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ABSTRACT 

The models derived from classical light scattering theory for 

predicting Rayleigh light scattering contain useful parameters such as 

polymer weight average molecular weight, z-average radius of gyration 

and virial coefficients. The methods used to estimate these model 

parameters have not been based on sound statistical principles. It is 

with improved statistical estimation methods for these parameters that 

this thesis is concerned with. The methods of linear least squares, 

non-linear least squares and error propagation were applied to the 

analysis of wide angle and low angle laser light scattering data and 

the results compared. 

From the theory of dynamic light scattering, methods have been 

developed to reconstruct particle size distributions of unimodal, 

bimodal and polydisperse polymer solutions from the data accumulated 

in a single experiment. Some of these methods of reconstruction are 

based upon the estimation of the coefficients in a sum of 

exponentials. Estimating sums of exponentials is a highly 

ill-conditioned problem and the problems encountered thereof are 

examined in this thesis. Linear least squares, non-linear least 

squares and exponential sampling techniques were applied to 

experimental data from a number of simulated polymer distributions and 

the final results compared. 
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INTRODUCTION 

Proper applications of polymer materials depend upon such polymer 

properties as melt temperature and viscosity. These in turn are 

dependent upon fundamental properties such as the polymer's molecular 

weight averages, latex particle sizes, and their respective 

distributions. There are a number of analytical techniques available 

to characterize polymers in terms of these fundamental properties. 

These include gel permeation chromatography, membrane osmometry, 

ultracentrifugation and light scattering. The characterization of 

polymers from light scattering experiments, using sound statistical 

techniques, is the main thrust of this thesis. 

Light scattering is a widely used and important technique and, 

for the purposes of this work, is classified into two groups; 

classical and dynamic light scattering experiments. Classical light 

scattering comprises wide angle and low angle laser light scattering 

techniques. From these types of experiments, estimates of the weight 

average molecular weight and radius of gyration may be obtained for a 

wide range of polymer molecules ranging in size from as low as 300 

gjmol up to 10 gjmol. These upper and lower limits depend upon the 

choice of solvent and the amount of dissymmetry present (Billingham, 

1977). Dynamic light scattering is the newest application of light 

scattering theory and provides estimates of a polymers particle size 

distribution and mean particle diameter. This technique is applicable 

to particles ranging in size from 20 to 3000 nanometres. 
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The methods for the analysis of light scattering data, however, 

have been lacking in their appreciation of some of the statistical 

problems inherent in the data. In evaluating a polymers suitability 

for the purpose for which it is inteded, it is important that sound 

statistical procedures are used to determine it's properties. The 

application of sound statistical data analysis techniques has been 

demonstrated to be quite effective in providing improved estimates of 

useful quantities such as the Wilson parameters (Sutton and MacGregor, 

1977) and reactivity ratios (Patino-Leal et al, 1980). 

This thesis examines the data analysis techniques of classical 

and dynamic light scattering experiments. In considering classical 

light scattering experiments, this work is primarily concerned with 

the improved statistical estimation of the weight average molecular 

weight, which appears as a parameter in the light scattering 

equations. In the case of dynamic light scattering, the primary 

concern is with the statistical problems encountered during the 

reconstruction of the particle size distribution. 

Each of the following chapters is divided into presentations of 

the material pertaining to classical, and then dynamic light 

scattering. Chapter 2 gives a comprehensive development of the theory 

upon which the classical light scattering equations are based, and an 

introduction to the theory of dynamic light scattering. Chapter 

describes some of the methods available for data analysis and their 

applications to light scattering experiments. In chapter 4, the 

3 
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experimental data is described along with the FORTRAN programs that 

were used for parameter estimations. Finally, chapter 5 discusses the 

results obtained and gives the final conclusions and recommendations. 
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THEORY 

2.1 Introduction 

The theory of light scattered from particles in solution has it's 

foundation in physics. Workers such as Einstein, Rayleigh and Debye 

have all made important contributions. The classical light scattering 

theory presented below has been extracted from several general texts 

on light scattering and polymer molecules- Tanford (1961), Billingham 

(1977), Flory (1953), Huglin (1972), Stacey (1956). Citations 

referring to individual workers may be found in these references. 

2.2 Classical Light Scattering TheO£Y 

2.2.1 Rayleigh's Theory 

Lord Rayleigh first developed his theory for the scattering of 

light by particles small compared to their wavelength in 1871. This 

theory relates the intensity of scattered light as a function of angle 

for polarized and non-polarized light. 

The dipole moment, p, induced in a particle when subjected to an 

electric field of strength, E, is directly proportional to E. The 

proportionality constant is the polarizability,o(. A dipole moment is 

induced because the electrons and nucleus of a particle are subject to 

opposite forces in an electric field. 

p = o<.E (2.1) 
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Let an isotropically polarizable particle, small in size compared 

to the wavelength of the incident light, be in the path of a plane 

polarized beam of light travelling in the x-direction, see figure 2.1. 

Then, the electric field of such a light wave is 

E • E0COS(2rfl(~t -X~) (2.2) 

where E0 is the maximum amplitude, -v is the frequency, ). is the 

wavelength of the incident light in the medium, t is time and x is the 

location along the line of propagation. Combining equations 2.1 and 

2.2, 

( 2. 3) 


An oscillating dipole is itself a source of electromagnetic 

radiation. The radiation thus emitted is called the scattered 

radiation from the particle and has field strength proportional to the 

second derivative of the dipole moment, p, with respect to time. At a 

given distance, r, from the particle to the observer, the field 

strength is proportional to sin(G1), where is the angle between thee1 

direction of observation of the scattered radiation and the dipole 

axis, and is inversely proportional to the distance, r. Taking the 

second derivative of p with respect to t, we get 

(2. 4) 


The scattered field strength is given by, 

E~ -= 47i2~~~sin(e1 ) cos(277)('Jt - x;~) ( 2. 5) 
c r 

where the proportionality sin(e1)/r has been introduced, and the square 
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of the speed of light in the medium, c , is added to maintain correct 

dimensionality. Since >. = 'e/v , these terms can be eliminated from 

equation 5 to yield 

E8 = 4112d.Eosin(e,) cos( 277) ('llt - X/).) (2.6) 
t..2r 

Note that the scattered radiation has the same frequency as the 

incident light. Cases where this is not so, such as the Raman effect, 

are not considered here. 

The intensity of the incident and scattered light is proportional 

to the square of the field strength averaged over the period of 

vibration (t=O to t=l/~). 

! 0 « E~cos 2 ( 211) (~t - X/A) (2.7) 

(2.8) 

We are interested in the intensity ratio of scattered light to 

incident light. 

(2.9) 

Note that the dipole is always in the yz-plane, and parallel to 

the plane of polarization. 

Suppose the incident light beam is now non-polarized instead of 

plane polarized. A non-polarized light beam is equivalent to the 

superposition of two plane polarized light beams whose planes of 

polarization are perpendicular to each other, and are of equal 

intensity and independent in phase, see figure 2.2. The intensity of 



7 

y 

scattered radiation 

~/7 
.,.,""" 

/ 
/ 

a,.,..//
/ 

--- oscillating dipole at 
scattering point 

z 

Figure 2. :1.- Light scattered from plane polarrzed light 

y 

-~. 

Figure 2. 2- Light scattered from un-pa lar i zed 1 ight 
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the scattered radiation is the sum of the two component intensities, 

each of which is half the original intensity of the non-polarized 

beam, 

= 16774oe2sin2 ( e1 ) 

r2J.4 
(2.10) 

(2.11) 

and the total scattered intensity is then 

i 5 = Sn4~2 (sin2e 1 + sin 2e2 )I0 (2.12)
?X'" 

The quanti ties and are the angles between the direction ofe1 e2 

observation of the scattered light and the two dipole axes, y and z. 

For simplicity, let the two component planes of polarization be 

vertically and horizontally polarized - ie, the yx and zx planes. 

Now, let e be the angle between the line of observation of the 

scattering and the x-axis. The quantities X, Y and z are the 

projections of the length, r, on the x, y and z axes respectively. 

From the geometry of figure 2.2, it can easily be shown that sin 2 e1 + 

sin 2 e2 = 1 + cos2G,(see appendix 1). Substituting this relation into 

(2.13) 

Particles whose scattering obeys equation 2.13 are said to exhibit 

Rayleigh scattering. 
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The angular dependence of the intensity of scattered light for 

polarized (equation 2.9) and non-polarized (equation 2.13) is 

displayed in figures 2.3 and 2.4 respectively. 

An alternative derivation is based on the consideration of two 

special cases: 

1. The scattering is in the xz plane, hence = 90°, and the91 

incident beam is perpendicularly polarized with respect to 

the scattering plane. Thus sin 2 e 1 = 1 and, 

ibJ:t = 16 '(}4~2 (2.14) 
Io r2/-4 

Here, the scattered intensity is independent of angle. 

2. The scattering is in the xy plane, hence = 90°, and thee2 

incident beams polarization is parallel to the scattering 

plane. From trigonometric considerations, sin 2 e2 = cos2 e, 

and then, 

(2.15) 

Since an unpolarized beam can be resolved into perpendicular and 

parallel components with respect to the scattering plane, then for an 

unpolarized beam, 

(2.16) 
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This is the same result as equation 2.13. Note that the sum is 

divided by two since each component has only half the intensity of the 

origonal polarized beam. 

Equation 2.13 contains several parameters which relate to a 

particular experimental set-up. These parameters are eliminated by 

defining a reduced scattering intensity or Rayleigh ratio, R9 • For a 

non-polarized light beam, define R9 to be 

R 9 = ie r 2 (2.17) 
! 0 ( 1 + cos2e) 

Combining equations 2.13 and 2.17, we have 

Re = 8774«2 (2.18) 
~4 

2.2.2 Ideal Gas Model 

A simple model for the scattering of light from a solution of 

small molecules of size less than ;\/20, which exhibit Rayleigh 

scattering may be derived if we consider the solution to be an ideal 

gas of solute molecules dispersed in the solvent. The total reduced 

scattering intensity from a solution containing n particles per unit 

volume is 

(2.19) 


For dilute polymer solution, the polarizability constant, o< can 

be expressed in terms of electric (dielectric constant, D) or optical 

(refractive index, ~2 = D properties. 

