wide angle and low angle laser light scattering data and

the results compared.

From the theory of dynamic light scattering, methods have been
developed to reconstruct particle size distributions of unimodal,
bimodal and polydisperse polymer solutions from the data accumulated
in a single experiment. Some of these methods of reconstruction are
based upon the estimation of the coefficients in a sum of
exponentials. Estimating sums of exponentials is a highly
ill-conditioned problem and the problems encountered thereof are
examined in this thesis. [Linear least squares, non-linear least
squares and exponential sampling techniques were applied to
experimental data from a number of simulated polymer distributions and

the final results compared.
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INTRODUCTION

Proper applications of polymer materials depend upon such polymer
properties as melt temperature and viscosity. These in turn are
dependent upon fundamental properties such as the polymer’s molecular
weight averages, latex particle sizes, and their respective
distributions. There are a number of analytical techniques available
to characterize polymers in terms of these fundamental properties.
These include gel permeation chromatography, membrane osmometry,
ultracentrifugation and light scattering. The characterization of
polymers from light scattering experiments, wusing sound statistical

techniques, is the main thrust of this thesis.

Light scattering is a widely used and important technique and,
for the purposes of this work, is classified into two groups;
classical and dynamic light scattering experiments. Classical 1light
scattering comprises wide angle and low angle laser light scattering
techniques. From these types of experiments, estimates of the weight
average molecular weight and radius of gyration may be obtained for a
wide range of polymer molecules ranging in size from as low as 300
g/mol up to 10 g/mol. These upper and lower limits depend upon the
choice of solvent and the amount of dissymmetry present (Billingham,
1977). Dynamic 1light scattering is the newest application of light
scattering theory and provides estimates of a polymers particle size
distribution and mean particle diameter. This technique is applicable

to particles ranging in size from 20 to 3000 nanometres.



The methods for the analysis of light scattering data, however,
have been lacking in their appreciation of some of the statistical
problems inherent in the data. 1In evaluating a polymers suitability
for the purpose for which it is inteded, it is important that sound
statistical procedures are used to determine it’s properties. The
application of sound statistical data analysis technigques has been
demonstrated to be quite effective in providing improved estimates of
useful quantities such as the Wilson parameters (Sutton and MacGregor,

1977) and reactivity ratios (Patino-Leal et al, 1980).

This thesis examines the data analysis techniques of classical
and dynamic 1light scattering experiments. 1In considering classical
light scattering experiments, this work is primarily concerned with
the improved statistical estimation of the weight average molecular
weight, which appears as a parameter in the 1light scattering
equations. In the case of dynamic light scattering, the primary
concern is with the statistical problems encountered during the

reconstruction of the particle size distribution.

Each of the following chapters is divided into presentations of
the material pertaining to classical, and then dynamic 1light
scattering. Chapter 2 gives a comprehensive development of the theory
upon which the classical light scattering equations are based, and an
introduction to the theory of dynamic 1light scattering. Chapter 3
describes some of the methods available for data analysis and their

applications to light scattering experiments. In chapter 4, the



experimental data is described along with the FORTRAN programs that
were used for parameter estimations. Finally, chapter 5 discusses the

results obtained and gives the final conclusions and recommendations.



THEORY

2.1 Introduction

The theory of light scattered from particles in solution has it’s
foundation in physics. Workers such as Einstein, Rayleigh and Debye
have all made important contributions. The classical light scattering
theory presented below has been extracted from several general texts
on light scattering and polymer molecules - Tanford (1961), Billingham
(1977), Flory (1953), Huglin (1972), Stacey (1956). Citations

referring to individual workers may be found in these references.

2.2 Classical Light Scattering Theory

2.2.1 Rayleigh’s Theory

Lord Rayleigh first developed his theory for the scattering of
light by particles small compared to their wavelength in 1871. This
theory relates the intensity of scattered light as a function of angle

for polarized and non-polarized light.

The dipole moment, p, induced in a particle when subjected to an
electric field of strength, E, is directly proportional to E. The
proportionality constant is the polarizability, «. A dipole moment is
induced because the electrons and nucleus of a particle are subject to
opposite forces in an electric field.

p = E (2.1)



Let an isotropically polarizable particle, small in size compared
to the wavelength of the incident light, be in the path of a plane
polarized beam of light travelling in the x-direction, see figqure 2.1.
Then, the electric field of such a light wave is

E = Egcos(2M) (Nt - x/A) (2.2)
where E, is the maximum amplitude, v is the frequency, A is the
wavelength of the incident light in the medium, t is time and x is the
location along the line of propagation. Combining equations 2.1~ and
2.2,

P =Eocos(2M (Nt - x/A) (2.3)

An oscillating dipole is itself a source of electromagnetic
radiation. The radiation thus emitted is called the scattered
radiation from the particle and has field strength proportional to the
second derivative of the dipole moment, p, with respect to time. At a
given distance, r, from the particle to the observer, the field
strength is proportional to sin(e,), where 6, is the angle between the
direction of observation of the scattered radiation and the dipole
axis, and is inversely proportional to the distance, r. Taking the
second derivative of p with respect to t, we get

g’fg = -4 VAE cos(2M Bt - X/A) (2.4)
dt
The scattered field strength is given by,

Es = AN2VRE,sin(6,) cos(2M(Vt - x/3) (2.5)
G4r

where the proportionality sin(e,)/r has been introduced, and the square



of the speed of light in the medium, € , is added to maintain correct
dimensionality. Since A = €/ , these terms can be eliminated from
equation 5 to yield

Eg = 4ﬁ%xEosin(e,) cos(2M (vt - x/A) (2.6)
Nr

Note that the scattered radiation has the same frequency as the
incident light. Cases where this is not so, such as the Raman effect,

are not considered here.

The intensity of the incident and scattered light is proportional
to the square of the field strength averaged over the period of

vibration (t=0 to t=1mW).

I, = E2cos2(2M (3t - x/A) (2.7)
ig =« 167%CE2sin2(6,) cos (271) (Nt - x/2) (2.8)
r2xé

We are interested in the intensity ratio of scattered 1light to
incident light.

ig = 167%«%sin?(9,) (2.9)
I, <%

Note that the dipole is always in the yz-plane, and parallel to

the plane of polarization.

Suppose the incident light beam is now non-polarized instead of
plane polarized. A non-polarized 1light beam is equivalent to the
superposition of two plane polarized 1light beams‘ whose planes of
polarization are perpendicular to each other, and are of equal

intensity and independent in phase, see figure 2.2, The intensity of
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the scattered radiation is the sum of the two component intensities,

each of which is half the original intensity of the non-polarized

beam,
(ig), = 167M%sin2(g,) (2.10)
Tol, re a4 1
(igly = 161m*%3sin2(s,) (2.11)
o1, read

and the total scattered intensity is then

is = 87%2(sin2e, + sin?e,)I, (2.12)
24

The quantities 6, and @, are the angles between the direction of
observation of the scattered light and the two dipole axes, y and z.
For simplicity, let the two component planes of polarization be

vertically and horizontally polarized - ie, the yx and zx planes.

Now, let 8 be the angle between the line of observation of the
scattering and the x-axis. The quantities X, Y and Z are the
projections of the length, r, on the x, y and 2z axes respectively.
From the geometry of figure 2.2, it can easily be shown that sin2¢g; +

sin2@,; = 1 + cos?69,(see appendix 1). Substituting this relation into

2.12
ig = 81%3(1 + cos?9) (2.13)
L 2%

Particles whose scattering obeys equation 2.13 are said to exhibit

Rayleigh scattering.



The angular dependence of the intensity of scattered 1light for
polarized (equation 2.9) and non-polarized (equation 2.13) is

displayed in figures 2.3 and 2.4 respectively.

An alternative derivation is based on the consideration of two

special cases:
1. The scattering is in the xz plane, hence 6, = 90°, and the
incident beam is perpendicularly polarized with respect to
the scattering plane. Thus sin26, = 1 and,

(ig ) = 16 1% (2.14)
I, r2)4

Here, the scattered intensity is independent of angle.
2. The scattering is in the xy plane, hence 8, = 90°, and the
incident beams polarization is parallel to the scattering

plane. From trigonometric considerations, sin262 = cos29,

and then,
(ig)p = 167%3cos?e (2.15)
I, r2»3

Since an unpolarized beam can be resolved into perpendicular and
parallel components with respect to the scattering plane, then for an
unpolarized beam,

ig = (igh + (igh = 87%3(1 + cos?9)I, (2.16)
2 A8
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This is the same result as equation 2.13. Note that the sum is
divided by two since each component has only half the intensity of the

origonal polarized beam.

Equation 2.13 contains several parameters which relate to a
particular experimental set-up. These parameters are eliminated by
defining a reduced scattering intensity or Rayleigh ratio, R,. For a
non-polarized light beam, define Rg to be

Rg = igr? (2.17)
I, (1 + cos?g)

Combining equations 2.13 and 2.17, we have

Rg = 877%?2 (2.18)
2%

2.2.2 Ideal Gas Model

A simple model for the scattering of light from a solution of
small molecules of size less than A /20, which exhibit Rayleigh
scattering may be derived if we consider the solution to be an ideal
gas of solute molecules dispersed in the solvent. The total reduced
scattering intensity from a solution containing n particles per unit
volume is

Ry =__8_ﬂ_:\£1_o_ﬁ (2.19)

For dilute polymer solution, the polarizability constant, o« can
be expressed in terms of electric (dielectric constant, D) or optical
(refractive index, n2 = D ) properties.

o, = f]_z— =D-—Do (2-20)
477Tn 47inDy

s
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where n  and n, are the refractive indices of the solution and

solvent respectively.

For infinitely dilute solutions, n can be expressed as a linear
function of polymer concentration, c.

Y(_ = n.o+ CQ_E. (2.21)
dc

If we square both sides and assume that cz(dn/dc)2<< 2ge(dn/de), then

n2-n2 =2ngcdn (2.22)
dc

Substituting 2.22 into 2.20, we obtain for the polarizability

& = c(dn/dc) (2.23)
27 nn,

Now we can substitute for the polarizability in equation 2.19 to

get

Ry = 27%c? (dn)z (2.24)

A% nn2 \dc,

Making use of the relations ¢ = nM/N,, and A =Xy, where M is
the molecular weight, N, 1is Avogadro’s number and A, is the

wavelength of the incident light, we now have for Rg

Rg = 277212 [dn\2 cM (2.25)
7\°NAV dc
= K*cM (2.26)

where K*, an optical constant has been defined as

K = 21%n3 [dn)? (2.27)
Ao Ngy\dc
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Equation 2.27 can be re-arranged into the more familiar form

K'c = 1 o (2.28)

Rg M

The assumptions under which 2.28 are valid may be summarized,

1. Non-polarized light

2. Small molecules

3. Isotropic molecules

4. Polymer solution infinitely dilute; ie - molecules
independent of one apother

5. Equation (2.22) holds

6. The expressions for « and n arise as a consequence of
dilute solutions

7. Monodisperse solute

The ideal gas representation of a dilute polymer solution which
led to Ry = K" cM totally ignores different thermodynamic
interactions. In the next sub-section, a derivation based on
fluctuation theory relates the scattered intensity to the
thermodynamic properties of the system. This is a more general
treatment since it considers scattering from liquids and solutions

instead of using an ideal gas representation.
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2.2.3 Fluctuation Theory

As in the previous section, the equations are derived for small

molecules subjected to non-polarized incident light.

Instead of representing the polymer molecules in solution as an
ideal gas, consider a volume element, dv, small compared to the
wavelength A . At any given time, the properties (such as density,
concentration, etc...) of an element will fluctuate from an average
value within that element with respect to the neighbouring elements.
The bulk property measured can be considered to be the average taken

over all elements.

Fluctuations in the dielectric constant arise from two sources;
fluctuations in density, and concentration caused by thermal
agitation. The excess polarizability of a volume element due to its
fluctuation from the average is given by

Aot = ADAV (2.29)
4rDo

where Ao and AD are the fluctuations in the polarizability and
dielectric constants respectively. In equation 2.29, the number of
particles per unit volume, n, has been replaced by the number of

volume elements per unit volume, 1/dv.

The scattering intensity, ig, now depends on the average square
of A« for all volume elements, (EX)2 This replaces o2 so that

ig = 8TAx)? (1 + cos®e)I, | (2.30)
r2)8dv
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Squaring equation 2.29, substituting for (8x)?® in 2.30, and
recalling the definition for the Rayleigh ratio given in equation
2.17, we obtain

Rg = N%(BD)2dv | (2.31)
o

For dilute polymer solutions, scattering of 1light results from
fluctuations in the density and the concentration. The fluctuations
in the dielectric constant can be expanded in terms of the
fluctuations in these two properties as

(BD? = (92)2(@)% (_92)2(A—c)2 (2.32)
op ocC

Since the solution is dilute, the scattering due to density
fluctuations is assumed to be the same as for the pure solvent, and is
ignored. Therefore, consider only the scattering due to concentration
fluctuations. Substituting for (aD),

Rg = )2 (on)z(xa)z Qv (2.33)
oC

223 {ac
According to Einstein (1910), local variations in any fluctuating
parameter, can be related to the thermodynamic properties of the
system according to

(BT)?%= (2.34)

KT
(o/08?)
where K is the Boltzmann constant, T is the absolute temperature, and
A is the Helmholtz free energy. Also, according to Oster (1948)

A=y AV (2.35)
dc? dC Y C
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where u, is the chemical potential of the solvent in solution and %
is the molar volume of solvent in solution. Applying equation 2.34 to
concentration, and substituting for »?A/dc2, we arrive at
(AR = - _KTUC (2.36)
(dmydc)dv
The partial derivative in 2.36 can be expressed in terms of the

osmotic pressure, 7. Since amy - M = -/%, then

M = Vo0 (2.37)
oc dC

Since D = n2 , it can easily be shown that

(_gg)z = 4qg(on)2 (2.38)

>C oC

Making the appropriate substitutions of equations 2.36, 2.37 and

2.38 into equaton 2.33, we have then, for Rayleigh'’s ratio,
Ry = znﬁ@ on 2 KTc (2.39)
) ony Alc
23 (bc)( d17 /d¢)

The osmotic pressure is related to the solute molecular weight,

M, through
77 =RT + Bc + Cc2+ ... (2.40)
c M

or
7 = cRT(1/M + A,c + Agc2+ ...) (2.41)

where R is the gas constant.
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Taking the first derivative of JJ with respect to ¢, and

substituting for ( 8/7 /oc) and K = R/N,, in equation 2.39, we have

Rg = K'c (2.42)
1M + 285C + 3Agc?+ ...
or
RKfc =1 + 2a,c + 3A,c2+ ... (2.43)
Rg M

This final result is identical to equation 2.28 with the
exception that virial coefficients have been added. We can summarize
the conditions and approximations under which equations 2.43 is wvalid

below.

1. Non-polarized light

2, Small particles

3. Isotropic particles

4. Volume elements small compared to the wavelength of

the light

5. Dilute polymer solutions implying fluctuations in

dielectric constant dependent upon fluctuations in

polymer concentration only



19
6. Constant temperature and pressure
7. Monodisperse solute

Some of the above conditions are restrictive and prevent the use
of equation 2.43 as a general model that can be applied to light
scattering situations that we are interested in. In the next few
sections, a more general model will be developed by taking into

account polydispersity and large molecules.

2.2.4 Accounting for Polydispersity

Consider polydisperse systems in which the solute has a
distribution of molecular weights. At infinite dilution, the total
reduced Rayleigh ratio may be expressed as the sum of the ratios for
each component, i, with molecular weight, Mi; in the distribution.
Assuming the ideal gas representation, this is given by

(Rgl.o = IR; = K'EIq; N (2.44)

Now, the concentration of each component, c¢,, is given by w;/V,
where w; 1is the weight of the polymer molecules with molecular weight
M;. The system concentration is given by the sum,

C = IC; = IW; (2.45)
\

Combining 2.44 and 2.45,

K =_v (2.46)
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Multiplying 2.46 by c and recalling the relation in 2.45,

K'c = xw (2.47)
Re Iwi Ml

The right hand side of equation 2.47 is recognized as the weight
average molecular weight, hence,

K'c =1 (2.48)

Thus, we find that the M in the previous developments is the

weight average molecular weight for polydisperse systems.

2.2.5 The particle Scattering Function

When large molecules are present in the solution, the incident
beam will be scattered at more than one point along the molecule.
Thus, the path lengths of light scattered from different points to the
detector will be different resulting in destructive interference and a
reduced measurement of the scattered light intensity. The result is
that the measured intensity at any angle in the forward direction is
greéter than that at the corresponding angle in the backward direction
resulting in dyssymmetry of the scattered light intensity as shown in
figure 2.5. The internal inteference reduces the scattered intensity
at all angles except zero. Thus the previous developments are not

applicable to molecules of large size.
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1

Figure 2.5 - Scattering envelope displaying the effect of large molecules
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The effect of large size may be described by a function, P(8),
where

P(o)

scattered intensity for large particles
scattered intensity without interference

Rg (large molecules)
Rg (no interference)

Rg (2.49)
K"cM

o

The expression for the ratio in 2.49 is called the particle scattering
function and tries to account for the intramolecular interference of
light scattered from iarge particles. Based on the random orientation
of the scattering particle, the following relation was first obtained

A ML

where o is the number of scattering elements, rj; is the distance

between a pair of elements, i and j, and s~ is given by

m = 47 sin(e/2) (2.51)
A
where A is the wavelength of light in the medium.

It is well known that sin(x) can be re-expressed as an infinite

sum,
sin(x) = x - x3 + x5 - ... (2.52)
3! 5!
Hence
sinurij) = 1 - mM2cf + o8 - ... (2.53)
/«rii 31! 5t
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At low scattering angles, s is small, and the third and

remaining terms in the right side of 2.53 may be neglected, so that

. - g _ 2.2
Lin P(6) a—}zgi[l ,u3f,,} (2.54)

i j=i

(2.55)

=1- m21351]
EIN=

R g0
since ¥fl = o2

The mean square radius of gyration, <s2?>, may be defined as,

<s?> = _1 }:zr;‘; (2.56)
202
so that
lim P(@) = 1 - x#Xs2> (2.57)
840 3
Or alternatively, '
1 = limPYe) = 1 -,«2<s2>)‘1 (2.58)
Hpr@ 3

For small values of x, (1 - x)'1é 1 + x, hence,

lim P(8) = 1 + u*s? (2.59)
8-0 3
=1 + 167%s?> sin?(e/2) (2.60)
3A°

Combining equations 2.43, 2.49 and 2.60, we have

limK'c= 1 =1[1+ 167%s% sin?(g,2) (2.61)

650 Re IMP(6) M 372

The conditions and approximations under which 2.61 are valid are
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1. Non-polarized light
2. Isotropic particles
3. Polymer solution infinitely dilute
4. Low angles
5. Monodisperse solute
6. Constant temperature and pressure
7. Assumption that fourth and higher order terms in 2.53
- are negligible
8. (L -x)'21+x

2.2.6 Polydispersity of Large Molecules

To take into account the effect of polydispersity in
macro-molecules, we note that

Ry = K'IM; B, (6)c; (2.62)

where i refers to each component of the mixture. Each P; (&) in 2.62

can be related to the corresponding radius of gyration, <s?>,

P; (8) = 1 - 16n%s?>sin?(g/2) (2.63)
32
Thus,
K = 1 (2.64)

Rg EIMjc - l6ﬁ25in2(§/2)zMici<s?>
32
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Kfc = £Ci
Rg IMic; - 167%in2(8/2)1M;c,; <s2>
EpY
K'c = 1
R IMic; - 1672sin?(e/2)IM;c; <s2>
Ic; 3N Ic;
Recalling that,
zMi Ci = ZwiMi = ﬁw
IC;
then
K'c = 1
Rg IMjg J1 - 16m%sin®(9/2) _xc; IM;c;<sf
b X o} 3N IM,; C; b of]

1
1677%sin%(6,/2) $M; c; <sfl

3N IM;Cj

The z-average radius of gyration, <s2»,, is given by

<s2y, = IM;ci<sP
IMici

therefore, 2.69 can be written as,

*

Kc-=

Rg ﬁw{l

Or, for low angles

K*c =

- 160%s?>, sin?%(6/2

1
161155 22 )}

1 + 167%s?, sin?(9/2)
fom g 1 diniety

1

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)
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2.2.7 The General Model

The light scattering equations, in their most general form, may
be expressed as,

Kfc =_ 1  + 2A,c + 352 + ... (2.73)
R MWP(9)

=111+ 16L22<szzz sinz(e/Z)] + 27M,C + 3A3c2 + e
Mw 3N (2.74)
In equation 2.73, note that 1) as particle size decreases, P(&)
approaches 1, 2) for monodisperse solutes, My = M, and 3) in the

limit that 6 = ¢ = 0, 2.74 approaches equation 2.28.

All of the above light scattering equations were derived for
non-polarized light, however it is easy to handle polarized light by
replacing (1 + cos?0) with 1 or cos2@ for vertically or horizontally
'polarized respectively in all of the developments, and noting that the

optical constant K'is multiplied by a factor of 2.

2.2.8 Turbidity

Instead of measuring the intensity of the light scattered by a
solution containing particles, it is sometimes preferred to measure
the energy loss of a light beam due to the scattering. A beam of
initial intensity Iy decreases to intensity I ,4x by the amount TIdx
as a result of travelling a distance dx through a solution of
turbidity, T. Thus, the more turbid a solution is, the higher the
energy loss of the beam. 1In travelling a distance x, an incident beam
of intensity I, will be reduced to an intensity I, and

I = exp(-Tx) (2.75)
I,
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Since the decrease in intensity will be small, the above expression

can be approximated by
Tx=1I -1 (2.76)

The derivations are not presented here, but it can be shown that
the turbidity is directly obtainable from the Rayleigh ratio

T = 1617 Ry (2.77)
3

2.3 Experimental - Classical Light Scattering

In this section, the means of obtaining experimental light
scattering measurements from wide and low angle instruments is

presented.

2.3.1 Wwide Angle Light Scattering

For the SOFICA wide angle light scattering instrument, the
following relationship may be used,

Rg = __sing By n2 1 [ig — 2fsiygg gl (2.78)
1 + cos% GbTI%.tg(l - 4f§)

where R, 1is the Rayleigh ratio for benzene at 90° and is a known
constant, G, is the relative scattered intensity for benzene at 90°,
igP/Ig, N2/n2 is the correction for the refractive indices of the
scattering solution and the solvent in the vat, tg =1 - £5 is the
Fresnel coefficient or transmission coefficient, fs the fraction of

incident 1light reflected at the glass/solvent interface, and ig,igg-g
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are the scattered intensities (the difference between galvanometer

readings at ©° for the solution and solvent; Gg(sol’n) - Gg(solv.)).

If the refractive indices of the solvent and glass are similar

(as are those for benzene and glass), the above expression may be

approximated by

Ry = R sing i (2.79)
e - =b ]
Gp 1 + cos2e
=Rp _ sin®é [Gg(sol’n) - Gg(solv.)] (2.80)
Gp 1 + cos2e

where sin@ is a correction to account for the volume change when
viewing the solution cell at different angles, and 1 + cos?9 is
present to account for the state of polarization of the 1light; the
current form is for non-polarized light and is replaced by 1 or cos28

for perpendicularly or parallel polarized light respectively.

Recall that the Rayleigh ratio may be defined as

Rg = igr2 (2.81)
I, (1 + cos4e)

At 6 = 90°, and using pure benzene as a solvent, it can be shown that
the constant, r2 , (and any other constants that may need to be

present) is equivalent to the term Ry,/Gy,

RoPp) = r2 (2.82)
190y /To
But, igoop /Io = Gggop : therefore
RggOp) = Rp = r? (2.83)

Goo%b  Gb
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Recall that G is the actual measured quantity in the form of a

.galvanometer reading and R, is a known constant. Thus,

Rg = 1 g (2.84)
® %:, 1 + cos%e Io
= Rp 1 [Gg(sol'n) - Gg(solv.)] (2.85)

Gb 1 + cos*“e

The correction term, sin® , is introduced to give the final
expression that 1is used to calculate the Rayleigh ratio from
experimental measurements at different scattering angles,

Rg = Ry __sin@  [Gg(sol'n) - Gg(solv.)] (2.86)

Gp 1 + cos2e

© 2.3.2 Low Angle Laser Laser Light Scattering

Low angle laser light scattering (LALLS) is a special case of
wide angle light scattering that simplifies the light scattering model
equation by restricting the sample concentrations and angles of
measurement to low values. As both @ and c approach zero in equation
2.74, we have

Kc =1 + 2a,c (2.87)
Rg Ry

The polymer Rayleigh ratio, Rg, is the difference between the

Rayleigh ratios for the polymer solution and the solvent

Rg = Rg(sol’n) - Rg(solv.) (2.88)
where Rg(solv.) is a known constant. For the Chromatrix KMX-6 laser
light scattering instrument, Rg(sol’n) is given by

Rg = Gg — bl ("AT'D (2.89)
GQ - bl
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where Gg and G, are the galvanometer readings at angles © and 0
degrees, bl 1is the base line measurement to account for base line
drift, (¢'A'7'is a function of solid angle, field stop and refractive
index and is a known constant, and D is a function of the attenuating

filters.

2.4 Dynamic Light Scattering Theory

Dynamic light scattering (also known as photon correlation
spectroscopy and quasi-elastic light scattering) is concerned with the
time behaviour of the scattered light intensity measurements rather
than the average intensity measurement as in the classical theory.
The fluctuations in intensity arise from Brownian motion of the solute
particles due to collisions with solvent molecules. Thus, the
particles translate their position through the solution in a random

walk fashion.

The probability, P(r,t), of finding a particle a distance r from
it’s origin at time t is given by the diffusion equation

oP(r,t) = DyVvP(r,t) (2.90)
dt

where Dy is the translational diffusion coefficient of the particles.
From the solution of the above equation, the mean lifetime of a
fluctuation in the measured intensity is equal to the average time
required for the random walk diffusion of the scattering particle to

change it’s optical path lengths to a detector by one-half wavelength
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of light and is given by

1 =r = D;K? 2.91
% t ( )

where T is called the mean decay time and K is a geometric factor
dependent upon the wavelength of the light source 2, the solvent index
of refraction ng, and the scattering angle @,

K = 4nngsin(6/2) (2.92)
A

For spherically symmetric scatterers, Dy, the translational
diffusion coefficient, can then be related to the particles

hydrodynamic radius by the Stokes-Einstein equation

Ry = _KgT (2.93)
6171 Dy . '

where Kg 1is Boltzmann’s constant, T is the absolute temeperature and

n is the solvent viscosity.

Other types of particle diffusion caused by solvent collisions,
such as rotational and intramolecular diffusion, may also be
evaluated, but will not be considered here since we are dealing with

spherical particles.

The mean decay time of the fluctuations may be found by measuring
experimentally the second-order, un-normalized autocorrelation
function of the scattered intensity,

GHt) = <1(t) T(t + £ ) (2.94)
where I(t) and I(t + t’) are the scattered intensities at times t and

(t + t' ) respectively. The < > symbol represents a running sum of
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such products; taken for different values of t, so a reliable
statistical average of GZ1) may be obtained for a given separation
time t . Obviously, as the separation time increases, the dependence
of I(t + t' ) on I(t) is reduced and the correlation function
decreases. Typically, an autocorrelator computes G‘ZRI) for 64
different values of t = At, 2at, ..., 64At, where At is the channel
width. For a good description of how the autocorrelation function is

computed digitally, see Pusey et al (1974).