<X. = fl2 - ~ = D - Do (2.20) 
4 Tin~ 4 fin D0 
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where rt and 'lo are the refractive indices of the solution and 

solvent respectively. 

de 

For infinitely dilute solutions, ~ can be expressed as a linear 

function of polymer concentration, c. 

Y(. = '1,0 + c d rt (2.21) 

If we square both sides and assume that c2 (dn/dc)2 << ~(~de), then 

(2.22) 


Substituting 2.22 into 2.20, we obtain for the polarizability 

o<. = c(d,Ydc) (2.23) 
2 71" n 'to 

Now we can substitute for the polarizability in equation 2.19 to 

get 

(2.24) 


Making use of the relations c = nM/NAv and A =Vrto where M is 

the molecular weight, NAv is Avogadro's number and A0 is the 

wavelength of the incident light, we now have for R9 

R9 = 	 2f2tW {drt~2 eM (2.25) 
?\0 NAv \de] 

= KllcM 	 (2.26) 

where K~ , an optical constant has been defined as 

K" = 	 2/12'1~ (drtj2 (2.27) 
/\~NAV de/ 
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Equation 2.27 can be re-arranged into the more familiar form 

(2.28) 

The 	assumptions under which 2.28 are valid may be summarized, 

1. 	Non-polarized light 

2. 	Small molecules 

3. 	Isotropic molecules 

4. 	Polymer solution infinitely dilute; ie - molecules 


independent of one another 


5. Equation (2.22) holds 

6. 	The expressions for 0(. and '1. arise as a consequence of 

dilute solutions 

7. 	Monodisperse solute 

The ideal gas representation of a dilute polymer solution which 

led to • K* eM totally ignores different thermodynamicR8 

interactions. In the next sub-section, a derivation based on 

fluctuation theory relates the scattered intensity to the 

thermodynamic properties of the system. This is a more general 

treatment since it considers scattering from liquids and solutions 

instead of using an ideal gas representation. 



15 


2.2.3 Fluctuation Theory 

As in the previous section, the equations are derived for small 

molecules subjected to non-polarized incident light. 

Instead of representing the polymer molecules in solution as an 

ideal gas, consider a volume element, dV, small compared to the 

wavelength A. At any given time, the properties (such as density, 

concentration, etc •.. ) of an element will fluctuate from an average 

value within that element with respect to the neighbouring elements. 

The bulk property measured can be considered to be the average taken 

over all elements. 

Fluctuations in the dielectric constant arise from two sources; 

fluctuations in density, and concentration caused by thermal 

agitation. The excess polarizability of a volume element due to its 

fluctuation from the average is given by 

(2.29) 


where Aa. and AD are the fluctuations in the polarizability and 

dielectric constants respectively. In equation 2.29, the number of 

particles per unit volume, n, has been replaced by the number of 

volume elements per unit volume, 1/dV. 

The scattering intensity, i9 , now depends on the average square 

2of Ad.. for all volume elements, (Aoe) • This replaces oc.2 so that 

(2.30) 
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Squaring equation 2. 29, substituting for (~oc )2 in 2. 30, and 

recalling the definition for the Rayleigh ratio given in equation 

2.17, we obtain 

(2.31) 


For dilute polymer solutions, scattering of light results from 

fluctuations in the density and the concentration. The fluctuations 

in the dielectric constant can be expanded in terms of the 

fluctuations in these two properties as 

(2.32) 


Since the solution is dilute, the scattering due t~ density 

fluctuations is assumed to be the same as for the pure solvent, and is 

ignored. Therefore, consider only the scattering due to concentration 

fluctuations. Substituting for (~D), 

R9 = fi 2 (oo)2(2rc)2 dV 
2~ oc 

(2.33) 

According to Einstein (1910), local variations in any fluctuating 

parameter, can be related to the thermodynamic properties of the 

system according to 

(2.34) 


where K is the Boltzmann constant, T is the absolute temperature, and 

A is the Helmholtz free energy. Also, according to Oster (1948) 

tfl.. = -~ dV (2.35) 
oc2 oc v0 c 
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where )'\1 is the chemical potential of the solvent in solution and 'iio 

is the molar volume of solvent in solution. Applying equation 2.34 to 

concentration, and substituting for~A/bc2 , we arrive at 

(4c)J- = - K'IV0 C (2.36) 
(b)4(bc)dV 

The partial derivative in 2.36 can be expressed in terms of the 

osmotic pressure, 71. Since ~ - A = - f1 V0 , then 

(2.37) 

Since D = ~2 , it can easily be shown that 

4 (2.38)(:~t = ~ (:~r 

Making the appropriate substitutions of equations 2.36, 2.37 and 

2.38 into equaton 2.33, we have then, for Rayleigh's ratio, 

R8 = 2}/:~ (2.!1..)2 KTc (2.39) 
~ \be (bTi/bC) 

The osmotic pressure is related to the solute molecular weight, 

M, through 

11 = RT + Be + cc2+ •.. (2.40) 
c M 

or 

~ = cRT(l/M + A2c + A3c2+ ... ) (2.41) 

where R is the gas constant. 
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Taking the first derivative of n with respect to c, and 

substituting for ( b (j /bc) and K = R/NAv in equation 2. 39, we have 

K11= c 	 (2.42)R9 
1/M + 2A2c + 3A3c2+ 

or 

K• c =1.. + 2A2c + 3A3c2+ .•. (2.43) 
Re M 

This final result is identical to equation 2.28 with the 

exception that virial coefficients have been added. We can summarize 

the conditions and approximations under which equations 2.43 is valid 

below. 

1. 	Non-polarized light 

2. 	Small particles 

3. 	Isotropic particles 

4. 	Volume elements small compared to the wavelength of 


the light 


5. 	Dilute polymer solutions implying fluctuations in 


dielectric constant dependent upon fluctuations in 


polymer concentration only 
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6. Constant temperature and pressure 

7. Monodisperse solute 

Some of the above conditions are restrictive and prevent the use 

of equation 2.43 as a general model that can be applied to light 

scattering situations that we are interested in. In the next few 

sections, a more general model will be developed by taking into 

account polydispersity and large molecules. 

2.2.4 Accounting for Polyctispersity 

Consider polydisperse systems in which the solute has a 

distribution of molecular weights. At infinite dilution, the total 

reduced Rayleigh ratio may be expressed as the sum of the ratios for 

each component, i, with molecular weight, Mi, in the distribution. 

Assuming the ideal gas representation, this is given by 

( R9 ) = I:R· = K" I:C1• M1- ( 2. 44)C:O I 

Now, the concentration of each component, ci, is given by wijV, 

where wi is the weight of the polymer molecules with molecular weight 

Mi. The system concentration is given by the sum, 

(2.45) 

Combining 2.44 and 2.45, 

(2.46) 
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Multiplying 2.46 by c and recalling the relation in 2.45, 

(2.47) 

The right hand side of equation 2.47 is recognized as the weight 

average molecular weight, hence, 

K•c = 
R8 

1 
Mw 

(2.48) 

Thus, we find that the M in the previous developments is the 

weight average molecular weight for polydisperse systems. 

2.2.5 The Particle Scattering Function 

When large molecules are present in the solution, the incident 

beam will be scattered at more than one point along the molecule. 

Thus, the path lengths of light scattered from different points to the 

detector will be different resulting in destructive interference and a 

reduced measurement of the scattered light intensity. The result is 

that the measured intensity at any angle in the forward direction is 

greater than that at the corresponding angle in the backward direction 

resulting in dyssymmetry of the scattered light intensity as shown in 

figure 2.5. The internal inteference reduces the scattered intensity 

at all angles except zero. Thus the previous developments are not 

applicable to molecules of large size. 
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The effect of large size may be described by a function, P(e), 

where 

P(e) = scattered intensity for large particles 
scattered intensity w~thout ~nterference 

= R9 (large molecules) 
(no interference)R8 

= Re (2.49) 
K"cM 

The expression for the ratio in 2.49 is called the particle scattering 

function and tries to account for the intramolecular interference of 

light scattered from large particles. Based on the random orientation 

of the scattering particle, the following relation was first obtained 

by Debye (1915) 

where a-

P($) = 1 ~~ sin(f.rii) 
(1-2i=1 i=1 .f'l r ii 

is the number of scattering elements, rii is the 

(2.50) 

distance 

between a pair of elements, i and j, and~ is given by 

p. = 4fl sin(a/2) 
i\ 

(2.51) 

where }.. is the wavelength of light in the medium. 

It is well known that sin(x) can be re-expressed as an infinite 

sum, 

sin(x) = x - x3 + x5 - (2.52) 
3! 5! 