The first-order, normalized autocorrelation function of the
scattered intensity, g‘“(’f) is related to dz(t) through
GAT) = Al + pf1)?] (2.95)
where A is the baseline measurement at infinite time (equivalent to
the square of the average intensity, <I> ), B8 1is a constant andvéﬂ(r)
is an exponential function

gdr) = £lexp(-rt)] (2.96)

For a monodisperse particle size distribution, g (1) is a single
exponential decay,

1) = pexp(-rt) (2.97)

Thus, the particle size may be determined from an estimate of r and

equations (2.91), (2.92) and (2.93). As the size of the particle

increases, it will diffuse more slowly through the solution and have a

longer delay time. Thus, small particles have a quick decay time

while large particles have a slow decay time.
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For polydisperse particle size distributions, g“)(t) is an
integral sum of exponentials, each particle size contributing to the
total function according to it’s relative amount in the distribution.

1) = If(r) exp(—rt)dr (2.98)
where £(r) is the intensity weighted distribution function of decay
ratios or diffusion coefficients. Particles far away from the mean of
the distribution have little contribution while those near the centre
have the largest contribution. In this case, we are interested in
obtaining estimates of f(r) and r to define the particle size

distribution.

2.5 Experimental - Dynamic Light Scattering

The objective of current dynamic light scattering instruments is
to compute digitally the autocorrelation function of the scattered
intensity from the photon counts stored in a number (usually 64) of
channels. The means of recovering the distribution of particle sizes,
f(r), from equation (2.98) is better left for discussion in chapter

three.
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METHODS OF ANALYSIS

3.1 Introduction

The purpose of this chapter is to examine some of the different
methods that are available for estimating the parameters in the light
scattering models. Good estimates of parameters such as weight
average molecular weight and radii of gyrations, and the associated
confidence intervals for the parameters are wuseful for polymer

characterization and quality control.

3.2 Classical Light Scattering

As can be seen in the development of the theory in the previous
chapter, light scattering techniques are powerful and useful
analytical tools since the weight average molecular weight of a
polymer and in some cases, the z-average radius of gyration and virial
coefficients, appear in the models as parameters that may be
determined through fitting procedures. It is the improved statistical
estimation methods for these parameters that is the primary

consideration of this study.

3.2.1 C(Classical Forms of Data Analysis - WALS and LALLS

The classical interpretation of data from wide angle light
scattering (WALS) and 1low angle 1laser 1light scattering (LALLS)

experiments have largely been based on graphical methods.
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The most common form of WALS data analysis has been the Zimm plot
(1948). From the general 1light scattering model given in equation
(2.74), it can be seen that a bilinear plot of K* c/Rg against sin
(6/2) + Kc as a function of scattering angle and concentration can be
used as a convenient way of presenting the data. k' is an arbitrary
constant used to spread the plot along the x-axis. Thus, a grid is
formed requiring measurements of Rg at different levels of
concentration and scattering angle. An example of a Zimm plot is
shown in figure 3.1. Double extrapolation to the intercept on the
y-axis at € = c = 0 provides an estimate of 1/M,. The radius of
gyration is given by the intercept-at © = ¢ = 0 and the initial slope
of the line ¢ = 0,

<s2» = 322 initial slope of line c=0 (3.1)
16 72  intercept (K"c/Rg)

Finally, an estimate of the second virial coefficient A, is obtained
from the initial slope of the line & = 0. An estimate of Az may
then be directly calculated from equation (2.74). For a good
discussion on graphical treatments of WALS data, see chapter 5 of

Huglin (1972).

The graphical treatment of LALLS data is less complicated owing
to it’s simpler model form given in equation (2.87). Here, a single
linear plot of K*c/Re against concentration should yield a straight
line whose intercept is 1/My and slope is A,. Thus, only a few
measurements (usually four of five) of Ry, at a single low scattering

angle, as a function of concentration are required. A typical plot of
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LALLS data is shown in figure 3.2,

The major problems with these graphical methods are: (1) they
require subjective extrapolations to zero concentration and/or zero
angle which may be very difficult if there is any curvature in the
piots; (2) they do not efficiently use all the data in estimating the
parameters; (3) they do not properly account for all the sources of
experimental error; (4) the graphs include the concentration variable
on both axes, thus one is fitting an induced relationship of ¢ against
c; and, (5) they provide no estimate of the precision of the
parameter estimates. While automating the graphical analysis with
computers may eliminate the first problem, these techiques still
suffer from the other problems mentioned. We propose eliminating

these other probiems with statistically sound methods of analysis.

3.2.2 Statistical Alternatives

One statistical approach that has been employed in the analysis

of light scattering data has been to minimize

i (K_’g - (51_9,) Jz (3.2)
i 1\ Reilobs Reica

with respect to the parameters in the model, where n is the number of
observations. In the case of WALS data, this represents a non-linear
least squares approach using K*c/Re as the response variable, and has
been attempted by Roberts et al (1977). In LALLS data analysis, this

is simply fitting a straight line via linear least squares.
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Problems arise with this approach however, since some of the
assumptions, under which a 1least squares analysis is valid, are
violated. Namely, (1) the values of the operating variables such as
c andeare assumed to be known exactly when in fact they are
all measured and thus subject to error, and (2) the error variance of
K* ¢/Rg is assumed to be constant over the region of operating
variables thus leading to inappropriate relative weighting given to

each observation.

An alternative approach to regression is to minimize
2[(Rg, lobs - (Re; Joar I* - | (3.3)
where the light scattering models are re-expressed in terms of Rg.
This is preferrable over the original expression since Rg is no
longer introduced in a non-linear fashion. This is desirable since
the major source of measurement error is in Gg, the galvanometer
reading at scattering angle 6. Under this fitting criterion, both
WALS and LALLS data require using a non-linear least squares
procedure. However, although an improvement, this approach does not

entirely reconcile the two problems mentioned above.

A more approprite statistical analysis of light scattering data
would be to use an error-in-variables approach for the case where the
models are nonlinear in the variables, as described by Reilly and
Patino-Leal (1981). Instead of expressing a relationship in terms of
one unknown dependent variable equated to a function of known

independent variables, we define
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f(g,8) =0 i=1,2,...,v (3.4)
to be a function of v unknown independent variables ¢ and p unknown
parameters B where §{ and g are vx1l and px1 vectors and there are
n observations of §. The { are the true but unknown values of the
operating variables. These are measured with errors as
2 = § + € (3.5)
where z and ¢ are vx1l vectors of the experimentally measured values
of the operating variables and the normally distributed random errors

with mean vector zero and a known positive definite covariance matrix

V respectively.

When equation (3.4) is nonlinear in the operating variables g, it
can be linearized by taking the 1linear terms of a Taylor series
expansion around some value ii of g

£(§,8) + B(E-F,) =0 (3.6)
where B; 1is a 1x v vector of partial derivatives with respect to each
operating variable

B = [of( ,B) j=1,2,...,v (3.7)
o & )i zi"z\i

The second term in equation (3.6) can be defined as the error obtained
by using fi instead of the true values §;. Then

£(§,8) = e (3.8)
The posterior probability density function for g can be shown to be
(Reilly and Patino-Leal, 1981)

DE(B/X) o exp{-R[£(E;, 8 )1 (B VBl I'E( &, ) (3.9)

where X is the matrix of known data.
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Maximizing (3.9) requires estimating the g, and g vectors
through an interative procedure in the exact error-in- variables
methods. A good approximation to this method may be obtained by
always linearizing at the measured values of the operating variables
z; , and estimating only the unknown parameters g. This is known as
the approximate error-in-variables method or the method of error
propagation. Setting § = 3z , the posterior probability density
function is then

DE(8/X) = exp{~"oRl£(z; , 8 )1 (B VB] I"E(z;, 8)) (3.10)
and the partial derivatives in B; are now evaluated at L = Z;.
Equation (3.8) is now

£(z; ,8) = g : ' (3.11)

If the covariance matrix V is diagonal, each element being the
variance associated with each operating variable, then maximizing the

probability density function in (3.10) is equivalent to minimizing

i e? (3.12)

7 var(ej)
with respect to the unknown parameters g, where var(e;) 1is estimated

at each stage in the iteration from the error propagation expansion

v 2
var(e;) = £(g, ) var(g), =B VE (3.13)
' 2;[ (&) ] '

£z
This is merely minimizing a weighted sum of squares of the e;’s where

the weights are the inverse of the variance in the e;’s. Reilly and
Patino-Leal (1981) discuss applications of both the exact and
approximate methods and compare the results. They conclude that an

exact solution offers only a marginal improvement over  the
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approximate solution. Sutton and MacGregor (1977) applied the error
propagation approach successfully to the analysis of vapour-liquid

equilibrium data.

3.2.3 Application of Statistical Methods to WALS and LALLS Data

Analysis

An estimation program employing a Marquardt compromise procedure
called UWHAUSDD was used for all of the data analysis runs. This
program allows for a user-supplied MODEL subroutine where the form of
the objective function to be minimized is defined. Copies of UWHAUSDD
and the WALS and LALLS analysis programs used are given in appendices

2-A, 2-B and 2-C.

It is straight-forward to apply all of the statistical methods
discussed in the previous section. In the case of the arbitrary least
squares criterion in (3.2), one minimizes

s

in Sj/obs

1 {1 + 167T2<52>Lsin2(ej/2)} - 28,0 - 31\3-:?12 (3.14)
352 \

with respect to the parameters M,, <s?>,, A,, and A; for WALS data,

and
2
i

-

with respect to M, and A, for LALLS data. In the case of the

(3.15)

somewhat more acceptable least squares criterion in (3.3), we minimize

[( Rei)obs -

K" ¢; 2 (3.16)
1 {1 + 16:7%%,;16{9.42)} - 27,c - 3A3c?]
M 3N

i=1 Mw

for WALS data, and
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- [(Rodoss - Ke | (3.17)
S 1/Mw + 2A2Ci

for LALLS data.

The objective functions for error-propagation analysis are more
complicated but still easy to program. For WALS data, we minimize
(3.12) where e; and var(e;) are given by

e; = f(Rg,c;,© ;M <525, Ay, A5) (3.18)
and

var(e;) = (b_f_ 2vax:(Rei) + izvar(ci) + (i)zvar(ei) (3.19)
o oc; 00,

Two different applications of the method of error propagation may
be defined where £ is given by the expressions within the square

brackets in (3.14) and (3.16).

The experimental Rg, is given by equation 2.80

Rg, = Ry __5ing; [Gg(s0l'n) - Ggfsolv.)] (3.20)
' Gy 1+ coshei ' '
where the primary source of error is in the measurement of Gg(sol’n).

Defining I-lei to be

Hg, = Gg(sol'n) - Gg(solv.) (3.21)
the above expression for var(e;) then becomes
var(e;) = [of \var(Hg) + 32_2var(ci) + j@;zvar(ei) (3.22)
Oﬂe bci 06,

For LALLS data, we again minimize equation (3.12), except that e; and
var(e;) are given by

ei = f(RG(CI ,'ﬁw,Az) (3.23)
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and

Oci

var(e;) = (?_.ge)z var(Rg) + (_bf_)z var(c) (3.24)

Again, two different applications may be defined where f is given

by the expressions within the square brackets in (3.15) and (3.17).

Recall that the experimentally determined Rg, is given by

equation (2.88) and (2.89)

Rg, = Gg - bl (c'A)'D - Rfsolv.) (3.25)
. - bl
O;

and both Gg, and Go; contain measurement error. So, (3.24) then
becomes

var(e;) = (_Qg__)zvar(Gei) + (_og_)zvar(Goi) + (bf)zvar(ci) (3.26)

OGe OGO dC;

Evaluations of the partial differentials in equations (3.22) and
(3.26) for the two types of error propagation applications may be

found in appendix 3.

3.3 Dynamic Light Scattering

For the case of monodisperse distributions, it is a simple matter
to estimate both g and r in equation (2.97) with a non-linear least
squares algorithm. First, compute ¢'™T) by dividing the measured Cﬁ)t )

by the baseline, subtracting one and taking the square root,

1
dNT) = [Gm(t) - 1.0]/2 (3.27)
A

Using the straightforward least squares objective function of

minimizing
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2ighe) - sexp(-rt; )1 (3.28)
with respect to the parameters g and r would appear to be reasonable
since the experimental error resides in the single measured quantity
@(E). Here, n is the number of discrete observations we have of the

second-order, un-normalized autocorrelation function.

In the case of bimodal distributions comprised of two
monodisperse samples, it is possible to obtain estimates of both
particle sizes and their relative weight fractions by minimizing

819P7) - (mexp(-ryt;) + pyexp(-rpt;)})? (3.29)

with respect to the four parameters gy, g, , ry, and rp.

Extending (3.28) to estimate the B and r parameters for
trimodal and higher multimodal distribution is not feasible because of
the highly ill-conditioned nature of the problem which 1limits the
number of parameters that can be estimated. However, if prior
information concerning the size of particles in a multimodal
distribution comprising monodisperse samples is available, the values
of r that correspond to the known values of the particle diameters
can be calculated and only the B’s estimated. Then, the objective
function to minimize with respect to the parameters 8;

2_1[9(:\(1:) - ,-g gexp(-r; t; )12 (3.30)
which is linear in the parameters. The estimates of g; would then be
the relative weights of each particle size corresponding to the known
particle diameters. Again, the ill-conditioned nature of the problem

and high correlations between parameter estimates generally limits the
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number of parameters, p, that can be estimated to five or six in an

unconstrained minimization.

For the case of polydisperse distributions, the determination of
the particle size distribution (PSD) is much more difficult as it
centres on the inversion of the LaPlace integral in equation (2.98).
It is this problem that has been the central subject in many papers in
the literature and has brought forth many novel analysis techniques in
recent years that are applicable not only to dynamic light scattering,
but to other estimation problems. A good discussion and comparison of

all of these techniques was carried out by Stock and Ray (1985).

This chapter is primarily concerned with the statistical problems
encountered when trying to reconstruct the particle size distribution
by a method known as exponential sampling applied to raw
autocorrelation data obtained from analytical instruments. This
method is an extension of model (3.30) to polydisperse instead of

multimodal distributions.

Since the raw autocorrelation data resembles an exponential
decay, the method of exponential sampling approximates the continuous
integral sum of exponentials in equation (2.98) by a discrete sum of
exponentials at assumed values of the exponent. Thus, the objective
is to fit a sum of exponentials, linear in the parameters, to gM(r),
the first-order, normalized autocorrelation function. We now minimize

EghT) - ‘Eﬂpiexp(-riti)ﬁ (3.31)

at assumed values of the particle diameter. The exponents r; are
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easily calculated directly from equations (2.91), (2.92) and (2.93).
The estimates of the parameters g; are then estimates of £(r; ), the
contribution to the measured autocorrelation function of the scattered
light intensity by particles of size r; in the distribution of

particle sizes.

A paper by Ostrowsky et al (1981) which first introduced this
method describes the application of this technique to dynamic light
scattering data. He suggests that the sampling be made at equal
intervals on a natural logarithmic scale of particle sizes. This
enables the sampling to cover a wide range of practical particle
sizes. The spacing on the scale between adjacent samplings is given

by

In(reyy) = Wpay In(ry) k=1,2,...,M (3.32)
7

where the variable wga defines the distance between adjacent samples
on the logarithmic scale. Ostrowsky recommends that the value of M be
no larger than five or six. This limits to five or six the number of
exponentials that are fit to d™t) in equation (3.31). Because of the
ill-conditioned nature of fitting a sum of exponentials, Ostrowsky
states that large negative estimates of B may be obtained when
attempting to fit g“%t) to a larger number of exponentials functions.
Ostrowsky also determined that because of experimental error, wpa may
practically take on values no lower than 3.0 or greater than
approximately 10.0. This ensures that the resolution on the scale is

reasonable, depending on the sample, and avoids undue negative
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parameter estimates.

Since the resolution of a PSD reconstructed from only five or six
samplings over a range of perhaps one or two thousand nanometers is
extremely poor, Ostrowsky further recommended that the objective
function in (3.31) be minimized five or six times over M parameters in
a series of shifts. Thus, one may increase the resolution of the fit
to up to 36 parameter estimates by combining all the estimates from
each fit together. The length of the shift along the logarithmic
scale for each of the M samplings is given by

In(ry,ud = 1n(ry,) +Qm§ﬁf_ 1{=i,§....,g (3.33)
S Bl,dbjoeey

where Ng¢ 1is the number of shifts. The shifting procedure along the

scale of particle sizes is illustrated graphically in figure 3.3.

The attractive feature of the exponential sampling method is that
a linear least squares estimation algorithm may be used. It is
apparent that it would be unreasonable to use a non-linear least
squares procedure to obtain estimates of both the g; and the r; (as
in the monodisperse and bimodal cases) in a sum of exponentials model
because of the extremely ill-conditioned nature of this problem.
Again, UWHAUSDD was used to estimate the parameters in this linear
model since UWHAUSDD allows for models that are 1linear in the

parameters, not just non-linear models.
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A more recent paper by Morrison (1985) suggested that the
resolution of the fitted PSD may be greatly increased by constraining
the parameter estimates to be non-negative. 1In this case, we minimize

i5‘31[9‘}‘(1'.) - "i:;;;iexp(—r]t| ) 12 subject to B;20 (3.34)
Morrison claims that by including the non-negativety constraint, M may
take on values of up to 20. Thus, by employing a non-negatively
constrained linear least squares algorithm and applying the shifting
procedure describe earlier, a very fine resolution of the logarithmic
scale at which parameter estimates are obtained is possible with up to
120 estimates being wused to reconstruct the particle size
distribution. A constrained linear least squares algorithm developed
by Lawson and Hanson (1974) which employs a QR decomposition technique

was used to estimate the parameters in (3.34).

Morrison also noted that when "{T) is known only at n data
points (as in our case), the variance depends upon the measured light
intensities. He suggested that minimizing the weighted sum of squares

SN2 gD - Epexpl-rit))?  subject to g30 (3.35)
Thus, smaller errors in the measurement of high light intensities at
low lag times are assumed and more significance is attributed to these

measurements.
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EXPERIMENTAL

4.1 Introduction

This chapter outlines the experimental data that was used, how it
was obtained, how it was used in the parameter estimation programs and

the programs themselves.

4.2 Classical Light Scattering

4.2.1 Experimental Data

4.2.1.1 WALS

The experimental data used for WALS data analysis was obtained
from a round-robin experiment conducted by RAPRA. Roberts et al
(1977) used this data as one of the samples studied in their paper on
the analysis of light scattering data. Table 4.1 displays a typical
set of raw data obtained from a WALS instrument. The data shown in
table 4.1 was collected from a RAPRA standard polystyrene sample'with
nominal weight-average molecular weight of 340,000 determined from
extensive GPC analysis. The polymer was dissolved in a benzene
solvent and subjected to vertically polarized blue 1light. The
instrument used was a SOFICA photometer using a mercury lamp as the
source of light. Since vertically polarized light was used, (1 + cos?
g) = 1.0 in equation (2.80). The instrument was also calibrated so
that G, = 1.0. Therefore, from equations (3.20) and (3.21), we have
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The data shown in table 4.2 is specific to this polymer-solvent
system and experimental arrangement just described: - The raw data in
table 4.1 and the system specific data in table 4.2 is all that is
necessary to determine the measured value of Rg in equation (2.80)
and K in equation (2.27). Thus, an experimentally determined value of
K* c/Rg may be calculated. The feasibilty of performing a WALS data
analysis on a specific polymer-solvent system is dependent upon the

availability of the necessary data shown in table 4.2.

To apply the method of error propagation, estimates of the error
variance in all of the measured variables are required. 1In a WALS
experiment, these are Hg, the difference between the measured
galvanometer readings for the polymer solution and solvent; ¢, the
polymer concentration in solution; and €, the scattering angle at
which measurement takes place. It is truly the variation in Gg(sol’n)
that we are interested in, but since Gg(solv.) is a constant at each
scéttering angle, then the variation in Gg(sol’n) is equivalent to the
variation in Hg as a function of scattering angle, but is not

equivalent as a function of concentration.

Included with the data received from Roberts were two sets of
eight replicate experiments on a polystyrene sample in toluene solvent
subjected to blue and green incident light respectively. Each set was
similar to the data given in table 4.1 in that galvanometer
measurements were recorded from a grid of eleven scattering angles and

five concentrations. There was one exception where a set contained
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TABLE 4.1

Galvanometer Readings ~Gg (sal’n}, Gg (solv.}

Scattering Polymer Concentration (g/ml) _

(d:::::s) 0.04843 0.01285 0.00648 0.00488 0.00259 0.0
20 "18.4 19.0 19.4 18.0 15.0 4.00
30 i2.2 i2.6 12.4 1.8 8.25 2.35
37.85 8.63 0.2 i0.0 8.30 7.40 1.84
45 8.21 8.54 8.35 7.80 6.30 1.52
€0 6.55 6.85 6.62 6.30 4.856 1.22
75 5.79 6.00 5.78 5.4;;. 4.20 1.07
90 5.50 5.70 §.42 5.40 3.83 1.00
105 5.59 5.78 5,45 5.14 3.86 1.03
120 6.15 6.30 5.92 5.56 4.15 1,12
135 7.35 7.52 7.03 6.54 4.80 1.36
142.5 8.48 8.60 7.93 7.45 5.64 1.54

" 150 9.93 10.4 8.50 8.8t 6.89 1.86
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TABLE 4.2

Constants for Polystyrena/Benzene System

Symbol Comments Value

Ao wavelength of the tncident light 4.358 x 1075 en
(polarizedblue 1ight)

Ny solvent refractive index 1.5196

dn/dc refractive index incresent 0.1110 cnitg

Rp Rayleigh ratio for benzens 3t 90°  6.24 x 10™5 ¢p~1

€p relativescatiered intensity for 1.0
benzene at 90°

K’ an optical constant given by 5.17 x 1077

4n2p2/un\2

M,y dc




55

measurements at only four concentrations. Thus it was possible to
calculate ,an estimate of the variance in the galvanometer readings at
each grid point; see table 4.3. Each variance has seven degrees of
freedom. By pooling the estimated variances along the rows and
columns in table 4.3 estimtes of the error variance as a function of
scattering angle and concentration may be obtained. The error
estimates as a function of angle each have 35 degrees of freedom,
while those as a function of concentration each have 77 degrees of
freedom. The overall variance estimate of 41.8 has 385 degrees of
freedom. The analysis of this set of replicate experiments had been
carried out by Howley (1981). Plots of the estimafed variance
of Gg(sol’n) as a function of © and ¢, and 95% confidence intervals
are given in figures 4.1 and 4.2. 1t is apparent from these figures
that the estimated variance in Gg(sol’n) has a quadratic dependency on
© and is independent of c. Thus, the error in the galvanometer
readings increases quadratically as the angle of observation moves
away from 90 degrees. Therefore, appropriate weighting must be
accounted for when calculating the contribution to the total error

variance in equation (3.19) by the galvanometer measurements.

A quadratic function could be fit to the data points plotted in
figqure 4.1 and used in the error propagation model equations to
calculate the variance to be used for weighting the galvanometer data.
However, galvanometer readings are recorded at arbitrary magnitudes
(within a grid of experiments) depending upon the scaling employed by

the experimenter. For example, the data used in the analysis of
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TABLE 4.

3

Estimated variance in Ge {sol'n) froma set of Elght Replicate Experiments

Scattering Polymer Concentration (g/ml) Pooled
Angle - T T variance
{degress) 0.04014 0.0067 0.0050 0.0034 0.0025 by Row
30 145.7 70.6 140.6 85.6 126.9 413.9
37.5 87.9 52, 5 101.4 §3.7 63.4 74.9
45 58,1 33.7 63,1 31.4 43.7 44.2
-1 21.14 22.7 33.1 13.9 18.6 22.1
75 9.4 11.4 15.6 8.6 11.8 11.3
S0 7.4 7.4 8.6 6.6 6.0 7.3
105 i2.4 10.9 6.0 7.6 6.7 10.5
120 23.6 14.4 32.3 18.5 12.6 20.3
135 49.0 28.5 72.3 27.8 19.4 39.5
142.5 78.7 34.2 B2.1 28.4 23.9 49.7
150 134.2 48.0 67.9 51.4 47.7 69.8
Pooled Variance 57.2 30.4 56.7 30.3 34.6 41.8

by Column
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variance was one order of magnitude higher than the that given in
table 4.1. Thus, any function fit to the data in figure 4.1 would be
dependent upon the experimenter’s arbitrary choice of scale. The
magnitude of the estimated variances of the data in table 4.1 would

therefore be too high if a fitted quadratic function was used.

Since only the relative weighting of galvanometer readings and
the scattering angle are of interest, the data was transformed by
taking the natural logarithm of each point and repeating the analysis
of wvariance; see table 4.4. Use can be made of the approximate
relationship

var(Hg) = var{Gg(sol’n)} £ (Gg)avar[ln{Gg(sol’n)}] (4.2)
wherex(fi;% is the average measured galvanometer reading for the
polymer solution at scattering angle €. By using equation 4.2,
appropriate estimates of var(Hg) may be obtained independent of the
scale used during data collection. The estimates of the variance in
the logarithm of Gg(sol’n) and their 95% confidence intervals are
plotted against scattering angle in figure 4.3. From this figure it
can be seen that var[ln{Gg(sol’n)}] is independent on scattering
angle. The average value of var[ln{Gg(sol'n)}] is 0.00586.
Therefore, appropriate estimates of var(Hg) may be calculated from

var(Hg) = 0.00586(Gg)3 (4.3)
Figure 4.4 shows that the calculated estimates of var(Hg) agree

reasonably well with the data in fiqure 4.1.
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TABLE 4.4

Estimated Variance in 1n {Ge(sol ‘n}] fromasst of Eight Replicate Experiments

x 103)

Scattering Polymer Concentration (g/ml) Pooled
Angle o "'—' Tt T e Yariance
(degrees) 0.0101 0.0067 0.0050 0.0034 0.0025 by Row
30 5.038 2.639 6.021 4,798 10.494 5,738
37.8 5.37¢ 3.580 8.200 5.345 B8.853 6.265
45 5.884 3.736 7.029 5.056 i0.269 6.395
60 4.752 5,532 9.632 4.845 . 10.354 7.022
}
75 3.505 4.584 7.651 5.039 10.683 : 6.294
=X 2.760 4,023 5,487 5.004 6.286 % 4,743
iC5 4,122 4,641 8.259 £.284 5,329 5.521
120 5.044 3.924 10.326 7.738 7.436 6.894
135 ' 5.4B4 3.656 11.344 5.766 6.276 6.443
142.5 5.562 2.758 8.237 3.779 4.843 5.035
150 5.528 2.240 3.722 3.864 5.544 4.180
PoonlA;d Varlancew_‘ S | o T B o
by Column 4.759 3.753 7.809 5.436 7.825 5.864
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Estimates of the error variance in measuring the polymer
concentration are dependent upon the way in which the solutions were
prepared. The usual method is to dissolve a known amount of dry
polymer in the solvent and prepare the samples through successive
dilutions of the original sample. Thus, the error present in the
concentration of the samples is dependent upon the errors in weighing
out the dry polymer and the dilution volumes. The errors that may
have occurred in preparing the samples that were studied are not
known. However, Rubio (1984) has shown by the method of
error propagation that the error associated with the dilution process
decreases with increasing dilution. Therefore, the initial sample
with the highest polymer concentration has the largest error variance
in the concentration. To study the importance of the contributions of
the concentration variance to the total error variance in equation
(3.19), the standard deviation in the concentration measurement was
arbitrarily set to three different values: 0.05%, 0.5% and 5.0% of

the measured concentration.