Hence 

sin(;.<rii) 1 - .,v..2ri~ + .M.4r~ - (2.53) 
_}.trii 3! 5! 
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At low scattering angles, ~ is small, and the third and 

remaining terms in the right side of 2.53 may be neglected, so that 

(2.54)Mgt P($) = h II l1 - )A2r;f] 
a- .=1.=1 3'1- J- • 

= 1 - ft\.2 I I r~ (2.55) 
3! a-2 

The mean square radius of gyration, <s2>, may be defined as, 

(2.56) 

so that 

lim P(e) = 1- ~s2> (2.57)
8..-.o 3 

Or alternatively, 

1 lim p-1(6) = _ ..-"1-2<~2>r (2.58)
(1lim P(6) &-tO 


8-tO 


For small values of x, (1 - xf1=1 + x, hence, 

(2.59) 

= 1 + 16Ji2<s 2> sin2(e/2) (2.60) 
3 A2 

Combining equations 2.43, 2.49 and 2.60, we have 

lim Kl!c = 1 = _1 [1 + 16712<s 2> sin2(9/2)] (2.61) 
c~o - ­
8_.0 MP(B) M 3 A2R8 

The conditions and approximations under which 2.61 are valid are 
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1. 	Non-polarized light 

2. 	Isotropic particles 

3. Polymer solution infinitely dilute 

4. 	Low angles 

5. Monodisperse solute 

6. 	Constant temperature and pressure 

7. 	Assumption that fourth and higher order terms in 2.53 

are negligible 

8 . 	 ( 1 - X f 1
:!:: 1 + X 

2.2.6 Polydispersity of Large Molecules 

To take into account the effect of polydispersity in 

macro-molecules, we note that 

(2.62) 


where i refers to each component of the mixture. Each Pi (B) in 2.62 

can be related to the corresponding radius of gyration, <s~>, 

(2.63) 


Thus, 

(2.64) 
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Since c == I: c 1 , 

K"c = 1 
R I:M,c; - 16rr2sin2(ej2)I:M;c1<s¥> 

I:Cj 3A2 I:Cj 

Recalling that, 

I:M; C; = I:w1M1 = Mw 
I:Cj 

then 

K
1 

c = ---r~~~~~r=-~:-------""'"""""
I:M1 c;R8 

I:Cj 

The z-average radius of gyration, <s 2 >z , is given by 

<s 2>z = I:M1 c 1<s~> 
I:M; Cj 

therefore, 2.69 can be written as, 

Or, for low angles 

K•c = 1.. [1 
R Mw 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 
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2.2.7 The General Model 

The light scattering equations, in their most general form, may 

be expressed as, 

(2.73) 


In equation 2.73, note that 1) as particle size decreases, P(G) 

approaches 1, 2) for monodisperse solutes, Mw = M, and 3) in the 

limit that e = c = 0, 2.74 approaches equation 2.28. 

All of the above light scattering equations were derived for 

non-polarized light, however it is easy to handle polarized light by 

replacing (1 + cos2e) with 1 or cos2e for vertically or horizontally 

polarized respectively in all of the developments, and noting that the 

optical constant K•is multiplied by a factor of 2. 

2.2.8 Turbidity 

Instead of measuring the intensity of the light scattered by a 

solution containing particles, it is sometimes preferred to measure 

the energy loss of a light beam due to the scattering. A beam of 

initial intensity Ix decreases to intensity Ix+dx by the amount Tidx 

as a result of travelling a distance dx through a solution of 

turbidity, 1:. Thus, the more turbid a solution is, the higher the 

energy loss of the beam. In travelling a distance x, an incident beam 

of intensity I0 will be reduced to an intensity I, and 

.I.= exp( -!x) (2.75) 
Io 



27 

Since the decrease in intensity will be small, the above expression 

can be approximated by 

tx=Io-I (2.76) 
Io 

The derivations are not presented here, but it can be shown that 

the turbidity is directly obtainable from the Rayleigh ratio 

(2.77) 

2.3 Experimental =Classical Light Scattering 

In this section, the means of obtaining experimental light 

scattering measurements from wide and low angle instruments is 

presented. 

2.3.1 Wide Angle Light Scattering 

For the SOFICA wide angle light scattering instrument, the 

following relationship may be used, 

R9 = sine ...&.!!i 1 [ i9 - 2fs ~-el (2. 78) 
1 + cos2e Gb '\~ ti (1 - 4fi ) 

where Rb is the Rayleigh ratio for benzene at 90° and is a known 

constant, Gb is the relative scattered intensity for benzene at 90°, 

~10 , ~~~~is the correction for the refractive indices of the 

scattering solution and the solvent in the vat, t 5 = 1 - f 5 is the 

Fresnel coefficient or transmission coefficient, f 5 the fraction of 

incident light reflected at the glass/solvent interface, and i9 , i1ao-e. 
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are the scattered intensities (the difference between galvanometer 

readings at G0 for the solution and solvent; G9(sol'n)- G9 (solv.)). 

If the refractive indices of the solvent and glass are similar 

(as are those for benzene and glass), the above expression may be 

approximated by 

Re =.!iQ sine ie (2.79) 
Gb 1 + cos2e 

=.&. sine [G9 (sol'n) - G9 ( solv.)] (2.80) 
Gb 1 + cos2e 

where sine is a correction to account for the volume change when 

viewing the solution cell at different angles, and 1 + cos2e is 

present to account for the state of polarization of the light; the 

current form is for non-polarized light and is replaced by 1 or cos2e 

for perpendicularly or parallel polarized light respectively. 

Recall that the Rayleigh ratio may be defined as 

(2.81) 


At e = 90°, and using pure benzene as a solvent, it can be shown that 

the constant, r2 , (and any other constants that may need to be 

present) is equivalent to the term RbfGb, 

Rsif!bl = r2 (2.82) 
igoO(bJ/I0 

But, i 90olb! /I0 = G90olb! , therefore 

r2Rgo0 !bl = .&. = (2.83) 
Ggo0 !bl Gb 
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Recall that G is the actual measured quantity in the form of a 

,galvanometer reading and Rb is a known constant. Thus, 

R9 - !J.1 1 2a (2.84) 
Gb 1 + cos26 Io 

a~ 1 [G9 (sol'n)- G9 (solv.)] (2.85) 
Gb 1 + cos2e 

The correction term, sin a , is introduced to give the final 

expression that is used to calculate the Rayleigh ratio from 

experimental measurements at different scattering angles, 

• .&. sine [G9 ( sol 'n) - G9 ( solv.)] (2.86)R9 
Gb 1 + cos2e 

· 2.3.2 Low Angle Laser Laser Light Scattering 

Low angle laser light scattering (LALLS) is a special case of 

wide angle light scattering that simplifies the light scattering model 

equation by restricting the sample concentrations and angles of 

measurement to low values. As both e and c approach zero in equation 

2. 74, we have 

(2.87) 

The polymer Rayleigh ratio, R9 , is the difference between the 

Rayleigh ratios for the polymer solution and the solvent 

= R9(sol'n)- R9 (solv.) (2.88)R9 

where R9 (solv.) is a known constant. For the Chromatrix KMX-6 laser 

light scattering instrument, R9 (sol'n) is given by 

= 	 - bl (o-'.A'f
1

D (2.89)R9 	 G8 
G0 - bl 
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where Ge and G0 are the galvanometer readings at angles e and 0 

degrees, bl is the base line measurement to account for base line 

drift, (a'A'fis a function of solid angle, field stop and refractive 

index and is a known constant, and D is a function of the attenuating 

filters. 

2.4 Dynamic Light Scattering Theory 

Dynamic light scattering (also known as photon correlation 

spectroscopy and quasi-elastic light scattering) is concerned with the 

time behaviour of the scattered light intensity measurements rather 

than the average intensity measurement as in the classical theory. 

The fluctuations in intensity arise from Brownian motion of the solute 

particles due to collisions with solvent molecules. Thus, the 

particles translate their position through the solution in a random 

walk fashion. 

The probability, P(r,t), of finding a particle a distance r from 

it's origin at time t is given by the diffusion equation 

bP(r,t) 
bt 

= DtVP(r,t) (2.90) 

where Dt is the translational diffusion coefficient of the particles. 

From the solution of the above equation, the mean lifetime of a 

fluctuation in the measured intensity is equal to the average time 

required for the random walk diffusion of the scattering particle to 

change it's optical path lengths to a detector by one-half wavelength 
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of light and is given by 

y 1 = r = DtK2 (2.91) 

where ~ is called the mean decay time and K is a geometric factor 

dependent upon the wavelength of the light source A, the solvent index 

of refraction ~5 , and the scattering angle a, 
K = 4nrtssin(e/2) (2.92) 

1\ 

For spherically symmetric scatterers, Dt, the translational 

diffusion coefficient, can then be related to the particles 

hydrodynamic radius by the Stokes-Einstein equation 

(2.93) 

where Ke is Boltzmann's constant, T is the absolute temeperature and 

~ is the solvent viscosity. 

Other types of particle diffusion caused by solvent collisions, 

such as rotational and intramolecular diffusion, may also be 

evaluated, but will not be considered here since we are dealing with 

spherical particles. 

The mean decay time of the fluctuations may be found by measuring 

experimentally the second-order, un-normalized autocorrelation 

function of the scattered intensity, 

d2'ct:) = <I(t) I(t + t' )> (2.94) 

where I(t) and I(t + t') are the scattered intensities at times t and 

(t + t' ) respectively. The < > symbol represents a running sum of 
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such products, taken for different values of t, so a reliable 

statistical average of d2\L) may be obtained for a given separation 

time t'. Obviously, as the separation time increases, the dependence 

of I(t + t 
I 

) on I(t) is reduced and the correlation function 

decreases. Typically, an autocorrelator computes Gl2\t) for 64 

different values of t 
1

= ~t, 2~t, .•. , 64~t, where ~tis the channel 

width. For a good description of how the autocorrelation function is 

computed digitally, see Pusey et al (1974). 

The first-order, normalized autocorrelation function of the 

scattered intensity, cj1\(r) is related to d2l(-r.) through 

~t ) = A[ 1 + ~cf1)(L )2 ] ( 2. 95) 

where A is the baseline measurement at infinite time (equivalent to 

the square of the average intensity, <I>),~ is a constant and rj1)("r) 

is an exponential function 

gl1)('r) = f[exp(-rt)] (2.96) 

For a monodisperse particle size distribution, g (~) is a single 

exponential decay, 

c}1)(t) = ~exp(-rt) (2.97) 

Thus, the particle size may be determined from an estimate of r and 

equations (2.91), (2.92) and (2.93). As the size of the particle 

increases, it will diffuse more slowly through the solution and have a 

longer delay time. Thus, small particles have a quick decay time 

while large particles have a slow decay time. 
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For polydisperse particle size distributions, ~1 \(r) is an 

integral sum of exponentials, each particle size contributing to the 

total function according to it's relative amount in the distribution. 

g1)(1;) = rf( r) exp( -rt)dr ( 2 0 98) 

where f(r) is the intensity weighted distribution function of decay 

ratios or diffusion coefficients. Particles far away from the mean of 

the distribution have little contribution while those near the centre 

have the largest contribution. In this case, we are interested in 

obtaining estimates of f( r) and r to define the particle size 

distribution. 

2.5 Experimental =Dynamic Light Scattering 

The objective of current dynamic light scattering instruments is 

to compute digitally the autocorrelation function of the scattered 

intensity from the photon counts stored in a number (usually 64) of 

channels. The means of recovering the distribution of particle sizes, 

f(r), from equation (2.98) is better left for discussion in chapter 

three. 
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METHODS OF ANALYSIS 

3.1 Introduction 

The purpose of this chapter is to examine some of the different 

methods that are available for estimating the parameters in the light 

scattering models. Good estimates of parameters such as weight 

average molecular weight and radii of gyrations, and the associated 

confidence intervals for the parameters are useful for polymer 

characterization and quality control. 

3.2 Classical Light Scattering 

As can be seen in the development of the theory in the previous 

chapter, light scattering techniques are powerful and useful 

analytical tools since the weight average molecular weight of a 

polymer and in some cases, the z-average radius of gyration and virial 

coefficients, appear in the models as parameters that may be 

determined through fitting procedures. It is the improved statistical 

estimation methods for these parameters that is the primary 

consideration of this study. 

3.2.1 Classical Forms of Data Analysis =WALS and LALLS 

The classical interpretation of data from wide angle light 

scattering (WALS) and low angle laser light scattering (LALLS) 

experiments have largely been based on graphical methods. 
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The most common form of WALS data analysis has been the Zimm plot 

(1948). From the general light scattering model given in equation 

( 2. 74) , it can be seen that a bilinear plot of K ll cjR8 against sin 

(9/2) + Kc as a function of scattering angle and concentration can be 
l •used as a convenient way of presenting the data. k 1s an arbitrary 

constant used to spread the plot along the x-axis. Thus, a grid is 

formed requiring measurements of Re at different levels of 

concentration and scattering angle. An example of a Zimm plot is 

shown in figure 3.1. Double extrapolation to the intercept on the 

y-axis at e = c = 0 provides an estimate of 1/Mw. The radius of 

gyration is given by the intercept· at e = c = 0 and the initial slope 

of the line c = 0, 

<s2 >z • 3 A2 initial slope of line c=O (3.1) 
16~2 intercept (K1 c/R8 ) 

Finally, an estimate of the second virial coefficient A2 is obtained 

from the initial slope of the line 8 = 0. An estimate of A3 may 

then be directly calculated from equation (2.74). For a good 

discussion on graphical treatments of WALS data, see chapter 5 of 

Huglin ( 1972) . 

The graphical treatment of LALLS data is less complicated owing 

to it's simpler model form given in equation (2.87). Here, a single 

linear plot of KItC/Re against concentration should yield a straight 

line whose intercept is 1/Mw and slope is A2 . Thus, only a few 

measurements (usually four of five) of R8 , at a single low scattering 

angle, as a function of concentration are required. A typical plot of 
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LALLS data is shown in figure 3.2. 

The major problems with these graphical methods are: ( 1) they 

require subjective extrapolations to zero concentration andjor zero 

angle which may be very difficult if there is any curvature in the 

plots; (2) they do not efficiently use all the data in estimating the 

parameters; (3) they do not properly account for all the sources of 

experimental error; (4) the graphs include the concentration variable 

on both axes, thus one is fitting an induced relationship of c against 

c; and, (5) they provide no estimate of the precision of the 

parameter estimates. While automating the graphical analysis with 

computers may eliminate the first problem, these techiques still 

suffer from the other problems mentioned. We propose eliminating 
~. . 

these other problems with statistically soun~ methods of analysis. 

3.2.2 Statistical Alternatives 

One statistical approach that has been employed in the analysis 

of light scattering data has been to minimize 

(3.2)~[(~... -~J 
with respect to the parameters in the model, where n is the number of 

observations. In the case of WALS data, this represents a non-linear 

least squares approach using K•c/R9 as the response variable, and has 

been attempted by Roberts et al (1977). In LALLS data analysis, this 

is simply fitting a straight line via linear least squares. 



Figure 3.1 - Example Zimm Plot 
x:· c/R8 vs s1n2 (6/2) + lac 
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Figure 3.2 - Example LALLS Plot 
x:· c/R8 vs Concentration 
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Problems arise with this approach however, since some of the 

assumptions, under which a least squares analysis is valid, are 

violated. Namely, (1) the values of the operating variables such as 

c and 9 are assumed to be known exactly when in fact they are 

all measured and thus subject to error, and (2) the error variance of 

K ~ C/Rg is assumed to be constant over the region of operating 

variables thus leading to inappropriate relative weighting given to 

each observation. 

An alternative approach to regression is to minimize 

n 2
I[ (Re1 )obs - (Rg. )cal] · ( 3. 3)
1=1 I 

where the light scattering models are re-expressed in terms of R9 . 

This is preferrable over the original expression since R9 is no 

longer introduced in a non-linear fashion. This is desirable since 

the major source of measurement error is in G9 , the galvanometer 

reading at scattering angle e. Under this fitting criterion, both 

WALS and LALLS data require using a non-linear least squares 

procedure. However, although an improvement, this approach does not 

entirely reconcile the two problems mentioned above. 

A more approprite statistical analysis of light scattering data 

would be to use an error-in-variables approach for the case where the 

models are nonlinear in the variables, as described by Reilly and 

Patina-Leal (1981). Instead of expressing a relationship in terms of 

one unknown dependent variable equated to a function of known 

independent variables, we define 
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f( ~I , ~ ) • 0 i-1, 2, ..• ,v (3.4) 

to be a function of v unknown independent variables ~ and p unknown 

parameters ~ where ~ and ~ are v x 1 and p x 1 vectors and there are 

n observations of ~ . The ~ are the true but unknown values of the 

operating variables. These are measured with errors as 

~I - ~I + ~I (3.5) 

where ~ and ~ are v x 1 vectors of the experimentally measured values 

of the operating variables and the normally distributed random errors 

with mean vector zero and a known positive definite covariance matrix 

¥ respectively. 

When equation (3.4) is nonlinear in the operating variables ~i' it 

can be linearized by taking the linear terms of a Taylor series 

expansion around some value " ~~ of t.!!.I 

(3.6) 

where !?i is a 1 x v vector of partial derivatives with respect to each 

operating variable 

j=1,2, ... ,v ( 3. 7) 

" k~i 
The second term in equation (3.6) can be defined as the error obtained 

by using f1 instead of the true values ~~. Then 

f ( ~I , ~ ) = ~ i ( 3 • 8 ) 

The posterior probability density function for ~ can be shown to be 

(Reilly and Patina-Leal, 1981) 

Df(~~) o(. exp{-1~,~[ f( ~i' ~ ) ]T (!?j ~T f 1 
f( ~i' ~ ) } ( 3. 9) 

where ~ is the matrix of known data. 
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Maximizing (3.9) requires estimating the and ~ vectors 

through an interative procedure in the exact error-in- var,iables 

methods. A good approximation to this method may be obtained by 

always linearizing at the measured values of the operating variables 

~1 , and estimating only the unknown parameters ~· This is known as 

the approximate error-in-variables method or the method of error 

propagation. Setting " the posterior probability density~i = ~. ' 

function is then 

Df (~~) ex exp{- 1;2~ [ f ( ~. ' ~ ) ]T n~. ~T f 1f ( ~ i ' I! ) } (3.10) 

and the partial derivatives in ~~ are now evaluated at ~i = ~i. 

Equation (3.8) is now 

f( ~i ' ~ ) = ~~ (3.11) 

If the covariance matrix y is diagonal, each element being the 

variance associated with each operating variable, then maximizing the 

probability density function in (3.10) is equivalent to minimizing 

f. ef (3.12) 
i·1 var(ei ) 

with respect to the unknown parameters j!, where var( ei ) is estimated 

at each stage in the iteration from the error propagation expansion 
2 

var(ej) -I r f( !,j' I! >} var( ~i )j = ~ YJJT (3.13) 
j•1 [ ( ~. )j ~··!t 

This is merely minimizing a weighted sum of squares of the ei 's where 

the weights are the inverse of the variance in the ei 's. Reilly and 

Patino-Leal (1981) discuss applications of both the exact and 

approximate methods and compare the results. They conclude that an 

exact solution offers only a marginal improvement over the 
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approximate solution. Sutton and MacGregor (1977) applied the error 

propagation approach successfully to the analysis of vapour-liquid 

equilibrium data. 

3.2.3 Application of Statistical Methods to WALS and LALLS Data 

Analysis 

An estimation program employing a Marquardt compromise procedure 

called UWHAUSDD was used for all of the data analysis runs. This 

program allows for a user-supplied MODEL subroutine where the form of 

the objective function to be minimized is defined. Copies of UWHAUSDD 

and the WALS and LALLS analysis programs used are given in appendices 

2-A, 2-B and 2-C. 

It is straight-forward to apply all of the statistical methods 

discussed in the previous section. In the case of the arbitrary least 

squares criterion in (3.2), one minimizes 

f D(K'"c,\ - 1 { 1 + 167T2<s2 \sin2 (6-i2)} - 2A2c1 - 3A3cf1
2 

(3.14) 
1:1 ~ R~/obs 1t' 3 ~ , J 

with respect to the parameters Mw, <s 2 >z , A2 , and A3 for WALS data, 

and 

~{(~) - 1 - 2A2c~
2 

(3.15) 
i•1 Rei obs 11w J 

with respect to Rw and A2 for LALLS data. In the case of the 

somewhat more acceptable least squares criterion in (3.3), we minimize 

(3.16) 

for WALS data, and 
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(3.17)f_ f(Re,)obs 

1·1 l 
for LALLS data. 