Finally, an estimate of the error in measuring the scattering
angle is required to complete equation (3.19). The scattering angle
at which measurement takes place can be set manually or to
pre-determined values automatically set by the manufacturer. Again,
the means of angle setting was unknown for the experimental data used.
Assuming that the scale of angle settings was graduated by degrees of
one, a value of 0.5 degrees was used as an estimated of the standard ,

deviation in the angle setting.
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4.2.1.2 LALLS

The experimental data used for LALLS was obtained from two
graduate students in the department of chemical engineering at
McMaster University. In the course of their graduate work, Alexander
Penlidis and Victor Stanislawczyk collected data from the departments
Chromatix KMX-6 LALLS instrument for a number of polyvinylacetate and
polyacrylamide polymer samples in ethylacetate and water solvents
respectively. This instrument uses a He-Ne laser 1light. A typical
set of data is given in table 4.5. All of the data sets chosen to be
analyzed contained five measurements and had baseline measurements of
zero, simplifying equation (3.25). The system specific data required
to calculate K*and Rg for the two polymer systems is given in table

4.6.

The recorded values of Gg and G, were taken from a chart
recording, an example of which appears in figure 4.5. The scale of
the chart paper is 1000 units. The attenuators on the instrument are
manipulated in such a way as to obtain measurements of Gg between 900
and 1000, and measurements of G, greater than 250 but less than Gg.
The Gg and G, are then corrected for the different attenuators used

the attenuating function in equation (2.89). For the KMX-6, D is

given by
D= fi(att), where (att), = 0.248 (4.4)
i1 (att), = 6.448 x 1072
(att); = 4.077 x 1072
(att), = 1.6367 x 107

If an attenuator is not in for a given measurement, then (att); = 1.0
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TABLE 4.5

Galvanometer Readings - G, . Gg

Polymer Concentration (g/ml x 10%) 6o Gg
3.589 . 492 Bas

7.691 317 880

10.254 278 830

14,356 230 8500

47.945 220 - 8390
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TABLE 4.6

Conatants for: (1) Polyvinalyacatate/Ethylacetate Systemand

(2) Polyacrylamide/Water System

System
Symbol Comments 4 2 Units
A wavelength of the incident 6.33x 1072 6.33x 10”5 cm
gt
Ng soclvent refractive index 11,3724 1.33 -
dry/dc refractive index increment 0.114 0.485 cmyg
e scattering angle 4.73° 4.73° degrees
Re,solv Rayleighratio for solvent 4.534x 1076 - -
@ ! an optical function of solid 652.95 477.42 -
angle, field stop and
refractive index
K* an optical constant given by 4.556 x 1078 1.485x 1077 -

40202 fdn)2
AoNAv dc
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and attenuator 4 is always in.

Figure 4.5 shows that the measurement of Gg 1is very noisy while
it is very stable for Go,. The values recorded for Gg represent an
"eye-ball" average of the measurement. The usual way of recording Gg
is to take a lower envelope value. This method assumes that all of
the higher fluctuations and peaks are attributable to dust and other
impurities. An alternate method chosen ignored the gross peaks in the
measurements and used the average of the main body of the measurment.
The effect of these different methods on the parameter estimates will

be examined later.

From equation (3.26), it can be seen that estimates of the error
variance of the measured galvanometer readings at scattering angle 6
and at zero angle, and of the concentration of the polymer samples are

required.

The polyacrylamide data used included three sets of replicate
pairs of experiments. Thus, an analysis of variance was performed on
the measurements of Gé and Go. The data used and the details of this
analysis are relegated to appendix 4. The standard deviation in Gg
and G, was estimated to be 10 - 14, and 12 - 24 respectively,
depending on whether the extreme values marked by asterisks in
appendix 4 are included or neglected in the analysis. The
fluctuations about the mean within a measurement are not a major
contributor to the error since as the length of time over which the

measurment of Gg 1is recorded increases, the statistical uncertainty
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Figure 4.5 - Example of a LALLS chart recording
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in the mean decreases. Thus, the deviation about the mean within an
experiment is small compared to the deviation between the means of

replicate experiments.

As in the case of WALS experiments, the error in the
concentration of the polymer samples is dependent upon the errors in
weighing the dry polymer and in the dilution volumes. However, the
method of preparing samples is different from that previously
described. Instead of successive dilutions, subsequent samples are
prepared individually from the dilution of a fraction of the initially
prepared solution. The initial sample is prepared by dissolving a
known amount of dry polymer in 100 mL of solvent. Subsequent samples
are prepared by diluting a portion of the initial solution according

to the formula

Ci = __ Gy ; i=2,3,4,5 (4.5)

Vir ¥ Vi2
where v;; and v;, are the volumes of initial solution and solvent
respectively that make wup the i'th sample, and c, is the
concentration of the first sample. The values of v;; and v;; that

were used to prepare the samples studied are listed in table 4.7.

Applying the error propagation formula to equation (4.5) gives

var(c;) = var(cy) + vZ, var(vy) + 1 var(v; )
cf c§ VR (viy + via)® (Vir + Vig)?

(4.6)
However, the error in measuring the volumes v;; and vi; is the same
since the same type of pipette was used. Combining the last two terms

and setting var(v) = var(vy) = var(v;y), we obtain
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TABLE 4.7

Dilutiaon Yolumes Used in Preparing Samples (ml1)

Pvac/EAc Pglyacrylamide/tvater
Sample No. Vi1 Y2 - i1 Via
2 20 5 15 15
3 20 15 | 10 10
4 B 15 20 5 10

5 . 10 40 5 e5
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var(c;) = var(cy) + vi + v var(v) (4.7)
cf cf Vi (Vig + Vip)

As mentioned earlier, var(c,) is dependent upon the weight of dry
polymer and solvent volume

Ci =¥ (4.8)
Vo

Applying the error propogation formula once again,

var(cy) = var(w) + var(v) (4.9)
cf we v§

Estimaﬁes of var(w) and var(c) were determined to be (5 X 10"5g)2
and (5 X 1072mL)? respectively from the balance and pipettes used to
prepare the samples. For every sample studied in both systems, v,,
the intial volume of solvent was 100 mL, however the amount of dry
polymer added to make the initial solution was different; see table
4.8. Evaluation of var(ci)/tf for all i showed this quantity to have
little dependency on the initial concentration c¢y. Therefore, the
figures listed in table 4.9 represent the average value of var(c; )/c?
for each i for all the samples studied. So, the estimates of the

error variance were calculated using

var(c;) = c? [varc(:c-, )] (4.10)

An example of the standard deviations calculated using equation (4.10)
for one of the experiments is given in table 4.10. It is obvious that

the error variance is not constant at different concentrations.
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TABLE 4.8

Weight of Ory Polymer Added to 100 ml aof Solvent to farm initial Solution

Systen Sample ID | ' Neight of Dry Palyaer (g}

PYAc/EAc Bi10-5 0.053960
B1i0-7 | 0.13585
Bi1i1-8 0.47945
Bi1i-9 0.13830

Polyacrylamige/ BA- SE _ 0.05250

Water -

A-9I 0.04870
R-10C : 0.05270
R—-10H 0.04850
A-11D 0.05250

R-116 0.04770
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TABLE 4.8

Avaragas Estimatas of [var (ci) /c?] for PYAc/EAc and
Palyacrylamide/Water Syatams

var (5} /c2) x 107

Sampls No. PYAc/EAc Polyacrylamide/Water
1 4.88 12.44
2 | . 47.38 84.89
3 36.77 137.44
4 61.57 568.00

5 174.88 T 734.86
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TABLE 4.10

Eatimated Yarianca in Ccncantraticn for Experimant B40-7

- 2
var () ci2 tvar (c)) /e8]

Sample No. c; {8/ml) _var{e) (g/m1 X 1013)
1 0.0043585 9.004
2 "~ 0.0010868 o 55;952
a 0.0007763 22,153
4 0.0005822 20.870

5 © 0.0002747 ’ 12.810
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TABLE 4.11

Summary of Eatimated Error Yarlances

Exparimant Variable Estimatad Error Variance
a2
KALS 6g 0.00588 (GG
c 0.005xc)2  (g/m)?
t0.05xc)2 -
0.5xc)2 .
) 0.5)2
LALLS Gg (10)? - (1412
6o 12?2~ 242

c cZivar lc;) /3 la/mu?
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A summary of all of the estimated error variances used in the
parameter estimation programs for both WALS and LALLS data analysis

appears in table 4.11.

4.2.2 Analysis Programs

For both the WALS and LALLS data, parameter estimates were
obtained for four different objective functions for the purposes of
comparison. These estimates were obtained from non-linear least
squares and error propagation methods applied to K"c/Re and Rgq. For
the case of regression on K*c/Rg for LALLS data, ordinary linear
least squares was used. A general algorithm for the WALS and LALLS
parameter estimation programs is given in figure 4.6. The objective
functions that were minimized for each of the four cases were
presented in chapter 3. The main program prompts the user to 'ENTER
ITYPE - 1,2,3,4' where the value of ITYPE determines the objective
function according to table 4.12. Copies of these programs may be

found in appendices 2-B and 2-C.

The estimation subroutine UWHAUSDD was used to estimate the model
parameters (see appendix 2-A). This routine employs a Marquardt
Compromise procedure which is basically an algorithm that compromises
between the steepest descent method (for linear models) and the
linearization method (for non-linear models) to find the minimum of an
objective function. The parameters required in the UWHAUSDD argument
list are described briefly below.

ITYPE - problem number
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= )

Input data,
ITYPE

N

Calculate

K'c/Reaxp
and (Rglexp

N

Determine objective
function according
to ITYPE

N

Call parameter
estimation routine

Calculate
K'c/ RJ pred

Output data
files

N

Coe

Figure 4.6 - General algorithmof WALS and LALLS programs

.
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TABLE 4.12

Relation Between ITYPE and WALS,/LALLS Obiective Function

ITYPE Objective Function: f(zi.pl Method of Estimation
1 K'c/He error propegation
2 Re verrcrpropogation
k| K'c/Fie non-linear least

squares (WALS). linear
least squares (LALLS)

4 A non-linear least
squares




MODEL
NOB

OBJEC

BETA

DIFF

SIGNS

EPS1 = 1x10°©

EPS2 = 1 x107°

MIT = 15
FLAM = 1.0

FNU = 10.0
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external user supplied subroutine

number of observations

vector of objective function values to be
met (0.0, K*c /Reg » Rg for method of error
propogation, non-linear regression on K*q/Re
and Rg respectively)

number of model parameteré

vector of model parameter estimates

vector defining parameter difference
gradient at which objective function

is evaluated

vector allowing for non-negativety of
parameter estimates; 0 for - < g < +o0;

1l forg>0

convergence criterion for change in
subsequent sums of squares of residuals
convergence criterion for change in
subsequent values of each parameter estimate
maximum number of iterations allowed
determine the step size taken by the
estimation routine (values changed within
routine); setting FLAM = 0.0 is equivalent
to ordinary linear least Squares estimation

via steepest descent method

The external MODEL subroutine is supplied by the user and defines the
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objective function(s) to be minimized; see appendices 2-B and 2-C.

The input data files for WALS and LALLS, although similar, are

sufficiently different to warrant separate discussion.
4.2.2.1 WALS

An example of a WALS input data file is given in fiqure 4.7.
Each input item is described below.

KPRIME - an arbitrary constant used in the absissa to
construct a Zimm plot; see figqure 3.1

CVAR, DTVAR — values of the variance estimates in
measuring polymer concentration (0.05%,
0.5%, or 5%) and scattering angle
(0.5 degrees)

UWHAUSDD parameters NOB, NP, EPSl, EPS2, MIT, FLAM, FNU as

discussed previously

BETA initial guess of model parameters M,,

<s2>,, A,, and Ag
C,DTHETA - polymer concentrations (5 values) and
scattering angles (12 values) at which
measurements were recorded
GSOLV - measured galvanometer readings for the
solvent at each angle of measurement
(12 values); independent of concentration
GSOLN - measured galvanometer readings for the

polymer solutions (60 values); a function of
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!KPRIME

100
0.00

,DTVAR

1GSOLV
IGSOLN
!KSTAR, RB,GB

TUWHAUSDD

LBETA

n COCOVUNO N
: N WAN®DD 00D
e ™M O o &
9...4334456
~wO
© LPOHOLTOAO
.3934115548L
[] [ ]
ll 97655556785
PPONNONINNMND
9L&3674490953
[ ] ]
118655557792

621500802046
¢ ;58077356 .
[ e QO I~
1..Qu..n-,O..n..—u..phu~lnnv..-..nr_.h
am NAORhNLN OO
7m6 575513491
198655567895

.52 1.21 1.07 1.00 1.03 1.12 1.36 1.54 1.86

.4 18.

50

0
20. 30. 37.5 45. 60. 75. 90. 105. 120. 135. 142.5 150.

4.00 2.35 1.81

0.01943 0.01295 0.00648 0.00486 0.00259
18.4 15.0 1

1604 1.E-6 1.E-9 15 1. 10.
330000 1.0 0.0004 0.01

Figure 4.7 — WALS input data file
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angle and concentration
KSTAR,RB,GB - the values of K*, R, and G, (refer to

equation (2.78)
4.2.2.2 LALLS

An example of a LALLS input data file is given in figure 4.8 and
a description of each item is given below.

GVAR,GOVAR - values of the variance estiamtes in
measuring Gg and G, from chart recordings
(10.0 and 12.0 respectively)

CVAR - values of [2257?;775?] used to estimate the

- variance in concentration measurement in

equation (4.10) (5 values)

UWHAUSDD pérameters NOB, NP, EPSl1, EPS2, MIT, FLAM, FNU as

discussed previously

BETA - initial quess of model parameters M,, and A,

c - polymer concentrations at which
measurements were recorded

GSOLN, GSOLNO - measured galvanometer readings of Gg and Gq
at each polymer concentration (5 values
each)

DCODE : - a coded integer value between 1 and 5

corresponding to a specific attenuation
function as given by equation 4.4;
corresponding values of D are given in table

4.13
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10.0 12.0 1GVAR, GOVAR

174.88D-7 61.57D-7 36.77D-7 47.38D-7 4.879D-7 1CVAR

1521.E-6 1.E-9 15 1. 10. 1UWHAUSDD

1000000 0.0002 1BETA

3.589D-4 7.6907D-4 10.2543D-4 14.356D-4 17.945D-4 e

885 875 885 890 882 !{GSOLN

492 317 275 230 220 1GSOLNO

33333 1 DCODE

4.5562D-8 4.5936D-6 652.952 | © IKSTAR,RSOLV,
DISGMA

Figure 4.8 - LALLS input data file
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TABLE 4.13

Relation Betwzen DCODE and Yalue of Attsnuating Function, D

——— e e

4

DCODE Attanuators In D -il’l1(z".".:)i
1 2 4 1.0553x 10”6
2 3 4. 6.6728 x 108
3 1,3 4 1.6549 % 10~8
4 23 4 4.3026x 1079

5 1,2 4 2.6473 % 1077
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KSTAR, RSOLV, - the values of K" , Rg for the solvent, and

DSIGMA (@’ Xy'particular to a set of data

4.2.2.3 WALS and LALLS OQutput Data Files

The output data files generated by the WALS and LALLS programs
are now described.

ZIMMPROP .DAT - stores the absissa and ordinate data
required to construct a Zimm plot in the
case of WALS and a K*c/Rg plot for LALLS

VARPROP .DAT - contains the relative contributions of each
error variance term accounted for in the
error propagation model to the total error
variance

STATPROP.DAT - stores the complete UWHAUSDD screen output
for later viewing if desired

SUMPROP.DAT - contains a summary of UWHAUSDD results such
as parameter estimates, confidence intervals
and correlation matrix

RESIDS.DAT - contains the residuals from the fit

Obviously, the file VARPROP.DAT is relevant only when the method of

error prop Jation is applied.
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4.3 Dynamic Light Scattering

4.3.1 Experimental Data

To reconstruct particle size distributions through the
application of the models given in equations (3.28) to (3.31), (3.34)
and (3.35), raw autocorrelation data is needed. Such data was
obtained from a NICOMP Model TC-200 computing autocorrelator at the
C-I-L research laboratories in Toronto. All of the polymer samples
studied were monodisperse, bimodal and polydisperse distributions
prepared from Dow polystyrene latex particle standards. In addition
to these samples a broad polyvinlyacetate distribution sample produced
in an experimental continuou§ stirred tank emulsion polymerization

reactor (Penlidis, 1985) was studied.

The Model TC-200 computes the second-order autocorrelation
function over 64 channels, each channel corresponding to one unit of
time delay, t. The last eight channels are used to determine the
baseline A in equation (3.27) at infinite time delay. An example of
the autocorrelation function dz%r) that the Model TC-200 displays is
shown in figqure 4.9. The raw autocorrelation data, is easily obtained
from the Model TC-200 and displayed in the format given in figure
4.10.

In addition to the 64 channel contents, the total number of
photopulses processed by the autocorrelator, the number of prescaled

pulses and the elapsed time of the correlation in milli-seconds is
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" Figure 4.9 - Raw autocorrelation function display from NICOMP
{ Model TC-200: G ( )
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TOTAL COUNTS 1370883926
PRESCALED COUNTS = 137105426

RUN TIME (MSEC) = 732172

CHANNEL. CONTENTS:

111397 110314 109234 128193
107207 106233 185315 134428
183568 182724 181919 181161
1204202 99722 99024 983352
97696 97038 965086 95919
95372 94845 94327 - 93837
93360 92889 92447 92028
91628 91220 92831 90467
S010Q 89763 89430 839104
888e3 88498 88218 87948
87678 87419 87179 863928
8a67e8 86476 86270 86055
85856 85661 85479 85284
851@S 84935 84760 84622
79833 79847 79839 79841
79848 79839 79845 79838

Figure 4.40 - Channel content display from NICOMP Madel TC~20C
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displayed. These figures may be used to calculate the total number of
counts and the baseline as a check on the displayed figures using the
following relations

total counts = prescaled counts x prescale factor (4.11)

baseline = channel width X total counts x prescaled counts
run time x 1000 x 2048 (4.12)

The channel width and prescale factor are determined by the instrument
during the initial stages of the run. The channel width is measured
in micro-seconds. The factors of 1000 and 2048 account for the
discrepancy in time units between channel width (ms) and run time
(ms), and the fact that the displayed correlator channel contents have
all been predivided by 2048. Thus, the actual value of Gm(‘l:) for the

first channel is 111397 x 2048 = 2.2814 x 108.

The values of the variables listed in table 4.14 were the same
for each sample studied. The photon pulses were measured at a
scattering angle of 90 degrees. With this information it can be
determined that K = 0.018673 nm'for equation (2.92). The following
relationships between D;, the translational diffusion coefficient, and

r, with the particle diameter D, may be derived.

D, = 214.174 nm? (4.13)
D/2 MS

r=0.074679 s (4.14)
D/2

from equations (2.91), (2.92) and (2.93). The particle diameter is
equivalent to twice the hydraulic radius, R, for spherical particles,

hence the denominators in equations (4.13) and (4.14) are D/2.
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TABLE 4, 14

Constants Usad in Dynamic Light Scattering Exparlmenhs

Symbol Comments Valuse

T temperature of tha expsriment 293 K

fig solvent refractlive index 4.330

sin{6/2) scattering angle whera the 0.707
measuremsnt occurred

Ao laser wavelength 633 x 1075 cn
an optical constant given b; 0.018673 * nn-!

4nnain (6/2)
A(t
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If prior information about the type of distribution being studied
is available, the Model TC-200 has the capability of allowing the user
to select a fit number to capitalize on this information. The fit
numbers range from 0 to 6, where 0 would be selected when the
distribution is known to be monodisperse or bimodal, and 6 for a broad
distribution. The default fit number of 2, which appears to assume a
slight bias towards bimodal distributions in the fitting procedure,

was employed for most of the sample runs in this study.

4.3.2 Analysis Program

The program used to estimate the model parameters in equations
(3.28) to (3.31), (3.34) and (3.35) is listed in appendix 2-D. Eight
model choices are available to the user depending on the value of
ITYPE. Table 4.15 details the correspondance between ITYPE and the
form of the objective function. The flowchart depicted in figure 4.6

is equally applicable to this program.

The estimation subroutines UWHAUSDD and NNLS (non-negative least
squares) were used to estimate the model parameters. UWHAUSDD was
discussed in section 4.2.2. The NNLS estimation routine employed was
developed by Lawson and Hanson (1974) at Pasadena’s Jet Propulsion
Laboratory; see appendix 2-E. Their algorithm does not require an
external MODEL subroutine, but solves the set of linear equations

Avekn= Baxs subject to X 3 0 (4.15)
where the matrix A contains a set of n linear equation coefficients, X

is a vector of p parameters and B is a vector of response values. The
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TABLE 4.15

Aelation Between ITYPE and DLS Maodels

ITYPE Equatian Model: f (pl) Method of Estimation
m
1 B_.31) b3 plexn (-r‘t,) NNLS - non-negative
: B o 1inear least squares
2 (3.31 transformed NNLS
3 a.2n E' pjexp ‘-'l'lt' ) UWHAUSDO -~ 1linear
I least squares
4 .24 Bexp (-T t;) UWHAUSOD - non-linear
least squares
5 8.9 Blexp (—l'1(:l ) *azexp (—rzt‘ ) UWHAUSOD - non-linear
least squares
6 B.28 p1exp (—r1t' ) +Bzexp (--rzx;i ) UWHAUSOD - 1linear
least squares
7 (.28 B1exp (—l'1ti ) +pzexp (—l‘zti } UAHAUSBD - 1linear
+ Bsexp (- r3t| ) least squares
8 3.26) UNHAUSDD - 1linear

pIexp (--l"1t.l } +Bexp (—l"zti ]
+Byexp (-Tgt; J+Bexp (-T,t )

least squares
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NNLS routine solves (4.15) through a QR matrix decomposition method.

For this DLS application, the linear model has the following form.

exp(-nt,)
exp(- rty)

_exp(— ritsg exp(- rztsg ... exp(- rmthJ

1 N

exp(-rty) ... exp(—rmt1)rl31 =_g‘111)(7:)j (4.16)
exp(-Taty) ... exp(- o )i B2 g

Xz)

Bm| _g‘s‘ir)‘

With this model form, it is simple to estimate anywhere from one up to

twenty parameters at a time.

The parameters

described below.

A

Ly o)

>4

INDEX

MODE

required by NNLS in the argument 1list are

- nxp design matrix of measured or calculated

quantities

row dimension of A (equivalent to number of
observations)

number of observations

number of pafameters (equivalent to p)
vector of observations or responses

vector of parameter estimates

contains euclidean norm of the residual
vector

vectors of working space of length N and M
respectively

an integer vector of working space of length
at least N

an NNLS success/failure flag
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The data that is read and used by the main program from the data

input file is dependent upon the value of ITYPE entered interactively

by the user. An example input data file is given in figure 4.11.

DELTAT
TCOUNT
PCOUNT
RUNT
PFAC

COUNTS

channel width (micro-seconds)

total number of photopulses counted
number of prescaled counts

run time (milli-seconds)

prescale factor

channel contents (64 values)

UWHAUSDD parameters NOB, NP, EPS1, EPS2, MIT, FLAM, FNU as

SPN

BETAI

DL

OMEGAMAX

SHIFTS

discussed previously

determines whether or not negative
parameter estiﬁates are allowed (yes, if
SPN = -1; no, if SBN = 1)

initual guess of p parameters (only for
ITYPE > 3)

lower diameter value (in nanometers) at
which parameter estimates start at
determines logarithmic spacing between
parameter estimates on diameter scale
number of times a set of p parameters

are estimated in each shift

determines whether a weighted NNLS fit is

performed (see equation (3.35)) where we
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150 186178374 18616715 1055671 10 {DELTAT, TCOUNT , PCOUNT , RUNT , PFAC
311691 309025 306523 304122 1COUNTS
301799 299587 297448 295392

293417 291525 289688 287925

286243 284608 283035 281519

280067 278654 277296 275973

274720 273510 272337 271211

270125 269087 268074 267111

266173 265283 264431 263587

262781 262014 261269 260540

259849 259179 258535 257919

257333 256748 256185 255642

255114 254625 254161 253694

253256 252812 252390 251980

251586 251200 250834 250480

240799 240811 240813 240814

240837 240828 240826 240828

15 51.E-6 1.E~9 15 0. 10. -1 1 UWHAUSDD
0.01 0.1 0.2 0.1 0.02 \BETAI (IF ITYPE > 2)
3.05.0611 !DI,,OMEGAMAX, SHIFTS ,NEX1 ,NEX2

Figure 4.11 - DLS input data file
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minimize
ig[ g(r)(r)NEX _ jggiiﬂ(t yNEX-1 Bexp(-r;t; )12
(4.17)
- (4.17) is equivalent to (3.35) when

NEX = 2; NEX =1 is the unweighted case

Finally, several output data files are created by the main

program.
DLSOUT.DAT - contains g“)(r) vs t data
DIS,.DAT - contains the parameter estimates of
distribution fit
PREDICT.DAT - contains the predicted values of d."(t)

RESLIM.DAT contains the residuais of the fits
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RESULTS AND DISCUSSION

5.1 Introduction

Some of the results from the computer parameter estimation runs

are presented with accompanying discussions and conclusions.

5.2 Classical Light Scattering

5.2.1 Wide Angle Light Scattering

5.2.1.1 Experimental Results

The results presented in this section were obtained from the
analysis of the data given in tables 4.1 and 4.2. A Zimm plot of this
data (K’c/ﬁe vs sin (8/2) + 100*c) is given in figure 5.1. From
this figure, one can easily see the difficulty in obtaining results
from a manual double extrapolation to zero polymer concentration and
zero scattering angle. This alone justifies the use of computerized

parameter estimation procedures.

The following initial quesses for the parameters in equation

(2.74) were obtained from the results reported by Roberts et al

(1977).
M, = 340 000
160%s2> = 1.0 (<s2>, = 4.0 10°° cm)
ER
a, = 0.0004
Aj = 0.01

The results of the parameter estimation routines are presented in

table 5.1. With these results, the contributions to the total error
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variance by concentration and scattering angle errors can be made as
well as the effect of their presence or absence on the parameter

estimates.

An important statistic to look at before discussing the results
is the wvariance of the residuals given in the last column of table

5.1. This is given by

i - 2 (5.1)
var e var(e; ) e

where the first term is the actual residual for point i, the second
term is the mean of all of the residuals and Ve is the associated
degrees of freedom. For the linear case, and approximately for the
non-linear case, the expected value of the mean of the residuals is

zero, and equation (5.1) becomes

j{ (5.2)
ar(e ) 7

and should have an expected value of one. However, all of the values
of - the variance of the residuals in table 5.1 are less that 0.1, one
order of magnitude too small. This suggests that the assumed error
structure is not correct, the magnitude of the estimated errors being
too high. Since the effect on the parameter estimates and the
variance of the residuals by the errors in scattering angle and
concentration is small (with the exception of var(c) = (0.0SX(:f ), it
may be that too great a contribution is being attributed to the
measurement of the galvanometer readings as predicted through equation
(4.3). An examination of VARPROP.DAT revealed that the error variance

calculated for the galvanometer readings accounted for greater than
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90% of the total estimated error for most of the runs with the
exception again being when var(c) = (0.05x<:F; Even in this case,
more than 80% of the estimated error was contributed by the
galvanometer errors. This confirms that the errors in ¢ and © have
the least significance and the error propagation runs (ITYPE = 1,2)
were therefore repeated with equation (4.3) modified to

var(Hg) = 0.0005(Cg)a (5.3)
The results of these funs are presented in table 5.2. A comparison of
tables 5.1 and 5.2 shows that the point estimates of the parameters
have not been significantly affected by using equation (5.3). However
the variance of the residuals are now of the appropriate magnitude,

approaching a value of one.