The objective functions for error-propagation analysis are more 

complicated but still easy to program. For WALS data, we minimize 

(3.12) where e1 and var(e1 ) are given by 

ei • f(R91' ci , 8 ;Mw, <s2 >z ,A2 ,A3 ) (3.18) 

and 

(3.19) 

Two different applications of the method of error propagation may 

be defined where f is given by the expressions within the square 

brackets in (3.14) and (3.16). 

The experimental Rei is given by equation 2.80 

R9 . -= !b, sinei [G9i(sol'n) - G9i(solv.)] (3.20) 
• Gb 1 + cos2ei 

where the primary source of error is in the measurement of G91( sol 'n). 

Defining H9 i to be 

H9 i • Gai( sol 'n) - Ga1( solv. ) (3.21) 

the above expression for var(ei) then becomes 

var(e 1 ) - (:~Jvar(H91) + (:~Jvar(c 1 ) + ( :~~
2

var(e 1 ) (3.22) 

For LALLS data, we again minimize equation (3.12), except that ei and 

var(ei) are given by 

(3.23) 
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and 

(3.24) 


Again, two different applications may be defined where f is given 

by the expressions within the square brackets in (3.15) and (3.17). 

Recall that the experimentally determined Rei is given by 

equation (2.88) and (2.89) 

Rei = Gei 
G0 i 

- bl (o-'Xf1
D - ~ solv.) 

- bl 
(3.25) 

and both G9i and G0 i contain measurement error. So, (3.24) then 

becomes 

(3.26) 

Evaluations of the partial differentials in equations (3.22) and 

(3.26) for the two types of error propagation applications may be 

found in appendix 3. 

3.3 nynamic Light Scattering 

For the case of monodisperse distributions, it is a simple matter 

to estimate both ~ and r in equation (2.97) with a non-linear least 

squares algorithm. First, compute cf11(-r:) by dividing the measured ~) 

by the baseline, subtracting one and taking the square root, 

(3.27)c/'1(T) = [<fl·l _l.Or~ 

Using the straightforward least squares objective function of 

minimizing 
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(3.28) 

with respect to the parameters 11 and r would appear to be reasonable 

since the experimental error resides in the single measured quantity 

~l~>. Here, n is the number of discrete observations we have of the 

second-order, un-normalized autocorrelation function. 

In the case of bimodal distributions comprised of two 

monodispe.rse samples, it is possible to obtain estimates of both 

particle sizes and their relative weight fractions by minimizing 

i~[gl~\!)- {ll,exp(-r1 ti) + 132exp(-r2 ti)}]2 (3.29) 

with respect to the four parameters i31 , 132 , r1 , and r2 • 

Extending ( 3. 28) to estimate the 13 and r parameters for 

trimodal and higher multimodal distribution is not feasible because of 

the highly ill-conditioned nature of the problem which limits the 

number of parameters that can be estimated. However, if prior 

information concerning the size of particles in a multimodal 

distribution comprising monodisperse samples is available, the values 

of r that correspond to the known values of the particle diameters 

can be calculated and only the 13's estimated. Then, the objective 

function to minimize with respect to the parameters l3j 

~ [cf~\t:) - .~ l3jexp( -ri ti ) ]2 
( 3. 30) 

1•1 I J=1 

which is linear in the parameters. The estimates of llj would then be 

the relative weights of each particle size corresponding to the known 

particle diameters. Again, the ill-conditioned nature of the problem 

and high correlations between parameter estimates generally limits the 
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number of parameters, p, that can be estimated to five or six in an 

unconstrained minimization. 

For the case of polydisperse distributions, the determination of 

the particle size distribution (PSD) is much more difficult as it 

centres on the inversion of the LaPlace integral in equation (2.98). 

It is this problem that has been the central subject in many papers irt 

the literature and has brought forth many novel analysis techniques in 

recent years that are applicable not only to dynamic light scattering, 

but to other estimation problems. A good discussion and comparison of 

all of these techniques was carried out by Stock and Ray (1985). 

This chapter is primarily concerned with the statistical problems 

encountered when trying to reconstruct the particle size distribution 

by a method known as exponential sampling applied to raw 

autocorrelation data obtained from analytical instruments. This 

method is an extension of model (3.30) to polydisperse instead of 

multimodal distributions. 

Since the raw autocorrelation data resembles an exponential 

decay, the method of exponential sampling approximates the continuous 

integral sum of exponentials in equation (2.98) by a discrete sum of 

exponentials at assumed values of the exponent. Thus, the objective 

is to fit a sum of exponentials, linear in the parameters, to g<1l ("!), 

the first-order, normalized autocorrelation function. We now minimize 

~[.J~l(T)- 'f'p.exp(-r·t· )] 2 (3.31)
i=1 '::j"l j•1 I I I 

at assumed values of the particle diameter. The exponents ri are 



47 


easily calculated directly from equations (2.91), (2.92) and (2.93). 

The estimates of the parameters pi are then estimates of f ( ri ) , the 

contribution to the measured autocorrelation function of the scattered 

light intensity by particles of size ri in the distribution of 

particle sizes. 

A paper by Ostrowsky et al (1981) which first introduced this 

method describes the application of this technique to dynamic light 

scattering data. He suggests that the sampling be made at equal 

intervals on a natural logarithmic scale of particle sizes. This 

enables the sampling to cover a wide range of practical particle 

sizes. The spacing on the scale between adjacent samplings is given 

by 

k=1, 2, ••• ,M (3.32) 

where the variable wmax defines the distance between adjacent samples 

on the logarithmic scale. Ostrowsky recommends that the value of M be 

no larger than five or six. This limits to five or six the number of 

exponentials that are fit to cj11("r.) in equation ( 3. 31) . Because of the 

ill-conditioned nature of fitting a sum of exponentials, Ostrowsky 

states that large negative estimates of 13 may be obtained when 

attempting to fit cPh.. ) to a larger number of exponentials functions. 

Ostrowsky also determined that because of experimental error, wmu may 

practically take on values no lower than 3.0 or greater than 

approximately 10.0. This ensures that the resolution on the scale is 

reasonable, depending on the sample, and avoids undue negative 
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parameter estimates. 

Since the resolution of a PSD reconstructed from only five or six 

samplings over a range of perhaps one or two thousand nanometers is 

extremely poor, Ostrowsky further recommended that the objective 

function in (3.31) be minimized five or six times over M parameters in 

a series of shifts. Thus, one may increase the resolution of the fit 

to up to 36 parameter estimates by combining all the estimates from 

each fit together. The length of the shift along the logarithmic 

scale for each of the M samplings is given by 

ln(rk,l+t = ln(rk,1) + w~17' k=l,2, ••• ,M (3.33) 
Ns 1=1, 2, ... ,N 

where N5 is the number of shifts. The shifting procedure along the 

scale of particle sizes is illustrated graphically in figure 3.3. 

The attractive feature of the exponential sampling method is that 

a linear least squares estimation algorithm may be used. It is 

apparent that it would be unreasonable to use a non-linear least 

squares procedure to obtain estimates of both the l3i and the ri (as 

in the monodisperse and bimodal cases) in a sum of exponentials model 

because of the extremely ill-conditioned nature of this problem. 

Again, UWHAUSDD was used to estimate the parameters in this linear 

model since UWHAUSDD allows for models that are linear in the 

parameters, not just non-linear models. 
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Figure 3.3 -Shifting procedure used in DLS analysis programs 
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A more recent paper by Morrison (1985) suggested that the 

resolution of the fitted PSD may be greatly increased by const~aining 

the parameter estimates to be non-negative. In this case, we minimize 

subject to l3j ~ 0 (3.34) 

Morrison claims that by including the non-negativety constraint, Mmay 

take on values of up to 20. Thus, by employing a non-negatively 

constrained linear least squares algorithm and applying the shifting 

procedure describe earlier, a very fine resolution of the logarithmic 

scale at which parameter estimates are obtained is possible with up to 

120 estimates being used to reconstruct the particle size 

distribution. A constrained linear least squares algorithm developed 

by Lawson·and Hanson (1974) which employs a QR decomposition technique 

was used to estimate the parameters in (3.34). 

Morrison also noted that when if1~L) is known only at n data 

points (as in our case), the variance depends upon the measured light 

intensities. He suggested that minimizing the weighted sum of squares 

subject to 13(~ 0 ( 3. 35) 

Thus, smaller errors in the measurement of high light intensities at 

low lag times are assumed and more significance is attributed to these 

measurements. 
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EXPERIMENTAL 

4.1 Introduction 

This chapter outlines the experimental data that was used, how it 

was obtained, how it was used in the parameter estimation programs and 

the programs themselves. 

4.2 Classical Light Scattering 

4.2.1 Experimental Data 

4.2.1.1 WALS 

The experimental data used for WALS data analysis was obtained 

from a round-robin experiment conducted by RAPRA. Roberts·et al 

(1977) used this data as one of the samples studied in their paper on 

the analysis of light scattering data. Table 4.1 displays a typical 

set of raw data obtained from a WALS instrument. The data shown in 

table 4.1 was collected from a RAPRA standard polystyrene sample with 

nominal weight-average molecular weight of 340,000 determined from 

extensive GPC analysis. The polymer was dissolved in a benzene 

solvent and subjected to vertically polarized blue light. The 

instrument used was a SOFICA photometer using a mercury lamp as the 

source of light. Since vertically polarized light was used, (1 + cos2 

g) = 1.0 in equation (2.80). The instrument was also calibrated so 

that Gb = 1.0. Therefore, from equations (3.20) and (3.21), we have 

(4.1) 
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The data shown in table 4.2 is specific to this polymer-solvent 

system and experimental arrangement just described~ , The raw data in 

table 4.1 and the system specific data in table 4.2 is all that is 

necessary to determine the measured value of Ra in equation (2.80) 

and Ktin equation (2.27). Thus, an experimentally determined value of 

K~ c;R9 may be calculated. The feasibilty of performing a WALS data 

analysis on a specific polymer-solvent system is dependent upon the 

availability of the necessary data shown in table 4.2. 

To apply the method of error propagation, estimates of the error 

variance in all of the measured variables are required. In a WALS 

experiment, these are H9 , the difference between the measured 

galvanometer readings for the polymer solution and solvent; c, the 

polymer concentration in solution; and e, the scattering angle at 

which measurement takes place. It is truly the variation in G9 (sol'n) 

that we are interested in, but since G9 (solv.) is a constant at each 

scattering angle, then the variation in G9 (sol'n) is equivalent to the 

variation in He as a function of scattering angle, but is not 

equivalent as a function of concentration. 

Included with the data received from Roberts were two sets of 

eight replicate experiments on a polystyrene sample in toluene solvent 

subjected to blue and green incident light respectively. Each set was 

similar to the data given in table 4.1 in that galvanometer 

measurements were recorded from a grid of eleven scattering angles and 

five concentrations. There was one exception where a set contained 
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TABLE 4.1 

Galvanometer Readings- Ge (sol'nJ, Ge (solv .} 

---------------------------------·-·-· ­
Scattering Polymer Concentration (g/ml)

-----·-·-----------------·-----------·· Angle 
0.01943 0.01295 0.00648 0.00486 0.00259 0.0(degrees) -------· 

20 .18.4 19.0 19.4 18.0 15.0 4.00 

30 12.2 12.6 12.4 11.8 9.25 2.35 

37.5 9.63 10.2 10.0 9.30 7.40 1.81 

45 8.21 8.51 8.35 7.90 6.30 1.52 

60 6.55 6.85 6.62 6.30 4.86 1.21 .. 
75 5.79 6.00 5.78 5.44 4.20 1.07 

90 5.50 5.70 5.42 5.10 3.83 1.00 

105 5.59 5.78 5.45 5.11 3.86 1.03 

!20 6.15 6.30 5.92 5.56 4.15 1.12 

135 7.35 7.52 7.03 6.54 .4.90 1.36 

142.5 8.49 8.60 7.99 7.46 5.61 1.54 

150 9.99 10.4 9.50 8.81 6.89 1.86 

-----------··-------·-·-----·-----------·-·---------------- ­
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TABLE 4. 2 

Constants fo,. Polysty,.ene/Benzene System 

Symbol 

Ao 

l'lo 

drt/dc 

Rb 

sb 

K" 

Comments 

wavelength of' the incident light 
fpol1111'1l:S(! blue Ught) 

solvent r-efracti'le index 

ref,.act1ve index 1nc,.~t 

Rayleigh ,.atio to,. ben:::ene at 90° 

r-elativescattered lnter.s1ty fer 
benzene at 90° 

an optical constant given by 

4 n2~(drtl2 

~tiAv \dcJ 
-------·------·--------------­

Value 

4.358 X 10-5 Cr.l 

1.5196 

0.1110 cm1g 

6.24 X 10-5 Clll-1 

1.0 

s.17 x io-7 
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measurements at only four concentrations. Thus it was possible to 

calculate. ,an estimate of the variance in the galvanometer readings at 

each grid point; see table 4.3. Each variance has seven degrees of 

freedom. By pooling the estimated variances along the rows and 

columns in table 4.3 estimtes of the error variance as a function of 

scattering angle and concentration may be obtained. The error 

estimates as a function of angle each have 35 degrees of freedom, 

while those as a function of concentration each have 77 degrees of 

freedom. The overall variance estimate of 41.8 has 385 degrees of 

freedom. The analysis of this set of replicate experiments had been 

carried out by Howley (1981). Plots of the estimated variance 

of G9 (sol'n) as a function of e and c, and 95% confidence intervals 

are given in figures 4.1 and 4.2. It is apparent from these figures 

that the estimated variance in G9 (sol'n) has a quadratic dependency on 

e and is independent of c. Thus, the error in the galvanometer 

readings increases quadratically as the angle of observation moves 

away from 90 degrees. Therefore, appropriate weighting must be 

accounted for when calculating the contribution to the total error 

variance in equation (3.19) by the galvanometer measurements. 

A quadratic function could be fit to the data points plotted in 

figure 4.1 and used in the error propagation model equations to 

calculate the variance to be used for weighting the galvanometer data. 

However, galvanometer readings are recorded at arbitrary magnitudes 

(within a grid of experiments) depending upon the scaling employed by 

the experimenter. For example, the data used in the analysis of 
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TABLE 4.3 

Estimated Variance in G (sol' nl from a set of Eight RepUcate Experiments8 

Scattering Polymer Concentration (g/mll 
Angle 

(degrees) 0.0101 0.0067 0.0050 0.0034 0.0025 

----------·----- ---·---· ·····----··-------------· 


30 145.7 70.6 

37.5 87.9 52.5 

45 58.1 33.7 

60 21.1 22.7 

75 9.4 11.4 

90 7.1 7.1 

105 12.1 10.9 

120 23.6 14.4 

135 49.0 28.5 

142.5 79.7 34.2 

150 134.2 48.0 

-------- . -----··--------------···· 

Pooled Yar 1 a nee 
57.2 30.4by Column 

-----~--------

140.6 85.6 126.9 

101.4 53.7 63.4 

53.1 31.4 43.7 

33.1 13.9 19.6 

15.6 8.6 11.8 

9.6 6.6 6.0 

16.0 7.6 5.7 

32.3 18.5 12.6 

72.3 27.8 19.4 

82.1 28.4 23.9 

67.9 51.4 47.7 

-----------·-------- ···-··- -----------------------­

56.7 30.3 34.6 

Pooled 
Variance 
by Row 

·-------- ·- --­

113.9 

7i.9 

44.2 

22.1 

11.3 

7.3 

10.5 

20.3 

39.5 

49.7 

69.8 

- ···---·----· ­

41.8 
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Figure 4.1 - WALS 
Estimated var(G8 ) vs Scatterlne Anele 
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variance was one order of magnitude higher than the that given in 

table 4.1. Thus, any function fit to the data in figure 4.1 would be 

dependent upon the experimenter's arbitrary choice of scale. The 

magnitude of the estimated variances of the data in table 4.1 would 

therefore be too high if a fitted quadratic function was used. 

Since only the relative weighting of galvanometer readings and 

the scattering angle are of interest, the data was transformed by 

taking the natural logarithm of each point and repeating the analysis 

of variance; see table 4.4. Use can be made of the approximate 

relationship 

var(H9 ) = var{G9 (sol'n)} ~ (~)~var[ln{G9 (sol'n)}] (4.2) 

where (G9 ~ is the average measured galvanometer reading for the 

polymer solution at scattering angle e. By using equation 4.2, 

appropriate estimates of var(H9 ) may be obtained independent of the 

scale used during data collection. The estimates of the variance in 

the logarithm of G9 (sol'n) and their 95% confidence intervals are 

plotted against scattering angle in figure 4.3. From this figure it 

can be seen that var[ln{G9 (sol'n)}] is independent on scattering 

angle. The average value of var[ln{G9 (sol'n)}] is 0.00586. 

Therefore, appropriate estimates of var(H 9 ) may be calculated from 

var(H9 ) = 0.00586(G9 )~ (4.3) 

Figure 4.4 shows that the calculated estimates of var(H 9 ) agree 

reasonably well with the data in figure 4.1. 
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TABLE 4.4 

Estimated Variance 1n ln [G9 (sol •nil from a eat of Eight Replic!lte Ex per 1ments 
(X 103) 

30 5.038 2.639 6.021 4.798 

37.5 5.371 3.580 8.200 5.315 

45 5.884 3.736 7.029 5.056 

60 4.752 5.532 9.632 4.845 

'!5 3.505 4.584 7.651 5.039 

90 2.760 4.023 5.487 5.001 

105 4.122 4.6H 8.259 5.284 

120 5.044 3.924 10.326 7.738 

135 5.181 3.656 11.344 5.766 

142.5 5.562 2.755 8.237 3.779 

150 5.528 2.240 3.722 3.864 
----- ___________!,._______ .• ·--------.. __________________.. ______________ 

Pealed Variance 
by Column 4.759 3.753 7.809 5.136 

10.194 

8.859 

!0.269 

10.351 

10.693 

6.286 

5.329 

7.436 

6.276 

4.843 

5.738 

6.265 

6.395 

7.022 

6.294 

4.713 

5.521 

6.894 

6.443 

5.035 

---~-·~~---l-··_···~-~ ­
I 

7.825 I 5.864 
------------------- j _____ -. ----------­



Figure 4.3 - WALS 

Est. var[ln(G8 )] vs Scattering Angle0.013 .....------------__:_._________________, 

0.012 ­ + + 

0.011 ­ ++ ++ -,..., CD 
0.01 ­

+ 
Cl + 

"'-J 

0.009 ­~ .... +L..J 
'-t 
Ill 0.008 ­ + 
> 

+'d 00.007 ­ 0'10G) ...... 
~~ 0td 0 

a o.oo6 l . 
0
I 

0 

I I I I I I I I I ID 
0 ~ '" 

0lrl 
0.005 ­riJ 0+ + 

+ 0++0.004 ­ + + + 
++0.003 ­ + 

I I I I I I I I I I I I I
0.002 I I I I I I I• . 75 90 105 120 

15 30 45 60 135 150 165 

Scattering Angle (degrees) 
0 Est. Var. + 957. Cont. Limits Mean 

~ 



Figut"'e L!-.4 - WALS 


I 

Prod & Est var(G 8 ) vs Scattorin1 An1le 
140 1----·----- ..---···---·-----·-·-·--·--··-----~-------------·---··----·--:-------------------­.. ·--l 
130 l A 

CD 120 -
t!J D
-....J 110H 
~ 

A> 100 I 

'C 
Q) 90 J
~ 
0 I 

..... 
'tj 80 J I 

Q) ! 