The discussion for the results in table 5.2 is divided into two
categories; a study of the effects of the type of estimation routine
employed and of the error structure assumed in the method of error

propogation.

5.2.1.2 Effect of Estimation Routine

Table 4.12 contains a summary of the four estimation routines
that were wused from which the results in table 5.2 were obtained.
Only the error propagation runs where var(c) = var(@) = 0 are
discussed here since these results are the only ones that are
comparable with those obtained from the non-linear least squares
method. In all of these cases, only the error in the measurement of

Gg(sol’n) is considered.



TABLE 5.1

Summary of AResults from WALS Paramater Estimation

ITYPE Standard Deviation Parameter Estimates ' 95X Confidence Intervals Variance of the
Pa) :
A ~ ~ Residuals
c v 4 4
8 My (1En2(52)z> Ry tx10%) Ay (x10%) n 2 /
3A2 is1 varle;l/ e
1 0.0 0.0 326, 000 * 30, 820 1.121 % 0.149 4.567 * 0.387 1.193 t 0.132 0.0646
0.005xc 0.0 326, 000 & 30, 820 1,124 + 0,149 4.567 t 0.387 1,193 + 0.132 0.0646
0.05xc 0.0 326, 000 * 30, 820 1.4124 % 0.149 4,567 t 0.387 1,193 + 0.132 0.0646
0.8xc 0.0 325, 900 30, 8960 1,123+ 0.150 4.559 + 0.388 1,197 + 0.132 0.0630
0.0 0.5 325,700 * 30, 610 1.118 + 0.148 4.567 * 0.385 1.483 % 0.134 0.0631
0.005xc 0.5 3as, 700 * 30, 610 1.118 % 0.148 4,567 + 0,385 1.193 + 0.131 0.0631
N 0.0Sx¢c 0.5 326, 700 £ 30, 620 1.418% 0.148 4,567 t 0.385 1,193 + 0.131 0.0631
0.5x¢c 0.5 325, 600 + 30, 760 1,120 ¥ 0.149 4.560 * 0.366 1.197 + 0.131 0.0616
2 0.0 0.0 322,800 % 2s, 420 1.1413 & 0.143 4.531 ¢+ 0.384 1.211 t 0,132 0.0644
0.005x¢ 0.0 322, 800 * 29, 400 1.113 £ 0.143, 4,531 % 0.384 1.211 + 0,132 0.0643
0.05x¢ 0.0 32z, 100 t 28, 170 1.103 t 0.137 4.5a2 + 0.373 1.220 + 0,130 0.0589
0.5xc 0.0 304, 300 * 17,790 0.967 + 0.083 4.272 % 0.328 1.341 + 0,147 0.0135
0.0 0.5 322,900 + 28, 870 1.111 % 0.140 4.527 t 0.378 o 1.248 + 0,130 0.0611
0.005x¢ 0.5 322, 900 * 28, 850 1.1114 % 0.140 4.527 + 0.378 1.218 £ 0.130 0.0610
0.05x¢ 0.5 324,900 * 27,770 1.400 % 0.135 4,517 + 0.370 1.226 + 0.129 0.0560
0.5x¢ 0.5 304,200 t 17,770 0.966 + 0.083 4.27¢ £ 0.325 1,342 t 0.147 0.0134
3 - - 417,000 + 86, 410 1.723 + 0.444 5.075 + 0.548 1.035 + 0.161 -
4 T - - 320, 300 + 27, 940 1.411 % 0,439 4.512 + 0.374 1.200 + 0.429 -

101

A



ITYPE Standard Deviation

C O C O
(=]
Q
m
x
1]

0O O O O
© O 0O O

O 0O 0O
a ;m; o,

O 0 0o o
O C O ©

.C)OO
a oo

Summary of Results from WALS Parameter Estimation [medifiad var (H )]

TABLE 5.2

Parameter Estimates ¥

95X Canfidence Intervals

326, 000
326, 000
326, 000
324, 700

323, 200
323, 200
323, 200
324, 300

322, 800
32z, 800
313, 300
298, 200

319, 400
318, 300
314, 800
297, 600
417, 000

320, 300

L . R L R N L

t+ 14 1+ 1+

1+

30, 820 1.121
30, 820 i1.121
30. 840 1.124
32, 180 1.141
28, 880 1.094
28, 980 1.091
29, 000 1.091
30.720 1.119
29, 420 1.1443
2s, 250 1.112
22, 850 1.042
16, 540 0.935
25, 940 1.080
25, 880 1.079
22, 270 1.026
16, 430 0.933
86, 410 1.723
27, 940 1.1114

i

1+ 1+ i+ 1+

+ 1+ 14

1+

1+ 14 I+

o+

-

¥
¥

¥
¥

i+

4+

:
)

.149
.149

0 0O 0O O

.17

.141
.41
A4
.150

Q O O O

0.143
0.142
0.109
0.074

0.126

0.126
0.107
0.074
0.444

0.139

.149 -

?2 (x10%)

4.567
4.567
4.566
4.493

4 1+ 14 1+

4.563
4,563
4,563
4,526

I+ 14 14 1+

4,531
4,530
4.413
4.271

1+ 14 14 1+

4,473
4.472 +
4,402
4,263

5.075 ¢

4,512 ¢

0.387
0.387
0.387
0.397

0.370
0.370
0.371
0.382

0.384
0.382
0.340
0.345

0.357
0.357
0.337
0.343
0.548

0.374

23 (x10%)

1,193
1.193
1,193
1.23¢

1.198
1.198
1.198
i1.220

1,214
1.242
i.27/8
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A glance at the four sets of parameter estimates clearly shows
the results from a least squares analysis on K'c/Re (ITYPE = 3) to be
the least accurate (with respect to the estimate of the weight average
molecular weight) and the least precise. The poor results may be
attributed to the violation of an assumption under which least squares
analysis is valid, that being that K* ¢/Rg has constant error
variance. Recall that a strong quadratic relationship between the
error variance of Gg(sol’n) and the scattering angle was demonstrated
in figure 4.1. Since Rg appears in the denominator of K" c/Rg, the

error variance of this latter variable would be far from constant.

The parameter estimates from the other three routines all agree
favourably with each other and with results obtained by Roberts et al
(1977). All of the point estimates are well within the 95% confidence

intervals of the other point estimates.

The point estimates from the two error propagation applications

are similar because the minimization of (3.12) is equivalent to

minimizing
n * « Y1 m2
Ei Hg, [1 - G&le (K cq } (5.4)
& | var (Hg) Roipred \ Rejlobs |

for ITYPE = 1, and
n » * 1 1 2
2 Hg, [1 - (K ci) (K cj, (5.5)
i1 var(Hei) Rei obs \ Re pred]

for ITYPE = 2, when var(c) = var(8) = 0. The only difference between
(5.4) and (5.5) 'is the inversion of the ratio of predicted K'c/Re

values to observed. Thus, there are only small differences in the
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results from the error propagation applications.

It is certain that aéééunting for thé error structure exhibited
in the measurement of Gg(sol'n) (figure 4.1) has yielded improved
parameter estimates over simple non-linear regression of K* c/Re.
Note, however that non-linear regression of Rg yields results similar
to those from error propagation. This was to be expected since Rg
contains the major source of error. However, the following analysis

helps to explain the closeness of these results.

It can easily be shown that (3.3) is equivalent to minimizing
R} & 5in®6[ (Ho)ops ~ (Hopred” (5.6)
which is a weighted sum of squares where the weights are - given by
sin®g;. The variation in 1/sin?6 with © is quite similar to that of
var[Gg(sol’n)]} as given in equation (5.3). Figure 5.2 compares
1/sin%6 with 0.0005(G_9)§ , normalized to 1.0 at 90°, as a function of
© for the data used in this experiment. It is apparent from this
figure that results obtained from a non-linear least squares
application on Rg are valid since appropriate relative weighting has
been applied to the data points. Thus, these results compare

favourably with those from the method of error propagation.



Relative Weighting

Figure 5.2 — WALS

Relative Weighting vs Scattering Angle

e e e
a
i
| o
- N
;
D ]
= A 4
w
2 A
— . o A
L | SN SR I T ] e B i T
15 30 45 60 75 80 105 120 135 150
Scattering Angle (degrees)
O C).(')()O.;"I?K(G9 e A 1./sin%

1685

S0T



106

5.2.1.3 Effect of Error Structure on Error Propagation

Errors in Polymer Concentration

For ITYPE=l, increasing the relative error in polymer
concentration from zero to 0.5% had little effect on the parameters
listed in table 5.2. when the error is increased to 5.0% however, the
point estimates of the parameters changed slightly and were less
precise. The variance of the residuals also decreased from 0.75 to
0.59 suggesting that a 5.0% relative error in the polymer
concentration is too high, causing var(e;) to be over- estimated. An
examination of VARPROP.DAT showed the contribution of the error in

concentration to be as high as 40% of the total error.

Similar conclusions may be drawn for the results obtained with
ITYPE=2, although these results are more sensitive to changes in the
relative error in the polymer concentration. That is, increasing the
error in concentration effects a noticeable change in the point
estimates and their precision at lower relative errors than with
ITYPE=1., 1In fact, the contribution to the total error by the error in
polymer concentration is as high as 76% with an 0.5% relative error
and effectively 100% with a 5.0% relative error. Clearly, the error
in measuring concentration has a greater effect on the results when
the light scattering model in equation (2.74) is re-expressed in terms
of Rg and the method of error propagation is applied. This |is
because the concentration is more prominent in the partial derivative

equations that comprise the calculation of the error variance, see



107
appendix 3.

Note that the estimated confidence 1limits for the parameter
estimates decrease with increasing concentration error for ITYPE=2.
One would normally expect the precision of the parameter estimates to
decrease if larger or more errors are accounted for. The formula used
to estimate the 95% confidence limits was

(C.L.); = By * 2/V(g;) 3=1,2,...,p (5.7)
where,fVTE?T is the j’th diagonal element of the parameter covariance
matrix, given by

v(g) Tx &2 (5.8)

||><
n><

where o2 is an estimate of the error variance, and in this case is
given by

-jz = variance of the residuals (5.9)
var(e )

The value of the variance of the residuals decreases at a greater rate
with increasing concentration errors than it did when ITYPE=1. It is
actually two orders of magnitude too small when the relative error in
polymer concentration was 5.0% suggesting that the éssumed error
structure is not correct. Thus, the resulting confidence limits
estimated from equation (5.7) were too small. Therefore, incorrect

error structures can yield misleading results.
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Errors in Scattering Angle

The runs discussed in the previous section were repeated with an
error in the measurement of the scattering angle of 0.5 degrees
included. The results in table 5.2 show that accounting for this
error had 1little effect on the point estimates but reduced the
estimates of the confidence limits. Again, this is probably due to
over-estimating the error in measuring the scattering angle. 1In
general though, the error in the scattering angle had little effect on
the final results, even though it contributed up to 67% to the total

error.

It is interesting to comment on a trend that was observed in the
magnitudes of the percent contribution that the error in the
scattering angle makes to the total error when the percent
contribution by the error in the polymer concentration is not
dominant. The contribution to the total error is the greatest at low
and high scattering angles, and the smallest at 90°, the trend being
quadratic in nature. This corresponds to the lowest error
contribution by the galvanometer readings at low and high angles where
the least weighting is applied, and the greatest contribution at 90°
where the most weighting is applied. This demonstrates that the
quadratic weighting function determined in equation (5.3) is being
applied correctly. This trend is masked when the error contribution

by the polymer concentration becomes dominant at 5.0% relative error.
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5.2.1.4 Residuals

It is worthwhile to comment“h;re on some observations made of the
residuals from the parameter estimations routines. A typical residual
plot is given in figure 5.3. The order of the residuals is with
descending values of polymer concentration nested within ascending
values of scattering angle; ie - (20 ; 0.01943, 0.01295, 0.00648,

0.00486, 0.00254 g/ml), etc...

From figure 5.3, it is apparent that most of the residuals lie
within * 0.5, but there is a definite upward trend in the residuals
from left to right. It turns out that the residuals below and above
the main body each correspond to a measurement at 0.01943 g/ml polymer
concentration - the highest value. This is much more evident in
figure 5.4 where the relative error in polymer concentration is 5.0%.
This clearly demonstrates the breakdown of the light scattering model
(equation 2.74) that would be expected at high polymer concentrations
(recall the assumptions listed in section 2.2.5). It is also evident
from figure 5.4 that the main body of residuals broadens at the higher

scattering angles. This too, is a result of model breakdown.

5.2.1.5 Summary

From the discussion presented above, it was concluded that when
analyzing wide angle light scattering data, the primary concern should
be to weight the galvanometer readings appropriately. In this study,
a quadratic function of scattering angle was used to weight the data.
It was shown that this function is easily incorporated into the method

of error propagation and that non-linear regression of Rg
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automatically weighs the data according to a similar function -
1/sin’e A comparison of tables 5.1 and 5.2 shows that the form of
the function is more important than the magnitude as the point
estimates of the parameters were not greatly affected by a reduction
in the function of one order of magnitude. Applications of these
methods yielded the best results. However, care must be taken to
account for the proper error structure if the method of error
propagation is wused. Poor estimates of the error variance in the

measured variables may give misleading results.

On the basis of these results, it is recommended that non-linear
regression of Rg be used to obtain estimates of the model parameters
and their associated confidence intervals. If good estimates of the
error variance in polymer concentration and scattering angle are
available, the method of error propagation used for ITYPE=1 may be
applied. The application for ITYPE=2 was too sensitive to changes in

the level of the error assumed in the polymer concentration.

5.2.2 Low Angle Laser Light Scattering

5.2.2.1 Experimental Results

The results discussed in this section were obtained from the
analysis of four sets of polyvinyl-acetate/ethyl-acetate (PVAc/EAc)
data and three sets of replicate pairs of polyacrylamide/water data,
making ten sets in total. A typical plot of K*c/Rg vs c is given in

fiqure 5.5; The parameters M, and A, in equation (2.87) are usually
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estimated by an "eye-ball" fit of the data in figqure 5.5, or from a

linear least squares fit.

A number of items that may affect the results of the LALLS data
analysis are discussed below. Note that the analyses of sample B10-7
is based on only four data points instead of five. This is because it
was found that one of the data points in the set was a severe outlier

and the results from the parameter estimation routines were worthless.

5.2.2.2 Effect of Error Structure on Error Propagation

Recall that the estimated standard in Gg and G, were 10 - 12
and 12 - 24 units respecitvely. Estimates of the parameters M,, and
A, were obtained for all four possible combinations. of Gg and Gg
errors while applying the estimated concentration errors from equation

4.10 to all cases.

Changing levels of the standard deviation in Gg and G, had
little effect on the point estimates of the parameters. However,
increasing the standard deviation in G, from 12 to 24 units decreased
the values of the variance of the residuals by a factor of between
three and four. In most samples studied, this decrease was away from
the expected value of 1.0, thus suggesting that an estimated error
variance of (24) is too high. An increase of the standard deviation
in Gg from 10 to 12 units, while also decreasing the variance of the

residuals, had a much smaller effect on them than the change in G,.
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Since the standarad deviations of 12 and 24, for Gg and G
respectively, were based on including extreme values in the analysis
of variance (see appendix 4), it is now evident that the lower values
of 10 and 12 are more appropriate. Indeed, the variance of the
residuals is close the expected value of 1.0 for more of the samples
studied under this case than any of the other three. It is also
encouraging that consistent results were obtained for two
independantly performed sets of experiments on two different polymer
systems. Table 5.3 summarizes the results for ITYPE = 1,2 for

standard deviations in Gg and G, of 10 and 12 respectively.

The contribution to the total error variance by the error in the
measurement of G, was by far the greatest at an average of 81% and
94% when the estimated standard deviations in G, was 12 and 24 units
respectively. Most of the remaining error in the total error variance
came from the measurement of Gg. The contribution of the error in the
measurement of the polymer concentration was rarely greater than 1%
and was usually insignificant, accounting for an average of 0.3% of
the total error variance. Since this contribution is so small, the
runs were repeated with var(c;) = 0 for all i, and using the values of
10 and 12 for the standard deviations of Gg and G,. These results

appear in table 5.4.

Comparing table 5.4 with the results in table 5.3, it is apparent
that neglecting the errors in measuring polymer concentration has not

had much of an effect on the final results. However, neglecting the
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errors in Gg does have an adverse effect on the results. Both the
values of the variance of the residuals and the confiéence limits-
increase, suggesting that the total error variance has been
under-estimated. Thus, the error in measuring Gg should be included

in the analysis.

5.2.2.3 Effect of Estimation Routine

The results for ITYPE = 3,4 are given in table 5.5. Comparing
tables 5.4 and 5.5, it can be seen that, for each sample, the
parameter estimates for the four different cases are not significantly

different from each other.

Applying the same type of analysis on the two error propagation
techniques as in the WALS case, the minimization of (3.12) can be

shown to be equivalent to minimizing

n 2 P « 1 92 2 -1
Rg; Goj 1.0 - (K g [k c) ] ‘%ar(Ge) + G var(Goﬂ (5.10)
Z;(QTXTIN) [ ( Relqu_ﬁgtan .ag

for ITYPE = 1, and

2 . 1 12 2 -1
i(g&,‘gﬁ) [1.0 - (5’_51\) (_Is_q)pJ [var(Ge) + & var(Go)] (5.11)
ERY A)Di Reyiobs \ Repbr G

for ITYPE = 2, when var(c) = 0.0. Once again, the only difference

-]

between these two formulas is the inversion of the ratio of predicted
K'c/Re values to observed. Thus, only small differences in the
results between the two error propagation applications were to be

expected.
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While applying the method of error propagation to LALLS data is
more desireable since it employs a-more appropriate error structure in
its analysis, the simpler methods of linear and non-linear regression
of K 'c/Re and Rg cannot abe discounted since these methods often

offered comparable results.

5.2.2.4 Effect of Recorded Value for Gg

Recall that in section 4.2.1, two diffe?ent methods of recording
the value for the measurement of Gg from chart recordings was
discussed. One method recorded a lower envelope value while the other
recorded an average value from the main body of the chart recording
while ignoring gross peaks. The first methéd is the one commonly used
by experimenters. Employing the second technique effected an average
increase of 10 units in the Gg values. Values from both methods were
recorded only for the PVAc/EAc samples. The results from using the

latter method are presented in table 5.6.

Comparing tables 5.5 and 5.6, it can be seen that no significant
difference exists other than a trend towards higher point estimates of
Mw. Certainly, as the values of Gg increase, K*c/Re decreases and
the estimate of M, would be expected to increase (since the
intercept, 1/Mw decreases). Since recording an average value from
the main body of a chart recording can be less certain than recording
a lower envelope value, and quite subjective regarding what
constitutes a gross peak, this slight increase in ﬁw may be .

considered somewhat arbitrary and variable. Therefore, use of the
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TABLE 5.3

Summary of LALLS Results - Error Propogation (ccncentration error included)

Sample ITYPE Parameter Estimates # 95X Confidence Intervals vVariance of the
- ~ - Tt T T Residuals
2 ~ 2
n,, Ap(x 109 SN
=1 Vafl’il

B10-5 b 1,278, 000 * 4160, 200 1.264 * 1.287 1.005

2 1, 267, 000 + 1455, BOO 4.208 + 1.270 0.996
Bi10-7 b 2, 167, 000 + 389, 400 4.431 + 0.4B4 2.142

2 2, 149, 000 + 381, 600 4.422 + 0.48% 2.290
Bi1-8 b4 1, 157, 000 + 63, 630 3.323 + 0.294 0.183

2 1. 159, 000 + 61, 880 3.333 + 0.290 0.178
B11-9 1 2,021, 000 + 255, 800 0.844 * 0.336 1.513

2 2, 009, 000 + 266, 400 0.876 + 0.356 1.458
AR-9E 1 181, 000 + 11, 680 4.327 * 0.576 0.640

2 180, 400 * 44, 980 4.306 £ 0.596 0.644
R-81 b 205, 800 + 15, 950 3.9C4 + 0.756 1.333

2 204, 600 * 15,6810 3.862 + 0.762 1.275
R-40C b 799, 300 + 34, 290 3.242 + 0.158 0.150

2 800, 100 + 34, 230 3.248 & 0.157 0.152
R-40H 1 g82, 600 + 102, BOO 3.723 + 0.195 0.984

2 979, 900 + g6, 200 3.729 + 0.184 0.802
R-41D i 1, 646, 000 + 379, 300 3.524 + 0.256 1.867

2 5. 594, 000 + 345, 000 3.846 * 0.242 1.815
R~116G 1 1. 432, 000 * 1B9, 000 3.383 t 0.170 0.853

2 4, 430, 000 + 184, 600 3.38¢ + 0.167 0.847
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TABLE 5.4

Summary of LALLS Results - Error Propgation (no error in concentration)

Sample ITYPE Parameter Estimates + 95X Confidence Interval Variancs of the
Residuals ‘
k=3 ~ e?
M A, (x 10%) g AN
w 2 i«1 varie;/ ®

B10-5 1 1,278, 000 * {60, 200 1.260 + 1.288 1.008

2 1, 267. 000 *+ 155, 800 1.207 + 1.27¢ 0.939
B10-7 i 2, 164, 000 + 385, 800 1.427 + 0.484 2.017

2 2, 143, 000t 378, 500 1.419 *+ 0.4814 2.151
B11-8 i 1. 157, 000+ @62, 440 3.323 + 0.294 0.183

2 1, 159, 000* 64, 690 3.338 + 0.290 0.178
B14-9 i 2. 022. 000+ 255, 900 0.885 + 0.3356 1.548

2 2, 009, 000+ 266, 200 0.877 * 0.356 1.462
R-9E 1 184, 200+ {4,650 4.335 £ 0.577 0.656

2 180, 500+ 14, 980 4.315 + 0.598 0.661
R-81I 1 205, 600 + 15, 040 3.804 + 0.776 1.426

2 204, 300+ 15, 860 3.885 * 0.778 1.358
R-410C 1 799, 100+ 33, 740 3.241 *+ 0.157 0.154

2 799, 900 + 33, 650 3.248 + 0,157 0.153
A-10H 1 981, 700 + 104, 300 3.728 + 0.194 0.989

2 978, 800 + 94, 730 3.728 + 0.183 0.907
A~-110 i 1, 614, 000+ 377, 300 3.523 + 0.256 1.978

2 1, 589, 000+ 343, 300 3.515 ¥ 0.244 1.925
A-116 1 1, 431, 000t 187,500 3.387 £ 0.170 0.855

2 1, 430, 000+ 183, 100 3.391 + 0.1487 0.849
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TABLE 5.5

Summary of LALLS Results - Linear and Non-Linear Least Squarses

Sample ITYPE Paramster Estimates + 95X Confidence Intervals
My 3, x 104
B10-5 3 1,341,000 + 131, 80O 1.680 + 0.929
4 1, 339, 000 * 158, 900 1.659 + 0.923
B10-7 3 2. 058, 000 ¥ 353, 700 1.385 + 0.454
4 2, 068, 000 * 438, 100 1.391 & 0.517
B141-8 3 1,171,000 * 137, 200 3.378 + 0.424
4 1,474,000 * 170, 500 3.378 + 0.494
Bi11-9 3 2. 086, 000 * 216, 200 0.929 *+ 0.276
4 1,979,000 * 268, 200 0.795 ¢+ 0.320
R-9E 3 177,900 * 12, 650 4.183 * 0.609
4 172,800 * 10, 300 3.974 + 0.444
R-91 3 210,500 *+ 14, 600 4.007 *+ 0.544
4 206, 100 + 12, 900 3.863 + 0.423
R-410C 3 837,000 * 88, 690 3.355 + 0.4196
4 833, 300 + 83, 960 3.336 + 0.200
R-10H 3 1, 054, 000 * 207, 300 3.794 + 0.309
4 1, 036, 000 + 202, 400 3.748 * 0.356
A-440 3 1, 794, 000 + 521, 500 3.623 + 0.248
4 1, 686, 000 + 477, 100 3.545 + 0.333
R-116G 3 1, 475,000 + 260, 500 3.440 + 0.209
4 1, 459, 000 + 224, 000 3.420 + 0.214
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TABLE 5.6

Sample ITYPE Parametar Eatimates + 95X Confidance Intervals variance of the
Residuals
o~ A a 2
M A, (x 107} |
w 2 ig1 varle;) / e
B10-5 1 1, 286, 000 + 464, 100 1.232 + {.30¢ 1.048
2 1, 275, 000 + 158, 600 1,183 * {.285 1.044
3 1,352, 000 + 137, 500 1.666 * 0.953 -
4 1,352,000 + 174, 000 1.654 * 0.975 -
BiQg~7 1 2, 164, 000 * 365, 000 1.397 * 0.455 1.827
2 2, 148, 000 ¥ 360, BOO 1.389 %+ 0:455 1.959
3 2, 065, 000 £ 343, 500 1.355 + 0.476 -
. 4 2,074, 000 * 420, 500 1.3856 + 0.493 -
Bi1-8 i 1, 175, 000 * 69, 750 3.316 * 0.318 0.224
2 1, 177,000 * 68, 820 3.334 * 0.313 0.212
3 1. 183,000 ¥ 146, 400 3.345 + 0.444 -
4 1, 183,000 * 184, 300 3.335 + 0.520 -
Bi4-9 i 2. 160, 000 *+ 356, 200 0.984 * 0.443 2.522
2 2, 134,000 + 373, 300 0.964 + 0.446 2.400
3 2, 216, 000 + 298, 300 0.999 + 0.337 -
4 2, 056, 000 + 324, 700 0.827 + 0.361 -
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lower envelope value in the analysis is preferred.

5.2.2.5 Summary

From the above discussions, it is recommended that non-linear
regression of Rg be used to analyze LALLS data. This is preferred
over linear regression of K'c/Re since the quantity containing the
majority of the measurement error, Rg, does not appear in the
denominator. However, if good estimates of the error structure can be
obtained, or are available, use the method of error propagation to
make effective use of this information. Recall that it was found that
measurement error in the polymer concentration had little or no effect
on the error structure while those in the measurement of G, had the

greatest effect.

Finally, it was recommended that the lower envelope value should

be used when recording a value for Gg from a chart recording.

5.3 Dynamic Light Scattering

The objective here was to determine the suitability of an
analytical dynamic light scattering instrument (NICOMP Model TC-200
Computing Autocorrelator) in analysing samples of known particle size
distributions (PSD’s), and to demonstrate some of the difficulties in
re-constructing PSD’s from raw autocorrelation data. The latter
objective was served by the analysis routines discussed previously.

This was the sole purpose of these routines and were in no way an
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attempt to reproduce the results obtained from the analytical

instrument.

Eleven samples were studied, four of which were two sets of
replicate pairs. Five of the samples were monodisperse standards of
Dow polystyrene latex particles. From these stahdards, three
different types of distributions were made. Finally, there was one
unknown polydisperse sample. Table 5.7 1lists all of the samples

examined.

5.3.1 Results from the NICOMP Model TC-200

The samples listed in table 5.7 were taken to the C-I-L Research
Laboratory in Toronto for analysis on their NICOMP instrument. Figure
5.6 is typical of the results obtained from this instrument. Note
tﬁat a distribution of particle sizes has been fit, thus the "mean
diameter" reported by the instrument is actually an estimate of the
weighted particle size diameter. This instrument allows the user to
choose one of three weightings that may be applied in the estimation
of the mean diameter. These were (1) mass weighted, Dy, ; (2) area
weighted, D ; and (3) intensity weighted, T particle size
diameter estimates. A summary of the analysis results using the
default fit number of two and the mass weighting option, is given in
table 5.8. The standard deviations reported in table 5.8 were

calculated based on a normal Gaussian fit of the sample results.
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TABLE 5.7

Composition of Sample Studied Using OLS

Sample 1D Particle Composition (nm)

M34 34

MSB o8

Mi786 176

M220 - 220

M275 275

898/275 1.000part 98
0.801ipart 275

D176-A 0.436part 476

Di176-8B 1.000part 220 ﬁi - 222
0.505part 275 D = 226

BSB/D176-A 1.436part 98

B9B/D476-B

R2-20

0.496part 176
1.000 part 220
0.505part 275

unknown broad polyvinylacatate
distribution




125

TABLE 5.8

Summary of Results Obtained from a NICOMP Model TC-200
Computing Autocorrelator %

Sample ID (El\_n.,)1 (nm) Range1(nm) (DA,,,)2 (nm) Ranoeztnm) St. Dav. (nm)
M34 32.5 31.5 - 42.8 - - L 1]
M98 93.4 85.7 - 100.0 - - 3.4
M176 166.6 165.4 ~ 187.5 - - 7.1
M220 223.0 205.7 - 240.0 - - 8.6
M275 299.8 272.7 - 321.4 - -- ' 12.2
B98/275 99.7 94.7 - 108.0 315.1 257.1 - 400.0 -
D176-A 228.3 187.5 - 272.7 - - 21.5
0176-8 224.6 204.5 - 264.7 - - i15.5
B98/D176-A 120.5 107.14 - 130.4 257.4 214.2 - 333.3 -
B98/D176-B 104.6 86.7 - 111.14 240.8 200.0 - 300.0 -
R2-20 1279.6 1074.4 - 1500.0 - - i178.6

* ~ Nith the exception of sample R2—-20, all the above resulta were obtained usaing fit numbsr 2,
R2-20 results were obhtained with fit number 6.
¥#¥% — Standard daviation was unavailable.
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Thus, standard deviations were not reported for the bimodal samples

since the Gaussian estimate was only unimodal.

From examining the results in table 5.8, two things became
apparent that help explain the observed phenomena in the results from
the bimodal samples. First, a distribution of particle sizes is
always fit regardless of the nature of the sample. This was
demonstrated in figure 5.6, which is the result from the monodisperse
sample M98. Second, this distribution broadens as the particle size
increases. This is evident from the results of the monodisperse
samples M34, M98, M176, M220 and M275. The range of particle sizes
over which the weight average particle size has been estimated
increases from 11.3 nm, for sample M34, to 48.7 nm, for sample M275.
This is caused by a decrease in the resolution of the particle size
scale as the particle size increases. Comparing the results from
sample M220 in figure 5.7 with figure 5.6 clearly demonstrates this.
The stacked bar graph in figure 5.8 visually displays the overall
trend of increasing distribution breadths (ranges) as the particle
size increases. The residual portion of the graph also shows that
good estimates of D; were obtained for the unimodal samples; the
residuals being the known D; minus fﬂ . All of the %i 's were

within 10% of the known D; and most were within 5%.

As mentioned previously, the above two points help explain two
problems that prevent an accurate analysis of bimodal samples. The

first problem was that the results from the mode containing the larger
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particles were not as reliable as those from the mode containing the
smaller particles. This was especially evident in. sample B98/275
where both modes were monodisperse. We would expect the distribution
of the second mode to be wider in light of the second point mentioned
above, but it was nearly three times as broad as the distribution
resulting from sample M275, see figure 5.8. This broadening was
caused by the presence of the first mode which requires fitting at
lower particle diameters. This then forced the second mode to be fit
at a position on the logarithmic diameter scale where the resolution
is even poorer than it was in the monodisperse sample M275. As a
result, the estimate of the weight average particle size of the second
mode was biased towards higher values. This is evident in the
residual portion of fiqure 5.8. However, this problem is reduced if
the two modes are closer together, or if they are polydisperse,
instead of monodisperse. Such were the observations made in samples
B98/176-A and B98/176-B. The presence of the smaller particles that
make up the second modes distribution brings the fitted results into
an area of increased resolution on the particle size scale. Notice
however, that it is impossible to discern the nature of the second
mode. No indication of the polydisperse second mode in these samples
was given by the width of the distribution fit. It is actually
narrower than the width of the fit to the monodisperse second in
sample B98,/275. Thus, one might erroneously conclude that the second
modes in samples B98/275, and B98/176-A or B98/176-B were polydisperse

and monodisperse respectively.
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The second problem was that good estimates of the mass ratios of
the two modes in the bimodal samples were difficult to obtain. For
sample B98/275, the estimated mass ratio of 275 nm particles to 98 nm
particles was 1.02:1.0. The known mass ratio is 0.90:1.0. It is not
surprising that the estimated mass ratio is too high since the ﬁi for
the second mode was over-estimated due to the reasons discussed above.
For sample B98/D176-A and B98,/D176-B, the estimated mass ratios of the
polydisperse mode to the monodisperse mode were 1.14:1.0 and 1.46:1.0
respectively. The known ratio here is 1.76:1.0. In these two
samples, the mass ratio was under-estimated. Since it is difficult to
discern a polydisperse second mode from a monodisperse mode, it must
be assumed that, in the polydisperse case, the total mass of particles

would be under-estimated, thus yielding a smaller mass ratio.

There is quite likely an ideal bimodal sample that rests at a
transition point for which good estimates of the weight average
particle sizes and mass ratio may be obtained. There is a transition
between over-estimating and under-estimating the D;’s and mass ratios
as the difference between the D;’s of the two modes decreases and the
mass ratio increases, see figure 5.9. Any samples deviating from this
ideal will be improperly fit. Thus, care must be taken when

interpreting results from bimodal samples.

For unimodal polydisperse samples, an indication of their
polydispersity may be obtained. The simulated polydisperse samples

D176-A and D176-B were fit over a significantly wider range of
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Figure 5.9 - Transition exists between obtaining gnod estimates af both
D; 's and the mass ratio for bimodal samples
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particle sizes than any of the monodisperse samples from which they
were composed. The analysis of the unknown sample, R2-20, also
indicates that it is polydisperse. However, this analysis is suspect
since results from previous size exclusion chromatography tests
yielded a mean particle size of 160 nm. This result is one order of
magnitude smaller than the DLS estimate of 1280 nm. It may be that
coagulation of the sample occurred between the time of the two

analyses.

In conclusion, it can be stated that reliable results may be
obtained from this instrument if the sample is unimodal. However,
care must be taken when interpreting bimodal results. Any prior
knowledge the user has concerning his samples will certainly aid in a

correct interpretation of his results.

5.3.2 Reconstruction of Particle Size Distributions By Fitting

Sums of Exponentials

The exponential models listed in table 4.15 were used to estimate
the particle sizes and distributions from the first-order, normalized
autocorrelation fuction g“%t). This function is easily constructed
from the <channel contents, which represent the second-order,
un-normalized autocorrelation function d2%t); refer to figure 4.10.
The function g“%r) is computed automatically by the analysis program

using equation (2.95) and was used as the objective function in the
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exponential models. The results and conclusions from these models are
- presented in three section, depending upon the fitting technique; (1)
non-linear least squares estimation; (2) linear least squares

estimation; and (3) exponential sampling.

5.3.2.1 Non-Linear Least Squares Estimation

This section covers the results from model types four and five, a
single exponential, and a sum of two exponentials respectively. Here,
both the exponential co-efficient and exponent of the models were
estimated. The results are presented in table 5.9. It should be
noted that the estimates of B, for a single exponential were merely
the initial value of g“kt) at zero time lag and have no physical
significance. However, when fitting a sum of two exponentials to a
bimodal sample, the estimates of g; and p, represent the relative
contribution of each model to the total measured intensity
autocorrelation function. Thus, an estimate of the intensity ratio
may be obtained. This may be compared with a predicted intensity
ratio that can be calculated from the known mass ratio through the Mie

theory.

The particle size estimates in table 5.9 exhibit, with the
exception of sample M176, a bias towards being over-estimated. Figure
5.10 is a bar graph of the residuals between the known particle size

diameter (or intensity average diameter for the polydisperse samples)
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and the estimated value. This bias suggests that too much emphasis is
put on the data at higher time lags. This would tend to give a higher
estimate of the mean decay time. This corresponds to larger particles
which diffuse more slowly through the solution. Therefore, the
parameters were re-estimated wusing Morrison’s suggested fitting
criterion which places more weight on the data at lower time lags
(refer to equation 4.17). The resulting estimates were, however, only
marginally smaller. For example, 41.5 nm and 238.4 nm for samples M34
and D176-A respectively. The weighting factor NEX was increased from
a value of two to five in increments of one in an attempt to realize a
significant decrease in the parameter estimates. However, the final
estimates for each value of NEX were still only marginally smaller
than those from the unweighted case. Thus, it was concluded that
Morrison’s weighted model as presented in equation (4.17) offered

little benefit over the simpler unweighted model.

To effect a real shifting of weight to the data at lower time
lags, Morrison’s formula was modified to include a second factor, NEX2

as follows. Minimize

BT M= PG PINER gexpirit) 1P 542
where 1 < NEX2 < NEX1. Setting NEX1 = NEX2 = 1 is equivalent to

Morrison’s origonal formula. The introduction of NEX2 compounds the
effect of NEX1 in shifting the weight to the data at smaller time

lags. After re-estimating the model parameters with several
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combinations of NEX1, NEX2 values, it was found that NEX1 = 2 and NEX2
= 1.1 offered the best overall estimates; see table 5.10. The
overall effectiveness of using these weights in the model was assessed
by comparing figure 5.11 with figqure 5.10. Figure 5.11 shows that the
residuals were smaller and better behaved than previously. Indeed,
the sum of squares of the residuals was reduced to 1,662 nm®from 6,677

nm?2,

As mentioned previously, the estimated intensity ratios of the
bimodal samples may be compared with the intensity ratios calculated
from the known mass ratios. Appendix 5 outlines these calculations
for the bimodal samples B98,/275 and B98,/D176-A and B. The results of
these calculations are compared with the experimental results in table
5.11. Comparing the weighted results with the unweighted, one can
clearly see the shifting of weight from larger to smaller particle
sizes. This is more evident in sample B98/275 where the
over—estimation of the intensity ratio has been reduced by 15%. It is
less obvious for the other two samples since the intensity ratio
already appears to be grossly under-estimated. However, recall that
the second mode of these samples was an aggregate of three different
particle sizes as shown in figure 5.12. This figure shows the
theoretically predicted intensities for each particle size, the sum
being the total intensity ratio of 9.17:1. The estimate of the total
intensity ratio is more of a point estimate along the distribution,
the remaining information being unavailable. This is a serious
limitation of this method of estimation. Without prior information on

a bimodal sample, the nature of the sample can never be resolved.
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TABLE 5.9

Summary of Results Obtainsd from Non-Linear Least Squares Estimation
ITYPE = 4, 5§

Parametar Estimatas

Sample ID ITYPE B B, tm) B, CRG
M3 4 4 0.6414 41.9 - -
Ma®B 4 0.6527 102.1 - -
M176 4 0.6859 176.0 - -
M220 4 0.7408 230.0 - -
M275 4 0.6525 303.8 - -
B98/275 5 0.0977 102.0 0.5354 312.7
D176-A 4 0.6689 23s.2 - -
0176-B 4 0.6733 235.0 - -
BSB/D176-A 5 0.1331 149.8 0.5464 269.5
B98/D176-8 5 0. 1640 125.7 0.5395 265.9
R2-20 4 0.5404 1235.4 - -
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TABLE 5.10

Summary of Results Obtalned from Neighted Non-Linear Least Squares Estimation

ITYPE = 4, &

(NEXL = 2, NEX2 = 1.1)

Parameter Estimates

Sample ID ITYPE B, B, tam) (A T, thm)
M34 4 0.6155 37.7 - -
M98 4 0.6272 92.0 ' - -
M176 4 0.6622 159.5 o -
M220 4 0.7195 208. 4 - -
M275 4 0.6255 275.8 - -
B98/275 5 0.1071 100.6 0.4976 286.5
D176-4 4 0.6432 218.7 - -
D176-8 4 0.6486 213.7 - -
B98/0176-A 5 0.1353 112.7 . 0.5184 235.2
B98/D176-8 5 0.1602 116.5 0.5180 233.6
R2-20 4 0.5088 1235.1 - -
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TABLE 5.11

Caompariaaon of Calculated (Mie Theory) and Experimentally Dstermined {(DLS)
Bimadal Intensity Ratios, ITYPE=4, §

IntenalityRatios
Sample ID Ratia Calculated Experimental Experimental
(unweighted) (weighted)

B38/275 2750 2.45 5.48 4.65

980 1 1 1
553/0176_—;\ 041760 9.47 4.14 3.83

880 1 1 1
B9B/D4176~8 D1760 9.17 3.23 3.24

””
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Non—Linear Least Squares

Figure 5.10 — Residual Bar Graph
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Figure 5.11 — Residual Bar Graph
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This, of course, also holds for the unimodal polydisperse samples

D176-A and D176-B.

A further drawback of these types of models is that they are too
simple to adequately fit the data. Figures 5.13 and 5.14 are the
residual plots from the analyses of samples M34 (ITYPE=4) and B98,/275
(ITYPE=5) respectively. The residuals in these figures are the
difference between the first-order, normalized autocorrelation
function, d”tt), and that reconstructed from the model parameters.
From the behaviour of the residuals, it is apparent that the model is

not sufficiently utilizing all the information available in the data.

5.3.2.2 Linear Least Squares Estimation

Parameter estimation results from model types six, seven and
eight are presented 1in this section; refer to table 4.15.
Respectively, these models contain two, three and four parameters.
These parameters were all pre-exponential coefficients of a linear
model. Thus, a linear least squares approach was used for parameter
estimation. Estimates were obtained for given values of r
corresponding to the known particle sizes; refer to equation (4.14).
The focus of these models was on samples B98/275, D176-A, D176-B,

B98,/D176-A and B98,/D176-B. The results are summarized in table 5.12.
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The first thing that is apparent from these results is that, with
the exception of sample B98/275, one parameter estimate was negative
indicating a negative contribution to the total measured intensity for
that given particle size. These negative results are entirely

spurious and offer no insight into the nature of the sample.

Once again, the tendency to place more emphasis on  the
contribution to the total intensity by the larger particles is evident
by the greater parameter estimates at the larger given particle sizes.
Employing the weighting factors from the previous section did little

to improve these results.

Converting the results to intensity ratios relevant to 98 nmm
particles, and comapring them with those predicted from the Mie theory
proved the experimental results to be wildly divergent from what might
be expected. Here, we run across a problem inherent in fitting linear
sums of exponentials; extremely high correlation between the
parameter estimates. 1In the models with greater than two parameters,
the elements of the parameter correlation matrix exceeded 0.99, énd
were often greater than 0.999. High correlation between parameter
estimates was also present in the results from ITYPE=5 discussed
previously. However, in the case of applying a linear exponential
model to dynamic light scattering data, the physical relationship
between the model and the light scattering process has been removed by

eliminating the degree of freedom offered in fitting the exponent in
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TABLE 5.12

Summary of Results Obtained frombLinear Least Squares Estimation
ITYPE =6, 7, B '

Parameter Eatimataes

Pad o’ N Pal

Sample ID ITYPE B4 B B3 By
BS8/275 & 0.0266 0.6017 - -
Di176-A 7 0.2205 -0.0252 0.4754 -
D176-8B 7 0.2464 -0.0334 0.4628 -
BS8/D176-A 6 ~0.0145 0.6889 - -

8 0.0478 0.2529 -0.0928 0.4716
B9a/n176-8 6 -0.0063 0.7048 - -

2] 0.0427 0.3515 -0.2669 0.5662

-
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the model. The linear exponential model is entirely empirical in

nature.

A further serious drawback to this method is that prior knowledge

regarding the particle sizes is required.

5.3.2.3 Exponential Sampling

The discussion of the results from the exponential sampling
technique 1is presented in two parts corresponding to Ostrowsky’s
method using linear 1least squares, and Morrison’s method using

non-negatively constrained linear least squares.

Ostrowsky’s Method

In all of the results presented below, Ostrowsky’s method was
applied to fit five pre-exponential coefficients (m=5) over six shifts.
(n=6). Thus, thirty parameter estimates were used to re-construct the

particle size distributions.

Figure 5.15 is a re-constructed particle size distribution (PSD)
from 30 parameter estimates for the monodisperse sample M98. This
figure is typical of the results obtained using Ostrowsky’s method.
While the intensity average particle size diameter of the
re-constructed distribution is 112.4 nm, the range of particle sizes
for which positive estimates were is obtained was quite broad; 34 -
280 nm. As with the linear models, ITYPE = 6, 7, 8, several small

negative parameter estimates were obtained. A summary of results from
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the remaining samples is given in table 5.13.

The results in table 5.13 represent the émoothest re-constructed
PSD’'s obtained over a variety of trials with different values of wpay
and the initial starting diameter D,. It was found that the quality
of the fit was greatly dependent upon the choices of wmax and Dg.
Generally, as the starting diameter value increased, nonsensical
estimates were obtained. This is a result of forcing the model to
estimate parameters at higher and higher particle sizes far beyond the
actual value. Recall that the scale is logarithmic with respect to
the particle sizes. Also, as the wvalue of wpy decreased, the
re—constructed PSD deteriorated into an oscillatory function with
large negative parameter estimates. This is a result of restricting
the parameter estimates to a narrower range of particle sizes. The
results presented in table 5.13 strike a balance between these two
extremes. Ostrowsky’s recommendation of a minimum wma value of 3.0
provided consistent results for the unimodal samples. Note that the
initial starting diameter increased as the size of the particles in
the sample increased. For the bimodal samples, the chosen value of
Wmax 1s consistent with Ostrowsky’s recommendation that adjacent
maxima positions be approximately in the ratio exp(2W/wmax) 1in order
for resolution of the peaks to occur. While the peaks of the bimodal
samples were resolved, the re-constructed distribution itself was

poorly behaved as figure 5.16 demonstrates.
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As in section 5.3.2.1 , the %i's in table 5.13 were biased
towards over estimation. Therefore,'the parameters were re-—estimated
and the %;'s re-calculated with the data weighted according to
equation (5.12) with NEX1 = 2 and NEX2 = 1.1 as before. These results
are summarized in table 5.14. Figures 5.17 and 5.18 are stacked bar
graphs of the ﬁi residuals and the estimated distribution width for
the unweighted and weighted cases respectively. The residuals are the
estimated %i}s minus the known value. Looking at the residuals
portion of the graph, it is apparent that weighing the data has
yielded better overall results. The sum of squares of the residuals
was reduced to 8,930 from 36,500, and the residuals themselves were
not all positive. However, weighing the data had little effect on the

width of the estimated distribution.

With respect to the estimated intensity ratios, the weighted data
shifted the emphasis far too greatly on the data at low time lags.
This is shown in table 5.15 where the unweighted estimates of the
intensity ratios for samples B98,/D176-A and B98/D176-B are much closer
to the expected ratio of 9.17:1 than are the weighted estimates. This
was not entirely unexpected since, in the weighted case, we are now
placing more emphasis on an entire distribution of parameter estimates

as opposed to just one, as was the case in section 5.3.2.1.

Thus, as was the case with the NICOMP Model TC-200, there are
some trade-offs between obtaining good estimates of the particle sizes

and the modal ratio for bimodal samples.
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TABLE 5.13

Summary of Results Obtained from Ostrowsky's Method of Exponential Sampling
ITYPE = 3

Estimated Weight Average Particle Size and Range (nm)

Sample ID Wax Do (D—Al')1 Ranga1 ('I:;;i-)2 Ran992
M34 3.5 2.0 46.3 14 - 153 - -
M98 3.0 3.0 112.4 34 - 280 - -
M176 3.0 5.0 196.2 §7 - 467 - -
M220 3.0 10.0 287.8 81 - 600 - -
M275 3.0 10.0 355.3 115 - 785 - -
BSB/275 7.0 50.0 93.8 778 - 114 270.1 192 -~ 377
D176-A 3.0 10.0 294.1 81 - 600 - -
‘D176-8 3.0 i0.0 283.3 81 - 600 - -
B98/D176-A 7.0 50.0 101.5 78 - 122 . 251.9 132 - 377
898/D0176-~-8B 6.0 30.0 104.7 65 - 132 248.9 157 - 377

R2-20 3.0 40.0 1454.0 460 - 3140 - -
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TABLE 5.14

Summary of Aesults Obtained from Ostrowsky s Method of Exponential Sampling
with Weighting Applied, ITYPE = 3 (NEX4 = 2, NEX2 = 1.1)

Estimated Weight Average Particle Size and Range (nm)

Sample ID Wrax .Do (DL‘)1 Range, (f)’i_)2 Range,
M34 3.5 2.0 4.2 10 - 144 - -
M98 3.0 3.0 104.0 29 -~ 280 - -
M176 3.0 5.0 182.1 57 - 467 - -
M220 3.0 10.0 262.2 81 - 554 - -
M275 3.0 10.0 331.8 97 - 785 - -
B98/275 7.0 50.0 99.4 78 - 114 256.3 192 - 350
D176-A 3.0 10.0 264.3 84 - 554 - -
D176-8 3.0 10.0 260.4 B1 - 554 - -
B98/D176~-4A 7.0 50.0 84.7 60 - 105 211.0 110 - 352
B88/0176-8 6.0 30.0 80.0 58 - 102 217.8 111 - 377

R2-20 3.0 40.0 1348.3 387 - 3140 - -




Residual.”Range

Figure 5.17 — Residual/Range Bar Graph
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TABLE 5.15

Comparison of Calculated {Mie Theary) and Experimentally Datsrmined (DLS)
’ Bimodal Intensity Ratics, ITYPE=3

Intensity Ratlos
Sanple 10 Ratio Calculated Expsrimental Experimental
(unweighted) {weighted)

B98/275 2750 2.45 3.04 2.92

980 1 i i
BS3/D476-A 0i760 9.17 7.46 2.56

S80 4 b i
B98/D176~8 Di76¢0 9.47 6.97 2.12

980 1 i 1
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Morrison’s Method

In this section, results from Morrison’s method of exponential
sampling using non-negative linear least squares (NNLLS) will be
presented. For comparison purposes, 30 parameter estimates for all
the samples were obtained using the exact same wpe and D, values
given in table 5.13 (unweighted case). The results from these runs
were virtually identical to those given in table 5.13. Figqure 5.19
demonstrates how closely the re-constructed PSD’s matched for sample
M98. The major difference was that there were no negative estimates
obtained with the NNLLS. This comparison establishes the near

equivalency of the two methods for given values of wpax and Do.

As Morrison suggested, a sum of 20 exponentials per shift was
then fit to the data. Again, six shifts were used, thus a total of
120 estimates were obtained for distribution re-construction. Table
5.16 summarizes the results obtained. The value of wpa was no
longer constrained to being less than ten as it was in Ostrowsky'’s
method as none of the problems with large negative parameter estimates
and oscillatory behaviour were encountered. Thus, the resolution on
the 1logarithmic scale was greatly increased and superior PSD’s were
estimated as figure 5.20 and 5.21 demonstrate. The stacked bar graph
in figqure 5.22 is clearly an improvement from that in figure 5.18.
The width of the fitted distributions are much narrower than
previously giving a more accurate picture of the nature of the sample,

and overall, the residuals were smaller. The sum of squares of the
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TABLE 5.16

Summary of Results Obtained from Morrison's Methaod of Exponential Sampling
ITYPE = 1

Estimated Weight Average Particle Size and Range {(nm)

Sample ID Winay b, (-6\7)1 Rangey (6\_,)2 Range,
M34 10.0 2.0 37.2 27 - 49 - -
M98 10.0 4.0 95.4 71 - 127 - -
M176 . 10.0 20.0 171.2 125 - 222 - -
Ma220 30.0 120.0 219.9 198 - 240 - -
M275 50.0 150.0 291.0 275 ~ 308 - -
898/275 30.0 50.0 105.5 95 -"115 315.7 286 - 347
D176-A 15.0 50.0 230.0 - 188 - 277 - -
D176-8 15.0 50.0 226.3 182 - 267 - -
B98/0176-4A 25.0 50.0 120.0 106 - 134 259.1 234 - 290
B38/0176-8 20.0 50.0 88.8 76 - 101 223.2 135 - 260

R2-20 20.0 200.0 1188.0 1014 - 1352 - -




’

Parameter

’

Estimates

+

0.6

0.5

0.4

0.3

0.2

0.1

Ostrowsky's Results

Figure 5.19 — Reconstructed PSD’s

Sample M98 — Ost. and Morr.

Methods

]

!

In(particle diameter)
A

Morrison's Results

09T




Param'eter Estimates

Figure 5.20 — Reconstructed PSD
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residuals was 3,700; an improvement from 8,930 for the weighted

Ostrowsky results.

Morrison’s method was also used to fit distributions to weighted
data (NEX1 = 2 and NEX2 = 1.1). Since the results from the raw,
unweighted data were already quite good, a similar improvement in the
results that was obtained with Ostrowsky’s method was not expected
here. Indeed, the results were very similar, the sum of squares of
the residuals being 3,3;0, compared with 3,670. It may be argued that
with the increased resolution available through Morrison’s method,
weighing the data should be unneccesary. The re-constructed
distribution are almost symmetrical about the peak with respect to the
absolute diameter (not the logarithmic. diameter), and non-zero
estimates are not obtained at the higher wvalues on the logarithmic
scale. When the resolution is poor, it is these estimates far from
the peak on the logarithmic scale that lead to the over-estimation of
the average particle sizes observed in Ostrowsky’s method. Thus,
weighing the data to counteract the emphasis of higher particle sizes

was not required.

The estimated intensity ratios for the bimodal sample B98/275,
B98,/D1l76-A and B98/D1l76-B were 5.08:1, 4.18:1 and 14.51:1
respectively. These do not compare very well with 2.45:1 (B98/275)
and 9.17:1 (B98/D176-A and B), nor are they as good as the estimates
obtained with Ostrowsky’s method; refer to table 5.15, unweighted

case. Thus, although bimodal peak resolution and position had
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improved over Ostrowsky’s method, this method does not appear to be as
sensitive to relative proportions. Constraining the estimates to be
non-zero may also be forcing a mal-distribution of the relative
parameter magnitudes in each mode, thus yielding an erroneous

intensity ratio estimate.

5.3.2.4 Residuals

The residuals from fitting the autocorrelation function to the
sums of exponentials were calculated for each shift. Thus, six sets
of residuals were obtained for a total of either 30 or 120 residuals
for Ostrowsky’s and Morrison’s methods respectively. Residual plots
for each set of estimated parameters proved to be nearly identical,
thus an average of the six residuals was taken as representative.
Figures 5.23 and 5.24 are the residual plots from Ostorwsky’s and
Morrison’s methods for sample M98. It is apparent from these figures
that the residuals are correlated. This is not too surprising given
the nature of the models used to fit the raw data. In the simpler
cases of fitting one or two exponential functions to data of
exponential form, the residuals from the fit will certainly be

correlated as figures 5.13 and 5.14 showed.