H 
 0\~ NCl~ 70 -j 
'tj 


A
-~ 60 l 
~ 

0
50 J'd g

Q) 
~ 40 
~ H 

a 30 
..... 
~ 
CD 
M 20 I ~ ~ 

l: j · I 1 I I I I I ~ I I I I I 1 I 1 1~ ~ 
15 30 45 60 75 90 105 120 135 150 165 

0 0.0058B*(G8 >! Scattering An1le 
A 

(de1rees)
Estimated var(G8 ) 

~ 



63 


Estimates of the error variance in measuring the polymer 

concentration are dependent upon the way in which the solutions were 

prepared. The usual method is to dissolve a known amount of dry 

polymer in the solvent and prepare the samples through successive 

dilutions of the original sample. Thus, the error present in the 

concentration of the samples is dependent upon the errors in weighing 

out the dry polymer and the dilution volumes. The errors that may 

have occurred in preparing the samples that were studied are not 

known. However, Rubio (1984) has shown by the method of 

error propagation that the error associated with the dilution process 

decreases with increasing dilution. Therefore, the initial sample 

with the highest polymer concentration has the largest error variance 

in the concentration. To study the importance of the contributions of 

the concentration variance to the total error variance in equation 

(3.19), the standard deviation in the concentration measurement was 

arbitrarily set to three different values: 0.05%, 0.5% and 5.0% of 

the measured concentration. 

Finally, an estimate of the error in measuring the scattering 

angle is required to complete equation (3.19). The scattering angle 

at which measurement takes place can be set manually or to 

pre-determined values automatically set by the manufacturer. Again, 

the means of angle setting was unknown for the experimental data used. 

Assuming that the scale of angle settings was graduated by degrees of 

one, a value of 0.5 degrees was used as an estimated of the standard 

deviation in the angle setting. 
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4 . 2 .1. 2 LALLS 

The experimental data used for LALLS was obtained from two 

graduate students in the department of chemical engineering at 

McMaster University. In the course of their graduate work, Alexander 

Penlidis and Victor Stanislawczyk collected data from the departments 

Chromatix KMX-6 LALLS instrument for a number of polyvinylacetate and 

polyacrylamide polymer samples in ethylacetate and water solvents 

respectively. This instrument uses a He-Ne laser light. A typical 

set of data is given in table 4.5. All of the data sets chosen to be 

analyzed contained five measurements and had baseline measurements of 

zero, simplifying equation (3.25). The system specific data required 

to calculate K*and R9 for the two polymer systems is given in table 

4.6. 

The recorded values of G9 and G0 were taken from a chart 

recording, an example of which appears in figure 4.5. The scale of 

the chart paper is 1000 units. The attenuators on the instrument are 

manipulated in such a way as to obtain measurements of G9 between 900 

and 1000, and measurements of G0 greater than 250 but less than G9 • 

The and G are then corrected for the different attenuators usedG9 0 

the attenuating function in equation (2.89). For the KMX-6, D is 

given by 

D= 
4n(att)i
i=1 

where (att)1 
(att)2
(att)3
(att)4 

= 
= 

= 

0.248 
6.448 X 10-2 

4.077 X 10-3 

1. 6367 X 10-S 

( 4. 4) 

If an attenuator is not in for a given measurement, then (att)i 1.0 
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TABLE 4.5 

Galvanometer Readings - G0 • Ge 

Polymer Concentration (g/ml x 104 ) Go Ge 


3.589 -492 895 


7.691 317 880 


10.254 275 890 


14.356 230 900 


17.945 220 ·-· 890 


---·· 

' ' 
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TABLE 4.6 

Constanta for: (1) Polyvinalyacatate/Ethylacetate System and 
(2) Polyacrylamide/Water Syste11 

Symbol Comments i 

System 

2 Units 

wavelength of the incident 
l1g'tt 

6.33 X 10-5 6.33 X 10-5 em 

l'lo solvent rsfractive index 1.3724 1.33 

drJ/dc refl"'act1ve 1ndex incl"'ement 0.111 0.185 cmtg 

8 scattering angle 4.73° 4.73° degi"'C!IIS 

Re,solv Rayleigh ratio for solvent 4.594 X 10-S 

an optical function of solid 
angl~ fieldatopand 
refl"'active index 

652.95 477.42 

K• an optical constant given by 

4~2.,~(d~\2 
11.0 NAV de} 

4.556x 10-8 1.185 X 10-7 
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and attenuator 4 is always in. 

Figure 4.5 shows that the measurement of Ge is very noisy while 

it is very stable for G0 • The values recorded for Ge represent an 

"eye-ball" average of the measurement. The usual way of recording Ge 

is to take a lower envelope value. This method assumes that all of 

the higher fluctuations and peaks are attributable to dust and other 

impurities. An alternate method chosen ignored the gross peaks in the 

measurements and used the average of the main body of the measurment. 

The effect of these different methods on the parameter estimates will 

be examined later. 

From equation (3.26), it can be seen that estimates of the error 

variance of the measured galvanometer readings at scattering angle e 

and at zero angle, and of the concentration of the polymer samples are 

required. 

The polyacrylamide data used included three sets of replicate 

pairs of experiments. Thus, an analysis of variance was performed on 

the measurements of G9 and G0 • The data used and the details of this 

analysis are relegated to appendix 4. The standard deviation in Ge 

and G0 was estimated to be 10 14, and 12 24 respectively, 

depending on whether the extreme values marked by asterisks in 

appendix 4 are included or neglected in the analysis. The 

fluctuations about the mean within a measurement are not a major 

contributor to the error since as the length of time over which the 

measurment of is recorded increases, the statistical uncertaintyG9 
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Figure 4.5- Example of a LALLS chart recording 
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in the mean decreases. Thus, the deviation about the mean within an 

experiment is small compared to the deviation between the means of 

replicate experiments. 

As in the case of WALS experiments, the error in the 

concentration of the polymer samples is dependent upon the errors in 

weighing the dry polymer and in the dilution volumes. However , the 

method of preparing samples is different from that . previously 

described. Instead of successive dilutions, subsequent samples are 

prepared individually from the dilution of a fraction of the initially 

prepared solution. The initial sample is prepared by dissolving a 

known amount of dry polymer in 100 mL of solvent. Subsequent samples 

are prepared by diluting a portion of the initial solution according 

to the formula 

ci = c, vi1 
vi1 + vi2 

i=2,3,4,5 ( 4. 5) 

where v11 and v12 are the volumes of initial solution and solvent 

respectively that make up the i 'th sample, and c1 is the 

concentration of the first sample. The values of and thatv11 v12 

were used to prepare the samples studied are listed in table 4.7. 

Applying the error propagation formula to equation (4.5) gives 

var(ci) = var(c1 ) + vf2 var(v11 ) + 1 var(vi) 
c¥ ci v~ ( v11 + v12)2 ( v11 + v12 )2 

( 4. 6) 

However, the error in measuring the volumes v11 and v 12 is the same 

since the same type of pipette was used. Combining the last two terms 

and setting var(v) = var(vi1) = var(v12), we obtain 
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TABLE 4.7 

Dilution Volumes Used in Pr-eparing Samples (mlJ 

----·--------------­
PVac/EAc 

Sa~~~;~le No. vi1 ---~---·---- yi1 yi2 

2 20 5 t5 t5 

3 20 15 10 to 

4 t5 20 5 10 

5 to 40 5 25 
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var (ci ) = var ( c1 ) + v~ + v~ var(v) (4.7) 
c~ c~ v~ (vi1 + vi2)2 

As mentioned earlier, var(c1) is dependent upon the weight of dry 

polymer and solvent volume 

(4.8) 

Applying the error propagation formula once again, 

var(c1 ) = var(w) + var(v) (4.9)
cf w2 v~ 

Estimates of var(w) and var(c) were determined to be (5 x 10-5 g)2 

and (5 x 10-2mL)2 respectively from the balance and pipettes used to 

prepare the samples. For every sample studied in both systems, v0 , 

the intial volume of solvent was 100 mL, however the amount of dry 

polymer added to make the initial solution was different; see table 

4.8. Evaluation of var(ci )/c~ for all i showed this quantity to have 

little dependency on the initial concentration c1. Therefore, the 

figures listed in table 4.9 represent the average value of var(ci )/c~ 

for each i for all the samples studied. So, the estimates of the 

error variance were calculated using 

var( ci ) = c~ [var( ci )] (4.10) 
c~ ] 

An example of the standard deviations calculated using equation (4.10) 

for one of the experiments is given in table 4.10. It is obvious that 

the error variance is not constant at different concentrations. 
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TABLE 4.8 

Weight of' Dry Polymer Added to 100 ml of Solvent to farm !ntt1al Solution 

····-----------·--·---·---
Systelll 

PVAc/EAc 

Pal)i~Cr)'lallide/ 

Water 

Sample ID 

Bi0-5 

810-7 

Bii-B 

Bii-9 

R-9E 

R-9I 

R-iOC 

R-10H 

R-110 

R-11G 

----·-···-­

Weight of Dr-y Poly:ner (gJ 

0.05960 

0.13585 

0.17945 

0.13630 

0.05250 

0.04870 

0.05!70 

0.04850 

0.052!50 

0.04770 

·­
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TABLE 4.9 

Average Eatlrnataa of [var (cil/c~] far PVAc/EAc and 
Polyacrylamlda/Watar Systems 

lvar tciJ tcfl x 107 

Saii!Pla Na. PVAc/EAc Palyacrylamtde/Water 

1 4.88 12.44 

2 47.38 81.89 

3 36.77 137.44 

4 61.57 568.00 

5 174.88 734.66 
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TABLE 4.10 

Eattmated Variance in Ccncantl"at1cn far Expar-1mant Bi0-7 

var tci) • c~ [var (ci) /c~l 

Sai!Ple No. c1 (g/ml) var [c1J {g/ml X 10131 

1 0.0013585 9.004 

2 0.0010868 55.962 

3 0.0007763 22.159 

4 0.0005822 20.870 

15 0.0002717 12.910 
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TABLE 4.11 

Su111111ary of' Eat:1:ostec2 Error Var1ancaa 

------------·----- -· ·---
Experhtent Variable Estimated Error Variance 

----------------·---..-­
NALS Ge 0.00588 lGeJ~ 

c (0.005x c)2 

(0.05x cJ 2 

(0.5x cJ 2 

(g/1111.)2 

• 
• 

e f;l.5)2 

LAL.l..S Ge (10)2- (14J2 

Go (12)2 - (24) 2 

c c~rvar tc1J1'11 (g/m1J2 

-...--..----·~ ...-- --------· ------­
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A summary of all of the estimated error variances used in the 

para~eter estimation programs for both WALS and LALLS data analysis 

appears in table 4.11. 