For residuals whose behaviour is that of a first-order
autocorrelation function, AR(1l), a transformation of the data may be
applied that will remove this correlation, refer to Kadiyala (1968)
and Riddell (1977). 1Instead of estimating the parameters g in the

model
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Figure 5.24 — DLS Residuals
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¥=

[

B+ e (5.13)
where the residuals, e, follow an AR(l) behaviour, estimate the

parameters @' in the transformed model

W=28+u ‘ (5.14)
where
W=CY (5.15)
2= (5.16)
u=Ce (5.17)
The transformation matrix C is
c=[(1-¢ o 0 0 0 (5.18)
-¢ 1 0 0 0 0
0 00 ...-01 0
|0 0 0 ... 0-¢ 1]

where () is the autocorrelation coefficient in the first-order
autocorrelation function
et = ¢et_1 + at (5.19)

and a; is random noise.

This type of transformation lends itself very well to the
non-negative linear least squares algorithm. Applying the
transformation to equation (4.15), we now solve the transformed set of
linear equations for X

(CAhxpXox1 = (CBlax subject to X'30 (5.20)
This type of analysis was built into the estimation routine DLSPLOT
and was chosen by selecting ITYPE = 2. However, an estimate of ¢
must be provided to the routine. This may be obtained from a time

series analysis of the residuals by fitting them to an AR(1l) model.
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Using the time series package INTER84 available on the Chemical
Engineering Department’s VAX mini-computer at McMaster University, @
was estimated to be 0.844 for the data given in figqure 5.24. It
should be stated that an AR(1l) model was found to be adequate for this
data and no higher order terms were significant. The parameters in
the transformed model were then re-estimated choosing ITYPE = 2.
Figure 5.25 was the resulting reconstructed PSD for sample M98. While
the shape of the distribution and the estimated intensity weighted
particle size diameter did not change greatly (%I = 95.3 as opposed
to 95.4 from table 5.16), the residuals were much better behaved, see
figure 5.26. This procedure was repeatéd for the other samples

studied with similar results.

5.3.2.5 Summary

In the general case where no prior information regarding the
sample is available, exponential sampling using non-negative linear
least squares (Morrison’s method) is recommended. Good estimates of
the intensity weighted particle size diameters were obtained. The
distribution of particles sizes fit were narrow for the monodisperse
samples and close to the expected distribution for the polydisperse
samples. The peaks of the bimodal were samples were also clearly

resolved. Finally, the data need not be weighted for this method of

analysis.
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Figure 5.26 — Transformed DLS Resuiuals
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In addition, the transformation matrix in equation (5.18) was
easily applied to this method. Although no significant change in the
final results was observed, it it still desireable to uncorrelate the
residuals to ensure they are not adversely affecting the results.
This method does not however, appear to have the freedom that
Ostrowsky’s method does in providing good intensity ratio estimates
for bimodal samples. If this information is important, the user may
want to run both methods of analysis and cross-check the intensity
ratio results and use those that are deemed the most appropriate,

should they differ significantly.

If the experimenter knows his sample to be monodisperse (in one
or more modes), or if just an estimate of the average particle size is
required, he may use the simpler weighted non-linear least squares
approach. However, the user must be wary that the weights used were
empirical in nature. Non-negative least squares would still be

preferred.
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APPENDIX 1

Proof of Equivalent Scattering Geometries

Prove that sin?¢; + sin?6,= 1 + cos?6 ; refer to figure 2.2.

Let: X=1r cos@
Y = r cos &,
2 =10 00892
Then sinag=2A - sin?e = A2
r 2

By the Pythagorean Theorem,

r2 - Y2
r2 - r2cos?e,
r2(1 - cos2¢,)

A2

. 5in20y = 1 - cos26,

Now, sin ©,= B . sin26, = B2
r r
Similarly,
B2 = r2 - 72

r2 - r2cos?,
r2(1 - cos2@,)

s.sin 6, = 1 - cos?g,

Then, .
sin20 + sin29, = 2 - cos2@; - cos26,
= 2 + cos?9 - cos20 - cos20; - cos?6;
=2+ cos2g - x2 -Yy2 - 22
2 2 2
=2 + cos20® —(X2 + ¥? + 72)
2
But,
X2 + v2 4+ 22 = ¢2
sin26, + sin2@, = 2 + cos?@ - ;;_
r
=2 + cos26 -1
= 1 + cos?p

Q.E.D
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SUBROUTINE UWHAUS (NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS,
1 EPS1,EPS2,MIT,FLAM,FNU,SCRAT)

IMPLICIT REAL*8(A-~H,0-Z)

DIMENSION SCRAT(1)

OPEN (UNIT=30,FILE=’'SUMPROP.DAT’,STATUS='UNKNOWN')

this program is compatible with double precision programs
and not with single precision programs

IA=1
IB=IA+NP
IC=IB+NP
ID=IC+NP
IE=ID+NP
IF=IE+NP
IG=IF+NOB
IR=IG+NOB
II=IH+NP*NOB
IJ=IH
CALL HAUSS9(NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS,EPS1,
1 EPS2,MIT,FLAM,FNU,SCRAT(IA),SCRAT(IB),SCRAT(IC),
2 SCRAT(ID),SCRAT(IE),SCRAT(IF),SCRAT(IG),SCRAT(IH),
3 SCRAT(II),SCRAT(IJ) )
RETURN
END
SUBROUTINE HAUSS9 (NPRBO,MODEL,NBO,Y,NQ,TH,DIFZ,SIGNS,
1l EP1S,EP2S,MIT,FLAM,FNU, Q,P,E,PHI,TB,F,R,A,D,DELZ)
IMPLICIT REAL*8(A-H,0-2) )
DIMENSION TH(1l),DIFZ(1),SIGNS(1),¥(1),Q(1),P(1},E(1),
1 PHI(1),TB(1),F(1),R(1),A(1),D(1),DELZ(1)
DACOS (X )=DATAN(DSQRT(1.0D0/X**2-1.0D0)})
NP=NQ
NPROB=NPRBO
NOB=NBO
EPS1=EP1lS
EPS2=EP2S
NPSQ=NP*NP
NSCRAC=5*NP+NPSQ+2*NOB+NP *NOB
WRITE(06,1000) NPROB,NOB,NP,NSCRAC
WRITE(06,1001)
WRITE (30,1001)
CALL GASS60(1,NP,TH,TEMP,TMEP)
WRITE(06,1002)
WRITE (30,1002)
CALL GASS60(1,NP,DIFZ,TEMP,TEMP)
IF(MINO(NP-1,50-NP,NOB-NP, MIT~1,999-M1IT)}99,15,15
IF(FNU-1.0)99,99,16
CONTINUE
DO 19 I=1,NP
TEMP=DABS (DIFZ(I))
IF(DMIN1(1.0D0O~-TEMP,DABS(TH(I))))99,99,19
CONTINUE
GA=FLAM
NIT=1
LAOS=0
IF(EPS1) 5,70,70
EPS1=0
$5Q=0
CALL MODEL(NPROB,TH,F,NOB,NP)
DO 90 I=1,NOB
R(I)=Y(I)-F(I)
SSQ=SSQ+R(I)*R(I)



9011 FORMAT(’

9012 FORMAT(////'

100

101

120
130

131

i60

151

666

155

178

WRITE(06,9011)

INITIAL FUNCTION VALUES’)
WRITE(06,2001) (F(I),I=1,NOB)
WRITE(06,9012)

INITIAL RESIDUALS’)
WRITE(06,2001) (R(I),I=1,NOB)

WRITE(06,1003) SSQ
GA=GA/FNU

INTCNT=0
WRITE(06,1004) NIT
JS=1-NOB

DO 130 J=1,NP
TEMP=TH(J)
P(3)=DIFZ(J)*TH(J)
TH(J)=TH(J)+P(J)
Q(J3)=0

IS=JS+NOB

CALL MODEL(NPROB,TH,DELZ(JS),NOB,NP)
IJ=3S-1

DO 120 I=1,NOB

IJ=IJ+1
DELZ(1J)=DELZ(IJ)-F(I)
Q{J)=Q(J)+DELZ(IJ} *R(I)
Q(JI)=Q(J)/P(J)
TH(J)=TEMP

IF(LAOS) 131,131,414
DO 150 I=1,NP

po 151 J=1,I

SUM=0

KI=NOB*(J-1)
KI=NOB*{(I-1)

DO 160 K = 1, NOB
KI = KI + 1
KI = KJ + 1

SUM = SUM + DELZ(KI) * DELZ(KJ)
TEMP= SUM/(P(I)*P(J))
JI = J + NP*(I-1)
D(JI) = TEMP
I3 = I + NP*(J-1)

D(IJ) = TEMP
E(I) = DSQRT(D(JI))
CONTINUE
DO 153 1 =1,
I3 = I-NP
DO 153 J=1,1
IJ = IJ + NP
A(IJ) = D(IJ) / (E{I)*E(J))
JI = J + NP*(I-1)
A(JI) = A(1J)

NP

A= SCALED MOMENT MATRIX

IT = - NP

DO 155 I=1,NP
P(I)=Q(I)/E(I)
PHI(I)=P(I)

II = NP + 1 + II
A(II) = A(IXI) + GA

I=1

CALL MATIN(A, NP, P, I, DET)
P/E =
STEP=1.0
SUM1=0.
SUM2=0.

SUM3=0.

CORRECTION VECTOR
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DO 231 I=1,NP
SUM1=P(I)*PHI(I)+SUML
SUM2=P(I)*P(I)+SUM2
SUM3= PHI(I) * PHI(I) + SuM3
231 PHI(I) = P(I)
TEMP = SUM1l/(DSQRT(SUM2)*DSQRT(SUM3))
TEMP = DMIN1(TEMP, 1.0D0)
TEMP = 57.295*DACOS{TEMP)
WRITE(06,1041) DET,TEMP
170 Do 220 I = 1, NP
P{(I) = PHI(I) *STEP / E(I)
TB(I) = TH(I) + P(I)
220 CONTINUE
WRITE(06,7000)
7000 FORMAT(30HOTEST POINT PARAMETER VALUES )
WRITE(06,2006) (TB(I),I=1,NP)
DO 221 I =1, NP
IF(SIGNS(I)) 221, 221, 222
222 IF(DSIGN(1.0DO,TH(I))*DSIGN(1.0DO,TB(I))) 663, 221, 221
221 CONTINUE
SUMB=0
CALL MODEL(NPROB, TB, F, NOB, NP)
DO 230 I=1,NOB
R(I)=¥Y(I)-F(I)
230 SUMB=SUMB+R(I)*R(I)
WRITE(06,1043) SUMB
IF(SUMB - (1.0+EPS1)*SsSQ) 662, 662, 663
663 IF( DMIN1(TEMP-30.0D0O, GA)) 665, 665, 664
665 STEP=STEP/2.0
INTCNT = INTCNT + 1
IF(INTCNT - 36) 170, 2700, 2700
664 GA=GA*FNU
INTCNT = INTCNT + 1
IF(INTCNT - 36) 666, 2700, 2700
662 WRITE(06,1007)
DO 669 I=1,NP
669 TH(I)=TB(I)
CALL GASS60(1, NP, TH, TEMP, TEMP)
WRITE(06,1040) GA,SUMB
IF(EPS2) 229,229,225
229 IF(EPS1) 270,270,265
225 DO 240 I =1, NP
IF(DABS(P(I))/(1.E-20+DABS(TH(I)))~EPS2) 240, 240, 241
241 IF(EPS1l) 270,270,265
240 CONTINUE
WRITE(06,1009) EPS2
GO TO 280
265 IF(DABS(SUMB -~ SsSQ) - EPS1*SSQ) 266, 266, 270
266 WRITE(06,1010) EPS1
GO TO 280
270 SSQ=SUMB
NIT=NIT+1
IF(NIT — MIT) 100, 100, 280
2700 WRITE(06,2710)
2710 FORMAT(//115H0**** THE SUM OF SQUARES CANNOT BE REDUCED TO THE SUM
10F SQUARES AT THE END OF THE LAST ITERATION - ITERATING STOPS /)

END ITERATION

NNN D

80 WRITE (30,1007)

CALL GASS60(1,NP,TH,TEMP,TEMP)

WRITE (30,1040) GA,SUMB

WRITE (30,1045) NIT
1045 FORMAT(//1X,’ NUMBER OF ITERATIONS = ’,I3,//)
WRITE(06,1011)
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7692

340

341

391

1050

392

414

415

180

WRITE(06,2001) (F(I),I=1,NOB)
WRITE(06,1012)

WRITE(06,2001) (R(I),I=1,NOB)
WRITE(06,1017)

WRITE (30,1017)
FORMAT(////16H XPRIME-X MATRIX)
CALL GASS60(4,NP,TEMP,TEMP,D)
S$SQ=SUMB

IDF=NOB-NP

WRITE(06,1016)

WRITE (30,1016)

I=0

CALL MATIN(D, NP, P, I, DET)

CALL GASS60(4,NP,TEMP,TEMP,D)
DO 7692 I=1,NP
II = I + NP*(I-1)
E(I) = DSQRT(D(II})
DO 340 I1=1,NP
JI = I + NP*(I-1l) -1
IJ = I + NP*(I-2)
DO 340 J = I, NP
JI = JI + 1
A(JI) = D(JT) / (E(I)*E(J))
IJ = IJ + KP

A(IJ) = A(J31)

WRITE (06,1015)

WRITE (30,1015)

CALL GASS60(3, NP, TEMP, TEMP, A)

IF(IDF) 341, 410, 341
SDEV = SSQ/FLOAT{IDF)
WRITE(06,1014) SDEV,IDF
WRITE (30,1014) SDEV,IDF

SDEV = DSQRT(SDEV)

DO 391 I=1,NP
P(I)=TH(I)+2.0*E(I)*SDEV
TB(I)=TH{(I)-2.0*E(I)*SDEV
WRITE(06,1039)

WRITE (30,1039)

CALL GASS60(2, NP, TB, P, TEMP)
WRITE (06,1050)
FORMAT ( /19HOCONFIDENCE FIGURES )
DO 392 I=1,NP

TB(I)=2*E(I) *SDEV
CALL GASS60(l1, NP, TB, TEMP, TEMP)
LA0S = 1

GO To 101
DO 415 K = 1, NOB
TEMP = 0

DO 420 I=1,NP

DO 420 J=1,NP

ISUB = K+NOB*(I-1)

DEBUGl = DELZ(ISUB)

DEBUGL = DELZ{(K + NOB*(I-1))
ISUB = K+NOB*(J-1)

DEBUG2 = DELZ(ISUB)

DEBUG2 = DELZ(K + NOB*(J-1))

I3 = I + NP*(J-1)

DEBUG3 = D(IJ)/{(DIFZ(XI)*TH(I)*DIFZ(J)*TH(J))

TEMP = TEMP + DEBUGl * DEBUG2 * DEBUG3
TEMP = 2.0*DSQRT(DABS(TEMP))*SDEV
R(K)=F (K)+TEMP
F(K)=F(K)-TEMP
WRITE(06,1008)
IE=0
DO 425 1I=1,N0B,10
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IE=IE+10
IF(NOB~IE) 430,435,435
430 IE=NOB
435 WRITE(06,2001) (R(J),J=1,IE)
425 WRITE(06,2006) (F(J),J=I,I1E)
410 WRITE(06,1033) NPROB
RETURN
99 WRITE(06,1034)
GO TO 410
1000 FORMAT(38HINON-LINEAR ESTIMATION, PROBLEM NUMBER 13,// 15,

1 14H OBSERVATIONS, IS5, 11H PARAMETERS I14, 17H SCRATCH REQUIRED)

1001 FORMAT(/25HOINITIAL PARAMETER VALUES )

1002 FORMAT(/54HOPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS )

1003 FORMAT(/25KOINITIAL SUM OF SQUARES = El2.4)
1004 FORMAT(/////45X,13HITERATION NO. 1I4)
1007 FORMAT(/32HOPARAMETER VALUES VIA REGRESSION )

1008 FORMAT(////S4HOAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VAL

1UE )

1009 FORMAT(/62HOITERATION STOPS — RELATIVE CHANGE IN EACH PARAMETER
155 THAN E12.4)

1010 FORMAT(/62HOITERATION STOPS ~ RELATIVE CHANGE IN SUM OF SQUARES
1SS THAN E12.4)

1011 FORMAT{22H1FINAL FUNCTION VALUES )

1012 FORMAT(////10HORESIDUALS )

1014 FORMAT(//24HOVARIANCE OF RESIDUALS = ,E12.4,1H,14,
120 DEGREES OF FREEDOM )

1015 FORMAT(////19HOCORRELATION MATRIX )

1016 FORMAT(////17HOXPRIME-X INVERSE)

1033 FORMAT(//19HOEND OF PROBLEM NO. 1I3)

1034 FORMAT(/16HOPARAMETER ERROR )

1039 FORMAT(/71HOINDIVIDUAL CONFIDENCE LIMITS FOR EACH PARAMETER (ON
1NEAR HYPOTHESIS) ) : -

1040 FORMAT(/9HOLAMBDA =E10.3,40X,33HSUM OF SQUARES AFTER REGRESSION

1E15.7)

1041 FORMAT(14H DETERMINANT = EL2.4, 6X, 25H ANGLE IN SCALED COORD.
1 FS5.2, 8HDEGREES )

1043 FORMAT(28HOTEST POINT SUM OF SQUARES = E12.4)

2001 FORMAT(/10E12.4)
2006 FORMAT(10El12.4)
END
SUBROUTINE MATIN(A, NVAR, B, NB, DET)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NVAR, 1), B(NVAR, 1)
PIVOTM = A(l1l,1)
DET = 1.0
DO 550 ICOL = 1, NVAR
PIVOT = A(ICOL, ICOL)
PIVOTM = DMIN1(PIVOT, PIVOTM)
DET = PIVOT * DET

DIVIDE PIVOT ROW BY PIVOT ELEMENT

A(ICOL, ICOL) = 1.0
PIVOT = DMAX1(PIVOT, 1.0D-30)
PIVOT = A(ICOL, ICOL)/PIVOT
DO 350 L=1,NVAR

350 A(ICOL, L) = A(ICOL, L)*PIVOT
IF (NB) 371,371,372

372 po 370 L=1,NB

370 B(ICOL, L) = B(ICOL, L)*PIVOT

REDUCE NON-PIVOT ROWS

371 DO 550 Ll=1,NVAR
IF (Ll1-ICOL) 551,550,551

LE

LE

LI
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551 T = A(Ll, ICOL)
A(Ll, ICOL) = 0.
DO 450 L=1,NVAR
450 A(Ll, L) = A(Ll, L) - A(ICOL, L}*T
IF (NB) 552,550,552
552 po 500 L=1,NB
500 B(L1, L) = B(Ll, L)-B(ICOL,L)*T
550 CONTINUE
RETURN
END
SUBROUTINE GASS60(ITYPE, NQ, A, B, C)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NQ),B(NQ),C(NQ,NQ)
NP = NQ
NR = NP/10
Low = 1
LUP = 10
10 IF( NR )15,20,30

20  LUP=NP
IF (LOW-LUP) 30,30,15
30 WRITE(06,500) (J,J=LOW,LUP)
WRITE (30,500) (J,J=LOW,LUP)
GO TO (40,60,80,80), ITYPE
40 WRITE(06,600) (A(J),J=LOW,LUP)
WRITE (30,600) (A(J),J=LOW,LUP)
GO TO 100
60 WRITE(06,600) (B(J),J=LOW,LUP)
WRITE (30,600) (B{(J),J=LOW,LUP)
GO TO 40
80 IF(ITYPE.EQ.4) GO To 70
DO 90 I=LOW,LUP
WRITE(06,720) I,{(C(J,I),J=LOW,I)
90 WRITE (30,720) I,(C(J,I}),J=LOW,I)
Go TO 71
70 DO 72 I=LOW,LUP
WRITE(06,721) I,(C{I,J),I=LOW,I)
72 WRITE (30,721) I,(C(I,J),J=LOW,I)
71 CONTINUE
LOW2=LUP+1
IF (LOW2-NP) 96,96,100
96 IF (ITYPE.EQ.4) GO TO 97
DO 95 I=LOW2,NP
WRITE(06,720) I,(c(J3,I),J=LOW,LUP)
95 WRITE (30,720) I,(C(J,I),J=LOW,LUP)
GO TO 100
97 DO 98 I=LOW2,NP
WRITE(06,721) I,(C(Z,J),J=LOW,LUP)
98 WRITE (30,721) I,(C(I,J),J=LOW,LUP)
100 LOW = LOW + 10
LUP = LUP + 10
NR = NR - 1
GO TO 10
500 FORMAT(/I8,9I12)
600 FORMAT(10E12.4)
720 FORMAT(1HO,I3,1X,F7.4,9F12.4)
721 FORMAT(1HO,I3,1X,E10.4,9E12.4)
1  CONTINUE
RETURN
END
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This program performs a data analysis on user supplied Wide Angle
Light Scattering data. It is currently dimensioned to handle a
problem where galvanometer measurements have been taken over a grid
of five polymer concentrations and 12 scattering angles.

All variables are double precision

IMPLICIT REAL*8(A-H,0-%)
DIMENSION BETA(4),DIFF(4),SIGNS(4),SCRAT(500),%(60),2(60),0BJEC(60),

# DTHETA(60) ,GSOLN(60) ,GSOLV(60)

COMMON/PH/C(60) ,THETA(60) ,KCROBS(60) ,W(60) ,HTHETA(60) ,RTHETA(60),
# VARH(60) ,VARC(60),VART(60) ,VARE(60),GBAR(60),
# KSTAR,RB,GB,CVAR,TVAR, ITYPE

The user must define an external MODEL subroutine for the estimation
program UWHAUSDD.

EXTERNAL MODEL
REAL*8 KCROBS,KCRCAL, KSTAR

only one input data file, WALSPROP.DAT is required by the program. Inputs

are described below.
OPEN{UNIT=1,FILE='WALSPROP.DAT’,STATUS='OLD’")

The following output data files are created bv the program:

ZIMMPROP.DAT -~ stores the absissa and ordinate data required to
‘ construct a Zimm plot
VARPROP.DAT - contains the relative contributions of each error

variance term accounted for in the error
propogation model to the total error variaace

STATPROP.DAT . - store the complete UWHAUSDD results for later
viewing if desired
SUMPROP.DAT - contains a summary of UWHAUSDD results such as

parameter estimates, confidence intervals and
correlation matrix
RESIDS.DAT -~ contains the residuals from the fit

OPEN(UNIT=10,FILE=’'ZIMMPROP.DAT’ ,STATUS='UNKNOWN’)
OPEN{UNIT=11,FILE='VARPROP.DAT’ ,STATUS=’UNKNOWN" )
OPEN(UNIT=20,FILE='STATPROP.DAT’,STATUS='UNKNOWN"’)
OPEN(UNIT=40,FILE='RESIDS.DAT’,STATUS='UNKNOWN')
IZERO=0

Choose a parameter estimation routine

PRINT *, 'ENTER ITYPE - 1,2,3,4:'

PRINT *, ' 1. Error propogation on Kc/R’

PRINT *, ' 2. Error propogation on R’

PRINT *, ' 3. Non-linear least squares on Kc/R’
PRINT *, 4. Non-~linear least squares on R’

READ *, ITYPE

Input data file WALSPROP.DAT, must contain:

KPRIME ~ an arbitrary constant used in the absissa to
construct a Zimm plot
CVAR, DTVAR -~ estimates of the standard deviations in measuring

the polymer concentration (in percent of the
concentration) and scattering angle (in degrees)
UWHAUSDD parameters NOB, NP, ESPl, EPS2, MIT, FLAM, FNU
BETA — Initial guesses of model parameters
C, DTHETA - polymer concetrations and scattering angles at
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which measurements were recorded

GSOLV - measured galvanometer readings for the solvent at
angle of measurement

GSOLN - measured galvanometer readings for the polymer
solutions

READ (1,*) KPRIME

READ (1,*) CVAR,DTVAR

READ (1,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
WRITE (6,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
WRITE (6,*) CVAR,DTVAR

WRITE (20,*) KPRIME,CVAR,DTVAR

WRITE (20,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
READ (1,*) (BETA(I),I=1,NP)

WRITE (6,*) (BETA(I),I=1,NP)

READ (1,*) (C(I),I=1,5)

READ (1,*) (DTHETA(I),I=1,56,5)

READ (1,*) (GSOLV(I),I=1,56,5)

READ (1,*) (GSOLN(I),I=1,NOB)

READ (1,*) KSTAR,RB,GB

Fill the concentration vector (C) with the appropriate values

Do J=1,5
DO K=1,11
C(I+5*K)=C(J)
END DO
END DO

Convert DTVAR from deqrees to radians and CVAR from a percentage

PI=4.0*DATAN(1.D0)
TVAR=DTVAR*PI/180.0
CYAR=CVAR/100

Calculate GBAR, the average galvanometer reading at each angle, and fill
GBAR, GSOLV, DTHETA, THETA vectors with the appropriate values

DO J=1,56,5

GBAR(J)=GSOLN(J)

THETA(J)=DTHETA(J)*PI/180.0

DO K=1,4
GBAR(J)=GBAR(J)+GSOLN{J+K)
GSOLV(J+K)=GSOLV(J)
DTHETA(J+K)=DTHETA(J)
THETA(J+K)=THETA(J)

END DO
GBAR(J)=GBAR(J) /5
DO K=1,4

GBAR(J+K)=GBAR(J)
END DO
END DO

WRITE (6,*) GBAR

Calculate HTHETA, the difference between the galvanometer readings of
the solution and the solvent; RTHETA, the polymer Rayleigh ratio;
KCROBS, the observed value of Kc/R; and X, the values of the absissa
for the Zimm plot

DO J=1,60
HTHETA(J)=GSOLN(J)-GSOLV(J)
RTHETA(J)=RB/GB*DSIN(THETA(J) ) *HTHETA(J)
KCROBS (J)=KSTAR*C(J)/RTHETA(J)
X(J)=DSIN(THETA(J)/2.0) **2+KPRIME*C(J)
END DO
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PRINT 49
PRINT 50, (C(I),KCROBS(I),DTHETA(I},I=1,NOB)

Arbitrarily set the objective vector (used by UWHAUSDD) to zero, which
is appropriate for the error propogation applications

nnonon

Do I=1,NOB
OBJEC(I)=0.0
END DO

Set the step differential used by UWHAUSDD to evaluate the objective
function and set SIGNS equal to 1, thus not allowing negative parameter
estimates

annnNnnon

DO I=1,NP
DIFF(I)=0.6001
SIGNS(I)=1

END DO

If either of the non-linear least squares applications has been chosen,
set the objective vector to the appropriate function values

nnnn

IF (ITYPE.EQ.3) THEN
Do I=1,NOB
OBJEC(I)=KCROBS(I)
END DO
ELSE IF (ITYPE.EQ.4) THEN
DO I=1,NOB .
OBJEC(I)=RTHETA(I)
END DO
END IF

Call the estimation subroutine UWHAUS

nnn

CALL UWHAUS (NPROB,MODEL,NOB,0BJEC,NP,BETA,DIFF,SIGNS,EPS1,EPS2,MIT,
# FLAM, FNU, SCRAT)

Calculate the predicted values of Kc/R using the final parameter estiamtes
and the residuals

nnooan

DO I=1,NOB
KCRCAL=1.0/BETA(1)*(1.0+BETA(2) *DSIN(THETA(I)/2.0)**2)
# +2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2
RES=KCROBS (I )~KCRCAL
WRITE (10,300) X(I),IZERO,KCROBS(I),KCRCAL
300 FORMAT(’ ’,F9.7,5%X,12,5%X,E11.5,5%,E11.5)
WRITE (40,310) I,RES
310 FORMAT(’ *,13,5X,E11.5)
END DO
CVAR=CVAR*100
WRITE (30,120) ITYPE
WRITE (30,500) CVAR
WRITE (30,505) DTVAR
500 FORMAT(///,' ',’CONC ST. DEV.= ’,F6.4,’ % OF CONC’)
505 FORMAT(’ ’,’ANGLE ST. DEV.= ’,F6.4,' DEGREES’)

If the method of error propgation was emploved, calculate the relative
contribution made by each term in the error propogation formula to the
total error variance

aOnNnnon

IF (ITYPE.LE.2) THEN
DO I=1,NOB
VARH(I)=VARH(X)/VARE(I)
VARC{I)=VARC(I)/VARE(I)
VART(I)=VART(I)/VARE(I)
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VARE(I)=VARE(I)/VARE(I)
WRITE (11,400) VARH(I),VARC(I),VART(I),VARE(I)
END DO
END IF
400 FORMAT(’ *,4(E11.5,3X))
PRINT 100
PRINT 110,(C(I),DTHETA(I),W(I),I=1,NOB)
WRITE (20,999) (W(I}),I=1,NOB)
WRITE (30,999) (W(I),I=1,NOB)

999 FORMAT (’ ’,5X,D24.16)
49 FORMAT (’1’,8X,’'C’,11X,’KCROBS’,11X, THETA’//)
50 FORMAT (5X,F7.5,5X,E11.5,5X,F6.2)
100 FORMAT (’1’,5X,’C’,7X, 'THETA’,5X,’'W'//)
110 FORMAT (3X,F7.5,3X,F6.2,3X,E11.5)
120 FORMAT (///,' *,'ITYPE = ',12//)
STOP
END
c
c
c

SUBROUTINE MODEL({NPROB,BETA,F,NOB,NP)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION BETA(NP),F(NOB)

COMMON/PH/C(60) ,THETA(60) ,KCROBS(60) ,W(60) ,HTHETA(60),RTHETA(60),

& VARH(60),VARC(60),VART(60) ,VARE{60) ,GBAR(60),
# KSTAR,RB,GB,CVAR,TVAR, ITYPE
REAL*8 KSTAR,KCROBS
C
(o4 Dafine the functional subfunctions HVAR and CVARR to calculate the
[« appropriate error variance for HTHETA and C (concentration)
¢
HVAR(XX)=0.0005*XX**2
CVARR(XXX)=(CVAR*XXX)**2
C
c If one of the error propogation applications was chosen, then calculate
c for each data point:
c — the values of the differential equations
c - the value of e
[of ~ the individual error variance contributions
c ~ the total error variance
[ - the weighting and the objective function value
C

IF (ITYPE.EQ.1) THEN
PO I=1,NOB
DEDH=-KSTAR*C(I)/(RB/GB*DSIN(THETA(I))*HTHETA(I)**2)
DEDC=KSTAR/(RB/GB*DSIN{THETA(I))*HTHETA(I))

# -2.0*BETA(3)=-6.0*BETA(4)*C(I)
DEDT=-KSTAR*C{X)*DCOS({THETA(Il))/(RB/GB*DSIN(THETA(I))**2

# *HTHETA(I))-BETA(2)/BETA(l)*DSIN(THETA(I)/2.0D0)

# *DCOS(THETA(I)/2.0D0)

E=KSTAR*C(I)/(RB/GB*DSIN(THETA(I))*HTHETA(I))-
1.0/BETA(1)*{(1.0+BETA(2)*DSIN(THETA(I)/2.0)**2)~
2.0*BETA(3)*C{I)-3.0*BETA(4)*C(I)**2

VARH(I)=DEDH**2*HVAR(GBAR(I))

VARC(I)=DEDC**2*CVARR(C(I))

VART(I)=DEDT**2*TVAR**2

VARE (I)=VARH(I)+VARC(I)+VART(I)

W(I)=1.0/VARE(I)

F(I)=E*DSQRT(W(I))

END DO
ELSE IF (ITYPE.EQ.2) THEN
Do I=1,NOB
DEDH=RB/GB*DSIN(THETA(I))
DENOM=(1.0+BETA(2)*DSIN(THETA{L)/2.0)**2+
# 2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2)**2

¥* Ak
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DEDC=KSTAR*BETA(1l)*(3.0*BETA(4)*C(I)**2-1.0~

# BETA(2) *DSIN(THETA(L)/2.0)**2)/DENOM
DEDT=RB/GB*DCOS (THETA(I) ) *HTHETA(I)+

4 KSTAR*C(I)*BETA(1)*BETA(2)*

# (DSIN(THETA(I)/2.0)*DCOS(THETA(I)/2.0))/DENOM
E=RTHETA(I)-KSTAR*C(I)/{1.0/BETA(1)*(1.0+BETA(2)*DSIN

4 (THETA(I)/2.0)**2)+2.0*BETA(3)*C(I)

# +3.0*BETA(4)*C(I)**2)

VARH(I)=DEDH**2*HVAR(GBAR(I))
VARC(I)=DEDC**2*CVARR(C(I))
VART (X )=DEDT**2*TVAR**2
VARE(I)=VARH(I)+VARC{I)+VART(1)
W(I}=1.0/VARE(I)
F(I)=E*DSQRT(W(I))

END DO

If one of the non-linear least squares applications was chosen, then
for each data point, calculate the value of the appropriate objective
function

ELSE IF (ITYPE.EQ.3) THEN
DO I=1,NOB
F(I)=1.0/BETA(1)*(1.0+BETA(2)*DSIN(THETA(I)/2.0)**2)+
& 2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2
END DO
ELSE IF (ITYPE.EQ.4) THEN
DO I=1,NOB
F{I)=KSTAR*C(I)/(1.0/BETA(1)*(1.0+BETA(2)*DSIN(THETA(I)
# /2.0)**2)+2 . 0*BETA(3)*C(I)}+3.0*BETA(4)*C(I)**2)
END DO
END IF
RETURN
END
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This program performs a data analysis on user supplied Low Angle Laser
Light Scattering data. It is currently dimensioned to handle no more
than five data points.

All variables are double precision.

IMPLICIT REAL*8(A-H,0-2)
DIMENSION BETA(2),DIFF(2),SIGNS(2),SCRAT(500),Z(5),0BJEC(S),

# D(5),DVALUE(S),DCODE(5)

COMMON/PH/C{5) ,KCROBS(5) ,W(5),RSOLN(5) ,RTHETA(S), .
# VARG(5),VARGO(5) ,VARC(5) ,VARE(60),GSOLN(5),
# KSTAR,GVAR,CVAR(5) ,GOVAR,GSOLNO(5),ITYPE

The user must define an external MODEL subroutine for the estimation
program UWHAUSDD.

EXTERNAL MODEL
REAL*8 KCROBS,KCRCAL,KSTAR
INTEGER DCODE

Only one input data file, LALLSPROP.DAT is required by the program. Inputs
are described below.

OPEN(UNIT=1,FILE=’LALLSPROP.DAT’,STATUS='0OLD’)

The following output data files are created by the program:

KCRVSC.DAT - stores the absissa and ordinate data required to
construct a Kc/R vs ¢ plot
VARPROP.DAT - contains the relative contributions of each error

variance term accounted for in the error
propogation model to the total error variance

STATPFOP.DAT ~ stores the completa UWHAUSDD screen output for
later viewing if desired
RESIDS.DAT - contains the residuals from the fit

OPEN{UNIT=10,FILE=’KCRVSC.DAT’,STATUS='UNKNOWN’)
OPEN(UNIT=11,FILE='VARPROP.DAT' ,STATUS='UNKNOWN' )
OPEN{UNIT=20,FILE='STATPROP .DAT’,STATUS='UNKNOWN"’ )
OPEN(UNIT=50,FILE='RESIDS.DAT',STATUS='UNKNOWN’ )
IZERO=0

Choose a parameter estimation routine

PRINT *, 'ENTER ITYPE - 1,2,3,4:’

PRINT *, ' 1. Error propogation on Kc/R’
PRINT *, ' 2. Error propogation on R’

PRINT *, ' 3. Linear least squares on Kc/R’
PRINT *, ' 4. Non-linear least squares on R’

’
READ *,ITYPE

Input data file LALLSPROP.DAT, must contain:

GVAR, GOVAR - estimates of the standard deviations in G(theta)
and G(zero angle)

CVAR ~ estiamtes of the variance in the polymer
concentrations

UWHAUSDD parameters NOB, NP, EPS1l, EPS2, MIT, FLAM, FNU

BETA - initial gquesses of the model parameters

c - polymer concentrations at which measurements
were recorded

GSOLN, GSOLNO - measured galvanometer readings of G(theta) and

G(zero angle) at each polymer concentration
DCODE - a coded integer value between 1 and 5 corresponding
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to a specific attenuation function
KSTAR, RSOLV, DIGMA - the values of K, R(solv.), and an optical
constant particular to a set of data

READ (1,*) GVAR,GOVAR

READ (1,*) (CVAR(I),I=1,5)

READ (1,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
WRITE (6,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
WRITE (6,*) CVAR

WRITE (20,*) CVAR

WRITE (20,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU
READ (1,*) (BETA(I),I=1,NP)

WRITE (6,*) (BETA(I),I=1,NP)

READ (1,*) (C(I),I=1,5)

READ (1,*) (GSOLN(I),I=1,5)

READ (1,*) (GSOLNO(I),I=1,5)

READ (1,*) (DCODE(I),I=1,5)

READ (1,*) KSTAR,RSOLV,DSIGMA

Define the correspondance between DCODE and the attenuating function.

DVALUE(1)=1.0553D-6
DVALUE(2)=6.6728D-8
DVALUE(3)=1.6549D-8
DVALUE (4)=4.3026D-9
DVALUE(5)=2.6173D-7

Calculate the absolute values of CVAR; determing the appropriate values
for D, the attenuating function; calculate RSOLN, the measured Rayleigh
ratio for the solution; RTHETA, the polymer Ravleigh ratio; and KCROBS,
the observed values of Kc/R.

DO J=1,NOB
CVAR(J)=C(J)**2*CVAR(J)
D(J)=DVALUE (DCODE (J)}
RSOLN(J)=GSOLN(J)/GSOLNO (J) *DSIGMA*D(J)
RTHETA(J)=RSOLN(J)~RSOLV
KCROBS (J)=KSTAR*C(J) /RTHETA(J)
WRITE (10,*) C(J),KCROBS(J)

END DO
WRITE (6,*) CVAR
PRINT 49

PRINT 50,(C(I),KCROBS(I),I=1,NOB)

Arbitrarily set the objective vector (used by UWHAUSDD) to zero, which
is appropriate for the error propogation applications.

DO I=1,NOB
OBJEC(I)=0.0
END DO

Set the step differential used by UWHAUSDD to evaluate the objective
function and set SIGNS equal to 1, thus not allowing negative parameter
estimates.

DO I=1,NP
DIFF(I)=0.0001
SIGNS(I)=1

END DO

If either the linear or non-linear least squares applications has been
chosen, set the objective vector to the appropriate function values.

IF (ITYPE.EQ.3) THEN
DO I=1,NOB
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OBJEC(I)=KCROBS(I)
END DO
ELSE IF (ITYPE.EQ.4) THEN
DO I=1,NOB
OBJEC(I)=RTHETA(I)
END DO
END IF

Call the estimation routine UWHAUS.

nonn

CALL UWHAUS (NPROB,MODEL,NOB,0OBJEC,NP,BETA,DIFF,SIGNS,EPS1,EPS2,MIT,
# FLAM,FNU, SCRAT)

Calculate the predicted values of Kc/R using the fipal parameter estimates,
and the residuals.

nnon

po I=1,NOB
KCRCAL=1.0/BETA(1)+2.0*BETA(2)*C(I)
RES=KCROBS ( I ) —-KCRCAL
WRITE (50,310) I,RES
310 FORMAT(’ /,I3,5X,E11.5)
CVAR(I)=DSQRT(CVAR(I))
END DO
WRITE (30,120) ITYPE
WRITE (30,500) GVAR
WRITE (30,502) GOVAR
WRITE (30,505) CVAR
500 FORMAT(///,’ ',’MEASURED INTENSITY ST. DEV.= ’,F6.2)
502 FORMAT(’ ‘, ‘MEASURED INTENSITY AT 0.0 DEG., ST. DEV.= ’,F6.2)
505 FORMAT(’ *,*CONC ST. DEV.= ’,5(3X,E11.5),///)

If the method of error pzoéogation was emploved, calculate the relative
contribution made by each term in the error propogation formula to the
total error variance.

NnNaonNnon

IF (ITYPE.LE.2) THEN
DO I=1,NOB
VARG (I)=VARG(I)/VARE(I)
VARGO (I)=VARGO(I)/VARE(I)
VARC(I)=VARC(I)/VARE(I)
END DO
END IF
WRITE (11,400) (VARG(I),VARGO(I),VARC(I),VARE(I),I=1,NOB)
WRITE (30,400) (VARG(I),VARGO(I),VARC(I),VARE(I),I=1,NOB)
400 FORMAT(* ’,4(E11.5,3%))
PRINT 100
PRINT 110,(C(I),W(I),I=1,NOB)
WRITE (20,999) (W(I),I=1,NOB)
999 FORMAT (’ ’,5X,D24.16)
49 FORMAT ('1’,8%,’C’,11X, ‘KCROBS’,11X,//}
50 FORMAT (5X,F7.5,5X,E11.5)
100 FORMAT (’1’,5X,’C’,7X,5%,'W’//)
110 FORMAT (3X,F7.5,3X,E11.5)
120 FORMAT (///,' ','ITYPE= ’',12//)
sTOP
END

Nnnao

SUBROUTINE MODEL(NPROB,BETA,F,NOB,NP)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION BETA(NP),F(NOB)
COMMON/PH/C(5) ,KCROBS(5) ,W(5) ,RSOLN(5) ,RTHETA(S),
# VARG(5),VARGO(5),VARC(5) ,VARE(60),GSOLN(S),
# KSTAR,GVAR,CVAR(5) ,GOVAR,GSOLNO(5),ITYPE

’
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REAL*8 KSTAR,KCROBS
DO I=1,NOB

If one of the error propogation applications was chosen, then calculate
for each data point:

- the values of the differential equations

- the value of e (the error)

~ the individual error variance contributions

- the total error variance

- the weighting and the objective function value

IF (ITYPE.EQ.l) THEN
DEDG=~KSTAR*C{I)/(RTHETA(I)**2)*RSOLN(I)/GSOLN(I)
DEDGO=-DEDG*GSOLN(I)/GSOLNO(I)
DEDC=KSTAR/RTHETA(I)-2*BETA(2)
E=KSTAR*C(I)/RTHETA(I)-1.0/BETA(1)-2.0*BETA(2)*C(I)

ELSE IF (ITYPE.EQ.2) THEN
DEDG=RSOLN(I)/GSOLN(I)

DEDGO=-RSOLN(I)/GSOLNO(I)
DEDC=~(KSTAR/BETA(1))/((1.0/BETA(1)+2.0*BETA(2)*C(I))**2)
E=RTHETA(I)-KSTAR*C(I)/(1.0/BETA(1)+2.0*BETA{(2)*C(I))

END IF

IF ((ITYPE.EQ.1).OR.(ITYPE.EQ.2)) THEN

VARG (I)=DEDG**2*GVAR**2
VARGO (I)=DEDGO**2*GOVAR**2
VARC(I)=DEDC**2*CVAR(I)
VARE(I)=VARG(I)+VARGO (I)+VARC(I)
W(I)=1.0/VARE(I)
F(I)=E*DSQRT(W(I))

END IF

If either the linear or non-linear least squares applications was chosen,

for each data point, calculate the value of the appropriate objective
function.
IF (ITYPE.EQ.3) THEN
F(I)=1.0/BETA(1)}+2.0*BETA(2)*C(I)
ELSE IF (ITYPE.EQ.4) THEN
F(I)=KSTAR*C(I)/(1.0/BETA(1)}+2.0*BETA(2)*C(I))
END IF
END DO
RETURN
END
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This program performs a data analysis of user supplies Dynamic Light
Scattering data. It is currently dimensioned to handle raw
autocorrelation data made up of 56 time lag measurements and eight
measurements at infinite time delav.

All variables except those pertaining to the NNLLS routine are double
precision.

IMPLICIT REAL*8 (A-H,0-Z)

INTEGER SHIFTS,SPN

DIMENSION YY(56),DIFF(20),SIGNS(20),BETA(20),FUN(150,30),
& TIME(65),SCRAT(1000),BETAI(20),PRED(56,8) ,FF(56),
# DIAM(4),RES{56,8) ,PREDT(56,6)

REAL*4 A(S56,20),X(20),B(56),W(20),22(56),TRANMAT(56,56),PHI,
3 AT(56,20),BT(56)

INTEGER*2 INDEX(50),MODE

COMMON/PH/TTIME(56) ,GAMMA(20),TDC(4),ITYPE,KSQR,COUNTS({64) ,NEX1,
¥ NEX2

REAL*8 INTS,INTL,MINCOUNT,KSQR,MAXRES,MINRES,NEX1,NEX2

The user must define an external MODEL subroutine for the estimation
programs UWHAUSDD and NNLLS.

EXTERNAL MODEL

only cne input data file, DLSIN.DAT is required by the program. Inputs
are described later. .

OPEN (UNIT=1,FILE=’DLSIN.DAT’,STATUS=’UNKNOWN’)

The following output data programs are created by the program:

DLSOUT.DAT - contains first-order normalized autocorrelation
data as a function of time

DIS.DAT -~ contains the parameter estimates of the
distribution fit

PREDICT.DAT — contains the predicted values of the first-order
normalized autocorrelation function

RESLIM.DAT - contains the residuals of the fit

OPEN (UNIT=2,FILE=’'DLSOUT.DAT’,STATUS='UNKNOWN")
OPEN (UNIT=3,FILE=’DIS.DAT’,STATUS='UNKNOWN')

OPEN (UNIT=4,FILE=’'PREDICT.DAT’,STATUS=’'UNKNOWN’)
OPEN (UNIT=5,FILE=’RESIDS.DAT’,STATUS='UNKNOWN’)
OPEN (UNIT=10,FILE='RESLIM.DAT’',STATUS=’UNKNOWN’)

Choose a parameter estimation routine. Note that all estimation problems
except ITYPE = 2,3 are linear in the parameters.

PRINT *, 'ENTER ITYPE - 1 to 8:‘

PRINT *, ' 1. LAWSON & HANSON NNLS'’

PRINT *, * 2. LAWSON & HANSON NNLS — TRANFORMED DATA’
PRINT *, ' 3. OSTROWSKY SUM OF EXPONENTIALS®

PRINT *, ' 4. ONE EXPONENTIAL, TWO PARAMETERS'’

PRINT *, * 5. TWO EXPONENTIALS, FOUR PARAMETERS’
PRINT *, 6. TWO EXPONENTIALS, TWO PARAMETERS'

PRINT *, * 7. THREE EXPONENTIALS, THRZE PARAMETERS'’
PRINT *, ' 8. FOUR EXPONENTIALS, FOUR PARAMETERS'’

READ *, ITYPE
Input data file DLSIN.DAT must contain:

DELTAT - channel width {(micro-~seconds)
TCOUNT - total number of photopulses counted



nnnNnonoannannNnannnnnannnnnn

nnn

nonn

nnNnn

nnn

nnon

193

PCOUNT - number of prescaled counts

RUNT - run time (milli-seconds)

PFAC - prescale factor

COUNTS ~ contents of each individual channel (up to 64), the

second-order un-normalized autocorrelation function
values

UWHAUSDD parameters NOB, NP, EPS1, EPS2, MIT, FLAM, FNU

SPN — determines whether negative parameter estimates will
be allowed or not; YES if SPN = -1; NO if SPN = 1

BETAI ~ initial guess of p parameters (only for ITYPE > 0)

DL - lower diameter value (in nano-metres) at which
parameter estimates start

OMEGAMAX - determines logarithmic spacing between parameter
estimates on diameter scale

SHIFTS - number of times a set of p parameters are estimated
in each shift; SHIFTS is only equal to 1 unless
Ostrowsky’s or Morrison’s exponential sampling
methods are used

NEX

- determines whether a weighted NNLLS fit is performed
or not

Note that some of these input variables are specific to either the
UWHAUSDD or NNLLS estimation routines.

READ (1,*) DELTAT,TCOQUNT,PCOUNT,RUNT,PFAC

READ (1,*) (COUNTS(I),I=1,64)

READ (1,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU,SPN
IF (ITYPE.GE.3) READ (1,*) (BETAI(I),I=1,NP)

READ (1,*) DL,OMEGAMAX,SHIFTS,NEX1l,NEX2

Determine the total number of parameters to be estimated.

NPT=NP*SHIFTS

Transform the initial parameter estimates from diameter values to
translation diffusion coefficient values.

IF ((ITYPE.EQ.4).OR.(ITYPE.EQ.5))
BETAI (2)=214.174/(BETAI(2)/2.0)
IF (ITYPE.EQ.5) BETAI(4)=214.174/(BETAI(4)/2.0)
IF (ITYPE.GE.6) THEN
po I=1,NP
READ (1,*) DIAM(I)
TDC(I)=214.174/(DIAM(I)/2.0)
END DO
END IF

Calculate the initial gamma value where parameter estimation starts.

GAMMA(1)=0.074679/(DL/2.0)

Calculate the value of the optical constant k(squared) and the constant pi.

KSQR=0.018673**2
PI=4.0*DATAN(1.D0O)

Determine an average value for the baseline from the eight baseline
measurements.

BL=COUNTS (57)

Do I=58,64
BL=BL+COUNTS (I)

END DO

BL=BL/8.0
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Let MINCOUNT be the average baseline value and intialize the time.

MINCOUNT=BL*2048.0
TIME(1)=0.0

Calculate the first—-order, normalized autocorrelation function values from
the second-order, un-normalized autocorrelation function values, and
increment the time accordingly for each channel.

DO I=1,56
COUNTS (I )=DSQRT(COUNTS(I1)/BL~1.0)
WRITE (2,*) TIME(I),COUNTS(I)
TIME(I+1)=TIME(X)+DELTAT

END DO

Check :

1. the total number of counts
2. the baseline value

CHECK1=PCOUNT*PFAC*2048

CHECK2=DELTAT*1E-6 *TCOUNT*PCOUNT*1000/RUNT/MINCOUNT
TCOUNT=TCOUNT*2048

WRITE (6,10) TCOUNT,CHECK1

WRITE (6,20) CHECK2

FORMAT (' ’,5X,’TOTAL COUNTS = ’,F15.2,5X,F15.2,//)
FORMAT ('’ ',5X,’BASELINE RATIO = ',F15.12)

If either Ostrowsky’s or Morrison’s exponential sampling method was chosen,
then determine the intervals between each gamma value at which a parameter
is estimated and between each shift.

IF (ITYPE.LE.3) THEN
INTL=DEXP{-PI/OMEGAMAX)
GAMMA( 2 )=INTL*GAMMA(1)
INTS=DLOG(INTL)/SHIFTS

Define the initial gamma values at which parameter estimation takes place.

DO I=3,NP
GAMMA (I)=INTL*GAMMA(I-1)
END DO
END IF

If the data is to be transformed to account for autocorrelated errors, then
apply the appropriate transformation formula for an AR(1) model. PHI is
fitted AR(1) model parameter.

IF (ITYPE.EQ.2) THEN
PRINT 65
FORMAT ('’ *,5X,'SNTER PHI’)
READ *, PHI
TRANMAT(1,1)=SQRT(1.0~PHI**2)
DO I=2,NOB
TRANMAT(I,I)=1.0
TRANMAT(I,I-1)=-PHI
END DO
END IF

Set YY to be the objective function for the UWHAUSDD parameter estimation
routine. If NEX > 1, then the objective function is weighted according
to Morrison’s forumla.

DO I=1,NOB
TTIME(I)=TIME(I)
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YY(I)=COUNTS(I)**NEX1
PRED(I,1)=TIME(I)
PRED(I,2)=YY(I)

END DO

Set the step differential used by UWHAUSDD to evaluate the objective
function and set SIGNS to either allow or disallow negative parameter
estimates.

DO I=1,NP
DIFF(I)=0.0001
SIGNS(I)=SPN
BETA(I)=BETAI(I)

END DO

For each shift, call the appropriate estimation routine.

DO I=1,SHIFTS
IF (ITYPE.GE.3) THEN

For Ostrowsky’s exponential sampling method and the special cases where
only two to four parameters are estimated, call UWHAUSDD.

CALL UWHAUS (NPROB,MODEL,NOB,YY,NP,BETA,DIFF,SIGNS,EPS]1,EPS2,MIT,
Y FLAM,FNU,SCRAT)

For Morrison’s exponential sampling approach, using NNLLS, first set up
the appropriate matrices and vectors before calling the estimation routine.

ELSE IF (ITYPE.LE.2) THEN

‘Initialize the parameter vector, X, to be zero.

DO Ii=1,NP
X(11)=0.0
END DO

Define the single precision A matrix and the B vector.

DO Il=1,NOB
B(Il)=SNGL(¥Y(Il1))

DO I2=1,NP ,
A(Il,I2)=SNGL(COUNTS(I1)**(NEX1-NEX2)*
# DEXP{~GAMMA(I2)*TTIME(I1)))
END DO
END DO

Transform the A matrix and B vector to account for autocorrelated errors
according to an AR(l) model if ITYPE = 2 was chosen.

IF (ITYPE.EQ.2) THEN
DO Il=1,NOB
SUMTB=0.0
DO J2=1,NOB
SUMTB=SUMTB+TRANMAT(I1,J2)*B(J2)
END DO
BT(Il)=SUMTB
DO J1=1,NP
SUMTA=0.0
DO Kl=1,NOB
SUMTA=SUMTA+TRANMAT(I1l,K1)*A(K1,J1)
END DO
AT(I1,J1)=SUMTA
END DO
END DO
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DO Il=1,NOB
B(Il)=BT(Il)
PRED(I1,2)=B(Il)
DO I2=1, NP

A(I1,I2)=AT(I1,I2)

END DO

END DO

END IF

Call the NNLLS estimation routine (single precision)

CALL NNLS(A,NOB,NOB,NP,B,X,RNORM,W,ZZ, INDEX,MODE)
WRITE (6,*) RNORM,MODE
WRITE (6,*) X

If the NNLLS routine has destroyed the contents of INTS {(the interval
between successive shifts), restore it.

IF (INTS.EQ.O0) INTS=DLOG(INTL)/SHIFTS
Transform the final parameter estimates to double precision.

DO Il=1,NP
BETA(I1)=DBLE(X(Il))
END DO
END IF

Evaluate the model subroutine at the final values of the parameter
estimates.

CALL MODEL(NPROB,BETA,FF,NOB,NP)
DO J=1,NOB

PRED(J,I+2)=FF(J)
END DO

If Ostrowsky’s or Morrison’s exponential sampling method was chosen, store
final parameter estimates as a function of diameter on both an absolute and

a logarithmic scale; increment the starting value of gamma by one shift
interval; and re-initialize the initial guesses of the parameters.

IF (ITYPE.LE.3) THEN

po J=1,NP
FUN(I+(J-1)*SHIFTS,2)=BETA{J)*OMEGAMAX/PI
FUN(I+(J-1)*SHIFTS,3)=0.074679*2.0/GAMMA(J)
FUN(I+(J-1)*SHIFTS,1)=DLOG(FUN(I+(J-1)*SHKIFTS,3))

END DO

GAMMA(1)=DEXP(DLOG(GAMMA (1) )}+INTS)

BETA(1)=BETAI(1l)

DO J=2,NP
GAMMA(J)=INTL*GAMMA (J-1)
BETA(J)}=BETAI(J)

END DO

NPROB=NPROB+1

If one of the non-linear estimation routines was chosen, then calculate
the absolute values of the diameters from the appropriate fitted
parameters.

ELSE IF ((ITYPE.EQ.4).OR.(ITYPE.EQ.5)) THEN
DIAM(1)=214.174*2.0/BETA(2)
WRITE (3,60) BETA(1l),DIAM(1)
IF (ITYPE.EQ.S5) THEN
DIAM(2)=214.174*2.0/BETA(4)
WRITE (3,60) BETA(3),DIAM(2)
END IF
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If one of the linear estimation routines where no more than four parameters
have been estimated was chosen, simply output the appropriate number of
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parameter estimates.

ELSE IF (ITYPE.GE.6) THEN
DO K=1,2 .
WRITE (3,60) BETA(K),DIAM(K)
END DO
IF (ITYPE.GE.7) WRITE (3,60) BETA(3),DIAM(3)
IF (ITYPE.EQ.8) WRITE (3,60) BETA(4),DIAM(4)
END IF
END DO

Output the parameter estimates.
IF (ITYPE.LE.3) WRITE (3,30) ((FuUN(I,J),J=1,3),I=1,NPT)

Calculate the predicted values of the first-order, nmormalized
autocorrelation function for the case where autocorrelated errors
was accounted for.

IF (ITYPE.EQ.2) THEN
DO I=1,NOB
DO J=1,SHIFTS
SuUMC=0.0
DO K=1,NOB
SUMC=SUMC+TRANMAT (I,K)*PRED(K, J+2)
END DO
PREDT(I,J}=SUMC
END DO
END DO
DO I=1,NOB
DO 3J=3,SHIFTS+2
PRED(I,J)=PREDT(I,J-2)
END DO
END DO
END IF
WRITE (4,40) ((PRED(I,J},J=1,8),I=1,56)

At each observation, calculate the residuals from each shift, determine

the maximum and minimum residual and calculate an average residual.

DO I=1,NOB

RES(I,1)=PRED(I,1l)

SUMRES=0.0

MAXRES=PRED(I,2)-PRED(I,3)

MINRES=PRED(I,2)-PRED(I,3)

DO J=2,SHIFTS+1
RES(I,J)=PRED(I,2)-PRED(I,J+1)
SUMRES=SUMRES+RES(I,J)

IF (RES(I,J).GT.MAXRES) MAXRES=RES(I,J)
IF (RES(I,J).LT.MINRES) MINRES=RES(I,J)

END DO

RES(I,SHIFTS+2)=SUMRES/SHIFTS

IF (NEX1.GT.1l) THEN
DIVFAC=COUNTS(I)**(NEX1-NEX2)
RES{I,SHIFTS+2)=RES(I,SHIFTS+2)/DIVFAC
MAXRES=MAXRES/DIVFAC
MINRES=MINRES/DIVFAC

END IF

At each observation, output the time lag, the average residual, and the

largest and smallest residuals.
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WRITE (10,70) RES(I,1l),RES(I,SHIFTS+2),MAXRES,MINRES
END DO
WRITE (5,40) {((REs(I,J),J=1,8),I=1,56)
FORMAT (' ’,F16.12,5X,F16.4,5X,F16.8)
FORMAT (' ’,1(F8.1,7(5X,F11.7}))
FORMAT (' ',F16.4,5X,F16.8)
FORMAT (’ ’,1(F8.1,3(5X,F11.7)))
STOP
END

SUBROUTINE MODEL(NPROB,BETA,F,NOB,NP)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 KSQR,NEX1l,NEX2

DIMENSION BETA(NP),F(NOB)

COMMON/PH/TTIME(56) ,GAMMA(20),TDC(4),ITYPE,KSQR,COUNTS(64),NEX1,
# NEX2

If Ostrowsky’s or Morrison’s exponential sampling method was chosen, then
calculate the sum of exponentials according to how many parameters are to
be estimated. .

IF (ITYPE.LE.3) THEN
DO II=1,NOB
SUMING=0.0
DO JJ=1,NP
ADDIT=COUNTS(II)**(NEX1-NEX2)*DEXP(—~-GAMMA(JJ)*TTIME(II))
SUMING=SUMING+BETA(JJ)*ADDIT
END DO
F{II)=SUMING
END DO

If one of the non-linear estimation problems was chosen, then determine the

appropriate objective function with either two or four parameters.

ELSE IF ((ITYPE.EQ.4).OR.(ITYPE.EQ.5)}) THEN
DO II=1,NOB
SUMING=COUNTS(II)**(NEX1-NEX2)*BETA(1)*
¥ DEXP(-BETA(2) *KSQR*TTIME(II))
IF (ITYPE.EQ.5) SUMING=SUMING+COUNTS(II)**(NEX1-NEX2)*
BETA(3)*DEXP(-BETA(4) *KSQR*TTIME(II))

L

F(II)=SUMING
END DO

If one of the simpler linear models was chosen, then calculate the
appropriate objective function according to how many parameters are to
be estimated.

ELSE IF (ITYPE.GE.6) THEN
DO II=1,NOB
SUMING=0.0
DO JJ=1,2
SUMING=SUMING+COUNTS(II)**(NEX1-NEX2)*BETA(JJ)*
# DEXP(-TDC(JJ)*KSQR*TTIME(II))
END DO
IF (ITYPE.GE.7) SUMING=SUMING+COUNTS(II)**(NEX1-NEX2)*
# BETA(3) *DEXP(~TDC(3) *KSQR*TTIME(II))
IF (ITYPE.EQ.8) SUMING=SUMING+COUNTS(II)**{NEX1-NEX2)*
# BETA(4) *DEXP(-TDC(4) *KSQR*TTIME(II))
F(II)=SUMING
END DO
END IF
RETURN
END
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SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE)
C.L. LAWSON AND R.J. HANSON, JET PROPULSON LABORATORY, 1973 JUNE 15
APPEARS IN ’SOLVING LEAST SQUARES PROBLEMS’, PRENTICE-HALL, 1974

e de ok deode e e de R ok NON_NEGATIVE LEAST SQUARES LR XS SR ESR S ]

GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN N-VECTOR,
X, WHICH SOLVES THE LEAST SQUARES PROBLEM

A*X=08 SUBJECT TO X .GE. 0

A( ),MDA,M,N MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE ARRAY,
A( ). ON ENTRY A{ ) CONTAINS THE M BY N MATRIX, A.
ON EXIT, A( ) CONTAINS THE PRODUCT MATRIX, Q*A, WHERE
Q IS AN M BY M ORTHOGONAL MATRIX GENERATED IMPLICITLY
BY THIS SUBROUTINE.

B( ) ON ENTRY, B( ) CONTAINS THE M-VECTOR, B. ON EXIT, B( )
CONTAINS Q*B.
X( ) ON ENTRY, X( ) NEED NOT BE INITIALIZED. ON EXIT, X( )} WILL

CONTAIN THE SOLUTION VECTOR.
RNORM ON EXIT, RNORM CONTAINS THE EUCLIDEAN NORM OF THE RESIDUAL

VECTOR.
w{ ) AN N-ARRAY OF WORKING SPACE. ON EXIT, W( ) WILL CONTAIN THE
DUAL SOLUTION VECTOR. W WILL SATISFY W(I) = 0 FOR ALL I IN
SET P AND W(I) .LE. 0 FOR ALL I IN SET 2.
2z2( ) AN M-ARRAY OF WORKING SPACE.
INDEX( )} AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
ON EXIT, THE CONTENTS OF THIS ARPAY DEFINE THE SETS
P AND Z AS FOLLOWS...
INDEX(1l) THROUGH INDEX(NSTEP) = SET P
INDEX(IZ1) THROUGH INDEX(IZ22) = SET 2
IZl = NSTEP + 1 = NPP1
1z2=N
MODE THIS IS A SUCCESS—FAILURE FLAG WITH THE FOLLOWING MEANINGS.
1 THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
2 THE DIMENSIONS OF THE PROBLEM ARE BAD.
EITHER M .LE. 0 OR N .LE. 0
3 ITERATION COUNT EXCEEDED. MORE THAN 3*N ITERATIONS.

SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,2Z,INDEX,MODE)
DIMENSION A(MDA,N), B(M), X(N), W(N), 2Z2(M)

INTEGER INDEX(N)

ZERO=0.

ONE=1.

TWO=2.

FACTOR=0.01

MODE=1

IF (M.GT.0.AND.N.GT.0) GO TO 10
MODE=2

RETURN

ITER=0

ITMAX=3*N

INITIALIZE THE ARRAYS INDEX( )} AND X{( ).

DO 20 I=1,N

X(I)=2ERO
INDEX(I)=1
I1zZ2=N
Iz1=1

NSETP=0
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NPP1=1
*#x*%* MAIN LOOP BEGINS HERE *****
CONTINUE

QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION
OR IF M COLS OF A HAVE BEEN TRIANGULARIED.

IF (IZ1.GT.IZ2.0R.NSETP.GE.M) GO TO 350
COMPUTE COMPONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR W( ).

DO 50 Iz=IZ1,IZ2
J=INDEX(IZ)
SM=ZERO
DO 40 L=NPPl,M
SM=SM+A(L,J)*B(L)
W(J)=SM

FIND LARGEST POSITIVE W(J)

WMAX=ZERO
PO 70 1z=121,1Z2
J=INDEX(IZ)
IF (W(J).LE.WMAX) GO TO 70

WMAX=W(J) .
IZMAX=12
CONTINUE

IF WMAX .LE. 0 GO TO TERMINATION.
THIS INDICATES SATISFACTION OF THE KUHN-TUCKER CONDITIONS.

IF (wWMAX) 350,350,80
IZ=IZMAX
J=INDEX(I2)

THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P.
BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT TO
AVOIC NEAR LINEAR DEPENDANCE.

ASAVE=A(NPP1,J)
CALL H12(1,NPP1,NPP1+l1,M,A(1,J),1,UP,DUMMY,1,1,0)
UNORM=ZERO
IF (SETP.EQ.0) GO TO 100
DO 90 L=1,NSETP
UNORM=UNORM+A(L,J)**2
UNORM=SQRT ( UNORM)
IF (DIFF(UNORM+ABS(A(NPP1l,J))*FACTOR,UNORM)) 130,130,110

COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO ZZ, UPDATE
ZZ AND SOLVE FOR ZTEST { = PROPOSED NEW VALUE FOR X(J) ).

DO 120 L=1,M

2Z(L)=B(L)
CALL H12(2,NPPl,NPP1+1,M,A(1,J),1,UP,22,1,1,1)
ZTEST=2Z (NPP1)/A(NPPL,J)

SEE IF 2ZTEST IS POSITIVE.
IF (ZTEST) 130,130,140
REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P.

RESTORE A(NPPl,J), SET W(J)=0, AND LOOP BACK TO TEST DUAL
COEFFS AGAIN.
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c
130 A(NPP1,J)=ASAVE
W(J)=ZERO
GO TO 60
c
c THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED FROM
c SET 2 TO SET P. UPDATE B. UPDATE INDICES. APPLY
c HOUSEHOLDER TRANSFORMATIONS TO COLS IN NEW SET Z. 2ERO
c SUBDIAGONAL ELTS IN COL J. SET W(J)=0.
c
140 DO 150 L=1,M
150 B(L)=2Z(L)
c
INDEX(IZ)=INDEX(IZ1)
INDEX(IZ1)=J
IZ1=IZ1+1
NSETP=NPP1
NPP1=NPP1l+1
c
IF (I21.GT.IZ2) GO TO 170
DO 160 J2z=Iz21,IZ2
JJI=INDEX(J2Z)
160 CALL H12(2,NSETP,NPP1,M,A(1,3),1,UP,A(1,J37),1,MDA,L)
170 CONTINUE
c
1F (NSETP.EQ.M) GO TO 190
DO 180 L=NPP1,M
180 A(L,J)=ZERO
190 CONTINUE
c
W(J)=2ZERO
c
c SOLVE THE TRIANGULAR SYSTEM.
c STORE THE SOLUTION TEMPORARILY IN 2Z( ).
c
ASSIGN 200 TO NEXT
GO To 400
200 CONTINUE
c
c #+**+ SECONDARY LOOP BEGINS HERE *****
c
c ITERATION COUNTER
c
210 ITER=ITER+1
IF (ITER.LE.ITMAX) GO TO 220
MODE=3
WRITE (6,440)
GO TO 350
220 CONTINUE
¢
¢ SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE.
c IF NOT, COMPUTE ALPHA.
c
ALPHA=TWO
DO 240 IP=1,NSETP
L=INDEX (IP)
IF (2Z(IP)) 230,230,240
c
230 T=-X(L)/(ZZ(IP)-X(L))
IF (ALPHA.LE.T) GO TO 240
ALPHA=T
J3=IP
240 CONTINUE
c

(o IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN ALPHA WILL

’
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[ STILL = 2. 1IF SO, EXIT FROM SECONDARI LOOP TO MAIN LOOP.
c
IF (ALPHA.EQ.TWO) GO TO 330
o
[ OTHERWISE, USE ALPHA WHICH WILL BE BETWEEN 0 AND 1 TO
o INTERPOLATE BETWEEN THE OLD X AND THE NEW ZZ.
c
DO 250 IP=1,NSETP
L=INDEX(IP)
250 X(L)=X{L)+ALPHA*(ZZ(IP)-X(L))
[
[ MODIFY A AND B AND THE INDEX ARRAYS TO MOVE COEFFICIENT I
[ FROM SET P TO SET Z.
C
I=INDEX(JJ)
260 X(I)=ZERO
[
IF (JJ.EQ.NSETP) GO TO 290
JI=JI+1
DO 280 J=JJ,NSETP
II=INDEX(J)
INDEX(J~1)=II
CALL G1(A(J-1,II),A(J,1I),CC,S5,A(J-1,1II))
A(J,II)=ZERO
DO 270 L=1,N
IF (L.NE.II) CALL G2(CC,SS,A(J-1,L),A(J,L))
270 CONTINUE
280 CALL G2(cC,Ss,B(J-1),B(J))
290 NPP1=NSETP
NSETP=NSETP~1
IZ21=I21~1
INDEX({IZ1l)=I
C
[of SEE IF THE REMAINING COEFFS IN SET P ARE FEASIBLE. THEY SHOULD
C BE BECAUSE OF THE WAY ALPHA WAS. DETEPMINED.
[ IF ANY ARE INFEASIBLE, IT IS DUE TO ROUND-OFF ERROR.
[ ANY THAT ARE NONPOSITIVE WILL BE SET TO ZERO AND MOVED
[ FROM SET P TO SET Z.
[
DO 300 JJ=1,NSETP
I=INDEX(3J)
IF (X(I)) 260,260,300
300 CONTINUE
[of
C COPY B( ) INTO ZZ( ). THEN SOLVE AGAIN AND LOOP BACK.
c
DO 310 I=1,M
310 ZZ(I)=B(I)
ASSIGN 320 TO NEXT
GO TO 400
320 CONTINUE
GO TO 210
C
c *#4*%* END OF SECONDARY LOQP *%***
[
330 DO 340 IP=1,NSETP
I=INDEX(IP)
340 X(I)=ZZ(IP)
[of
C ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING.
[
GO TO 30

A#k**  END OF MAIN LOQP *****

nnNnao
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COME TO HERE FOR TERMINATION.
COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR.

SM=ZERO
IF (NPP1.GT.M) GO TO 370
DO 360 I=NPPl,M
SM=SM+B(I)**2
GO TO 390
Do 380 J=1,N
W(J)=2ERO
RNORM=SQRT(SM)
RETURN

THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL SUBROUTINE
TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE SOLUTION IN 2Z(I).

DO 430 L=1,NSETP
IP=NSETP+1-L
IF (L.EQ.1) GO TO 420
DO 410 II=1,IP
2Z(IX)=2Z(II)~-A(IX,JJ)*ZZ(1IP+1)
JI=INDEX(IP)
2Z(IP)=2Z(IP)/A(IP,JJ)
GO TO NEXT, (200,320)
FORMAT (35HO NNLS QUITTING ON ITERATION COUNT.)
END

SUBROUTINE H12(MODE,LPIVOT,L1,M,U,IUE,,UP,C,ICE,ICV, NCV)

CONSTRUCTION AND/OR APPLICATION OF A SINGLE HOUSEHOLDER

TRANSFORMATION. .. Q= I + U*(U**T)/B

MODE =1 OR 2 TO SELECT ALGORITHM H1 OR H2 RESPECTIVELY
LPIVOT IS THE INDEX OF THE PIVOT ELEMENT

L1 ,M IF L1 .LE. M, THE TRANSFORMATION WILL BE CONSTRUCTED TO

ZERO ELEMENTS INDEXED FROML1 THROUGH M. 1IF L1 .GT. M, THE
SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
u( ),IVE,UP ON ENTRY TO Hl1l, U( ) CONTAINS THE PIVOT VECTOR.

IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS.
ON EXIT FROM H1, U( ) AND UP CONTAIIN QUANTITIES
DEFINING THE VECTOR U OF THE HOUSEHOLDER
TRANSFORMATION.
ON ENTRY TO H2, U( ) AND UP SHOULD CONTAIN QUANTITIES
PREVIOUSLY COMPUTED BY Hl. THESE WILL NOT BE
MODIFIED BY H2.

c( ) ON ENTRY TO H1 OR H2, C( ) CONTAINS A MATRIX WHICH WILL BE
REGARDED AS A SET OF VECTORS TO WHICH THE HOUSEHOLDER
TRANSFORMATION IS TO BE APPLIED. ON EXIT, C{( ) CONTAINS THE
SET OF TRANSFORMED VECTORS.

ICE STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C( ).
ICcv STORAGE INCREMENT BETWEEN VECTORS IN C( ).
NCv NUMBER OF VECTORS IN C( ) TO BE TRANSFORMED. IF NCV .LE. O,

NO OPERATIONS WILL BE DONE ON C{ ).

SUBROUTINE H12(MODE,LPIVOT,L1,M,U,IVE,UP,C,ICE,ICV,NCV)
DIMENSION U{IUE,M), C(1) :

DOUBLE PRECISION SM, B

ONE=1.

IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.OR.L1.GT.M) RETURN
CL=ABS (U(1,LPIVOT))
IF (MODE.EQ.2) GO TO 60
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*k*¥*x  CONSTRUCT THE TRANSFOPMATION *****

DO 10 J=L1,M
CL=AMAX1 (ABS(U(I,J)),CL)
IF (CL) 130,130,20 :
CLINV=ONE/CL
SM=(DBLE (U(1,LPIVOT) ) *CLINV)**2
po 30 J=L1,M
SM=SM+(DBLE(U(1,J))*CLINV)**2

CONVERT DBLE. PREC. SM TO SNGL. PREC. SM1

SM1=SM

CL=CL*SQRT(SM1)

IF (U(1,LPIVOT))50,50,40
CL=-CL
UP=U(1,LPIVOT)~-CL
U(1l,LPIVOT)=CL

GO TO 70

#%*+% APPLY THE TRANSFORMATION I+U*(U**T)/B TO C

IF (NCV.LE.O0) RETURN
=DBLE (UP) *U(1,LPIVOT)

IF (CL) 130,130,70 '
B MUST BE NONPOSITIVE HERE. 1IF B = 0, RETURN. !
IF (B) 80,130,130 g
B=ONE/B
I2=1-ICV+ICE*(LPIVOT-1)
INCR=ICE*{L1-LPIVOT)
Lo 120 J=1,NCV
I2=I2+ICV
I3=I2+INCR ;
I4=I3
SM=C(I2)*DBLE(UP) )
DO 90 I=L1,M
SM=SM+C{I3)*DBLE(U(1,I))
I3=I3+ICE
IF (sM) 100,120,100
SM=SM*B
C(I2)=C(I2)+SM*DBLE(UP) .
DO 110 I=L1,M
C(I4)=C({I4)+SM*DBLE(U(1,I}))
I4=I4+ICE
CONTINUE
RETURN
END

SUBROUTINE Gl(A,B,C0S,SIN,SIG)

COMPUTE ORTHOGONAL ROTATION MATRIX.
COMPUTE.. MATRIX (C, S) SO THAT (C, S)(A)
(-x,C) (~s,C)(B)
COMPUTE SIG = SQRT(A**2+B**2)
SIG IS COMPUTED LAST TO ALLOW FOR THE POSSIBILITY THAT SIG
MAY BE IN THE SAME LOCATION AS A OR B.

SQRT(A**2+B**2)
0

ZERO=0

ONE=1

IF (ABS(A).LE.ABS(B)) GO TO 10
XR=B/A
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YR=SQRT (ONE+XR**2)
COS=SIGN(ONE/YR,A)
SIN=COS*XR
SIG=ABS(A)*YR
RETURN

IF (B) 20,30,20
XR=A/B

YR=SQRT (ONE+XR**2)
SIN=SIGN(ONE/YR,B)
COS=SIN*XR
SIG=ABS(B)*YR
RETURN

SIG=2ERO

COS=ZERO

SIN=ONE

RETURN

END

SUBROUTINE G2(COS,SIN,X,Y)
XR=COS*X+SIN*Y
¥=—-SIN*X+COS*Y

X=XR

RETURN

END

FUNCTION DIFF(X,Y)
DIFF=X-Y

RETURN

END



For WALS

Vertically polarized light was used for the data set studied,
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APPENDIX 3

Evaluation of Partial Derivatives

1 in equation (3.21) and thus,

= Ry Sin6Hg

Gp

n2¢g?
3N

&

f(RerC 9; By, Ber3rB
K'c

il + Bsim©/2)] — 2pgc — 3p,c2
Rp/Gp(5in® Hyg) B1

K'c
Rp/By (5in © HY)

Ki«
Rp,/Gp (Sin© Hg)

- 233 - 634C

K*c cos®

- B2 sin(8/2)cos(B/2)
R,/Gy (Sin“oHy

B4

2:

f(Rel 16181 By rBa B )
Rt,/Gt,smeHe3 3’4

4

Kc
1/8[1 + azsinz(e /2)] + 2 BC + 3B4c?

Rp/Gpsine

BR [3B4c? - 1 — Bpsin2(6/2)]
[1 + Bosin®(6/2) + 2BsC + 3 Bc?]?

_BBK*c sin(8/2)cos(6/2)

Rp/GycOsBHg+
[1 + Bpsin?(e/2) + 2Bsc + 3B4c2)2
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For LALLS

The baseline value (bl) in equation (3.27) was zero for all of
data sets used, therefore

Rg = Ga (0" X T'D - Reony

Go
Let Bi=1_
Mw
Bo= Ay
For ITYPE = 1:
e = £(Rg,C; By, By)
= K'C - B1 - szc
Ge/Golo~ X' T'D ~ Rsopy ’
o = - K'c (" X'
0Gg [GO/GO (o~ X )_1D - Rsoly ]2 Go
of = - K'c Gale’ XTI
Go [Ge/Go(c" A" TD — Reow 12 G§
f = K’ - 282
dC [Ge/Go(o” X T'D - Reoly ]
For ITYPE = 2:
e = f(Rerc;B1fB?) .
= Gg/Go(o'A'JD ~ Rgoyy - _K'c
1/8y+ 2B5C
o = (&N’ T'D
bGe Go
of = - Gglo' 2 T'D
OGO Go
of = - K" /By

°c (1/Bq + 2B,C)2



APPENDIX 4

Analysis of Variance on LALLS Polyacrylamide/Water Data

Basis — Three sets of paired replicate experiments given in the tables
(R-9E,R-9I), (R-10C,R-10H), (R-11D,R-11G) ’

below :

Gg Co
Conc. R-9E R-91 var (Gg) R-9% R-9I var (Gg)
c 928 915 97.5 465 427 722.0
c 925 922 4.5 552 504 1152.0"
c 830 910 200.0 734 &se 3042.0"
c 915 930 112.5 247 923 -
c 910 965 1512.5* 400 383 144.5
pooled variance 385.4 (5) 1265.1 {4}
(degrees of freedom) 103.6 (4) 406.3 (3)
Go Bo
Conc. A-10C R-10H var (Gg) A-10C  RA-10H var (Gg )
[ 937 825 72.0 229 931 - 1
c 930 905 312.5 233 965 -
c 910 éo7 4.5 270 263 24.5
c 920 920 0.0 336 328 32.0
c 930 918 72.0 519 491 3ga2.0 *
pooled variance 92.2 (5 149.5 (3)
(degrees of freedam) 28.3 (2
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)
Conc. R-14D R-116G Var (Ge] R-110D R—-11G Var (Go )
c 908 918 50.0 798 B0O5S 24.5
[o4 913 928 112.5 829 B32 4.5
#
c 920 812 32.0 888 241 -
»*
c 900 825 312.5 238 267 420.5
c 930 920 50.0 366 384 162.0
pooled variance 114.4 (5) 152.9 (4)
(degrees of freedom) 63.7 (3)

Overall pooled variance for:

var(Gg) = 385.4 + 92.2 + 111.4 = 196.3, 15 degrees of freedom

3

(d.o.f.)

var(Gy) = 4(1265.1 + 152.9) + 3(149.5) = 556.4, 11 d.o.f

4 + 4+ 3

pooled variance, neglecting the noted high values, for:

var (Gg) = 5(92.2 + 111.4) + 4(103.6) = 102.3, 14 d.o.f.

5+5+ 4

Ge -

.o st. dev. (Gg) = 14
Go_

* st. dev. (Gy) = 24

* - Overall

Gg -

.st. dev. (Gg) = 10
Go-

var (Go) = 2(406.3 + 28.3) + 3(63.7) = 151.5, 7 d.o.f.

. st. dev,.

(Go) =

2+ 2+ 3
12

t - Different attenuators were in, .. G, values not comparable.
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APPENDIX 5

Calculation of Intensity Ratios from known Mass Concentrations
Via the Mie Theory

The number of particles per gram of solution, N may be found

from:
N=c
PV
where ¢ = solution concentration in grams of particles
grams total solution
P = particle density in = 1.04 for polystyrene latex
Egﬁ particles

V = particle volume in cm3 '
=n(Dx10°8 )3; D = particle diameter in A
6

N = 6 c ' (1)
1.0477(Dx10°8)°

The concentrations of the solutions used to prepare the
samples were:

Cog = 4.347x107°
Ci7e = 1.896 x 1073
Cazo = 3.825x1075
Cazs = 1.931x107°

Inserting the above concentrations and corresponding diameters
in (1):

84.81 x 10°

Ngg

Nize 6.39 x 10°

N22° = 6-60 X 109

Npzs = 1.71x10°
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From the Mie theory, the relative intensity contributions
per particle size was found to be™:

0.00113

igg
ige = 0.02680
0.07157

1220

0.13792

iz7s
Therefore, the theoretical intensity ratio for sample
B98,/D176, relative to 98 nm particles, is:

R = [6.39(0.02680) + 6.60(0.07157) + 1.71(0.13792)] x 10°
84.81(0.00113) x 10%:

= 9,17
Similarly, for sample B98,/275:
R =1.71(0.13792) x 10°

84.81(0.00113) x 10°
= 2.45

% — The i-values were determined from "Angular Scattering Functions
for Spherical Particles" by W.J. Pangonis and W. Heller (1960)
for the intensity of a wave scattered by a single sphere from an
incident polarized beam of unit intensity whose electric vector
is perpindicular to the plane of observation. For these samples,
the angle of observation, ¥ , was 90° and the m-value was 1.2.
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