4.2.2 Analysis Programs 

For both the WALS and LALLS data, parameter estimates were 

obtained for four different objective functions for the purposes of 

comparison. These estimates were obtained from non-linear least 

squares and error propagation methods applied to K*c/R9 and R9 . For 

the case of regression on K~c/Re for LALLS data, ordinary linear 

least squares was used. A general algorithm for the WALS and LALLS 

parameter estimation programs is given in figure 4.6. The objective 

functions that were minimized for each of the four cases were 

presented in chapter 3. The main program prompts the user to 'ENTER 

!TYPE - 1,2,3,4' where the value of !TYPE determines the objective 

function according to table 4.12. Copies of these programs may be 

found in appendices 2-B and 2-C. 

The estimation subroutine UWHAUSDD was used to estimate the model 

parameters (see appendix 2-A). This routine employs a Marquardt 

Compromise procedure which is basically an algorithm that compromises 

between the steepest descent method (for linear models) and the 

linearization method (for non-linear models) to find the minimum of an 

objective function. The parameters required in the UWHAUSDD argument 

list are described briefly below. 

!TYPE - problem number 
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Calculate 
IK.c/fYexp 

and IAJexp 

Determine ob}ecti ve 
function according 
to ITYPE 

Call parameter 
estimation routine 

Calculate 
IK.c/f\Jpred 

Output data 
file!l 

Figure 4.6- General algorithm of WALS and L.4LLS programs 
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TABLE 4. 12 

Relation Between ITYPE and WALS/LALLS Objective Function 

ITYPE Objective Function: f 1z .~J Method of Estimation1 

1 error propogat ion 

2 error propagation 

3 non-linear least 

squares (WALSJ. 1 inear 

least squares (LALLSJ 

4 non-1 inear least 
sq;Jares 
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MODEL - external user supplied subroutine 

NOB - number of observations 

OBJEC - vector of objective function values to be 

Ifmet (0.0, K c /Re , for method of errorR9 

propagation, non-linear regression on K 
it c;R9 

and R9 respectively) 

NP - number of model parameters 

BETA - vector of model parameter estimates 

DIFF - vector defining parameter difference 

gradient at which objective function 

is evaluated 

SIGNS - vector allowing for non-negativety of 

parameter estimates; 0 for -oo < ~ < +oo ; 

1 for ~ > 0 

EPS1 = 1 x 10-6 - convergence criterion for change in 

subsequent sums of squares of residuals 

EPS2 = 1 x 10-9 - convergence criterion for change in 

subsequent values of each parameter estimate 

MIT = 15 - maximum number of iterations allowed 

FLAM = 1.0 - determine the step size taken by the 

FNU = 10.0 estimation routine (values changed within 

routine); setting FLAM= 0.0 is equivalent 

to ordinary linear least squares estimation 

via steepest descent method 

The external MODEL subroutine is supplied by the user and defines the 
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objective function(s) to be minimized; see appendices 2-B and 2-C. 

The input data files for WALS and LALLS, although similar, are 

sufficiently different to warrant separate discussion. 

4.2.2.1 WALS 

An example of a WALS input data file is given in figure 4.7. 

Each input item is described below. 

KPRIME an arbitrary constant used in the absissa to 

construct a Zimm plot; see figure 3.1 

CVAR, DTVAR - values of the variance estimates in 

measuring polymer concentration (0.05%, 

0.5%, or 5%) and scattering angle 

(0.5 degrees) 

UWHAUSDD parameters NOB, NP, EPS1, EPS2, MIT, FLAM, FNU as 

discussed previously 

BETA - initial guess of model parameters Mw, 

<s2 >z , A 2 , and A 3 

C,DTHETA -polymer concentrations (5 values) and 

scattering angles (12 values) at which 

measurements were recorded 

GSOLV - measured galvanometer readings for the 

solvent at each angle of measurement 

(12 values); independent of concentration 

GSOLN 	 - measured galvanometer readings for the 

polymer solutions (60 values); a function of 
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0.00 0.50 
1 60 4 1.E-6 1.E-9 15 1. 10. 
330000 1.0 0.0004 0~01 
0.01943 0.01295 0.00648 0.00486 0.00259 
20. 30. 37.5 45. 60. 75. 90. 105. 120. 135. 142.5 150. 
4.00 2.35 1.81 1.52 1.21 1.07 1.00 1.03 1.12 1.36 1.54 1.86 
18.4 19.0 19.4 18.0 15.0 
12.2 12.6 12.4 11.8 9.25 
9.63 10-2 10.0 9.3 7.4 
8.21 8.51 8.35 7.9 6.3 
6.55 6.85 6.62 6.3 4.86 
5.79 6.00 5.78 5.44 4.20 
5.50 5.70 5.42 5.10 3.88 
5.59 5.78 5.45 5.11 3.86 
6.15 6.30 5.92 5.56 4.15 
7.35 7.52 7.03 6.54 4.90 
8.48 8.60 7.99 7.46 5.61 
9.99 10.4 9.50 8.81 6.89 
5.17E-7 6.24E-5 1.0 

Figure 4. 7- WALS input data file 

'I 

!RPRIME 
!CVAR,DTVAR 
!UWHAUSDD 
!BETA 
!C 
!DTHETA 
!GSOLV 
!GSOLN 

!KSTAR,RB,GB 
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angle and concentration 

KSTAR,RB,GB -the values of K~, Rb and Gb (refer to 

equation (2.78) 

4.2.2.2 LALLS 

An example of a LALLS input data file is given in figure 4.8 and 

a description of each item is given below. 

GVAR,GOVAR - values of the variance estiamtes in 

measuring G9 and G0 from chart recordings 

(10.0 and 12.0 respectively) 

CVAR -values of [var(ci )/c~] used to estimate the 

variance in concentration measurement in 

equation (4.10) (5 values) 

UWHAUSDD parameters NOB, NP, EPSl, EPS2, MIT, FLAM, FNU as 

discussed previously 

BETA - initial guess of model parameters Mw and ~ 

c - polymer concentrations at which 

measurements were recorded 

GSOLN,GSOLNO - measured galvanometer readings of G and G09 

at each polymer concentration (5 values 

each) 

DCODE - a coded integer value between 1 and 5 

corresponding to a specific attenuation 

function as given by equation 4.4; 

corresponding values of D are given in table 

4.13 
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10.0 12.0 
174.88D-7 61.57D-7 36.77D-7 47.38D-7 4.879D-7 
1 5 2 1.E-6 1.E-9 15 1. 10. 
1000000 0.0002 
3.589D-4 7.6907D-4 10.2543D-4 14.356D-4 17.945D-4 
885 875 885 890 882 
492 317 275 230 220 
3 3 3 3 3 
4.5562D-8 4~5936D-6 652.952 

!GVAR,GOVAR 
!CVAR 
!U'WHAUSDD 
!BETA 
!C 
!GSOLN 
!GSOLNO 
!DCODE 
!KSTAR,RSOLV, 
DISGMA 

Figure 4. B- LALLS input data file 
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TABLE 4.13 

Relation Between OCOCE and Value at Attenuating Function, D 

____..__ 
----·----~·-

DCDDE Attanuatars In 
4 

o- n(attJ.
1:1 I 

i 2,4 i. 05:%3 X 10-6 

2 3, 4. s.s12a x !.o-a 

3 1, 3. 4 1.6549 X 10.:.8 

4 2, 3, 4 4.3026 X !0-9 

5 1. 2, 4 2.6173 X 10-7 

, , 
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KSTAR,RSOLV, - the values of K• , Re for the solvent, and 

DSIGMA (<r'X"y1particular to a set of data 

4.2.2.3 WALS and LALLS OUtput Data Files 

The output data files generated by the WALS and LALLS programs 

are now described. 

ZIMMPROP.OAT - stores the absissa and ordinate data 

required to construct a Zimm plot in the 

case of WALS and a K1 c;R9 plot for LALLS 

VARPROP. OAT - contains the relative contributions of each 

error variance term accounted for in the 

error propagation model to the total error 

variance 

STATPROP. OAT - stores the complete UWHAUSDD screen output 

for later viewing if desired 

SUMPROP.OAT - contains a summary of UWHAUSDD results such 

as parameter estimates, confidence intervals 

and correlation matrix 

RESIDS.OAT - contains the residuals from the fit 

Obviously, the file VARPROP .OAT is relevant only when the method of 

error prop 3ation is applied. 



86 


4.3 oynamic Light Scattering 

4.3.1 Experimental Data 

To reconstruct particle size distributions through the 

application of the models given in equations (3.28) to (3.31), (3.34) 

and (3.35), raw autocorrelation data is needed. Such data was 

obtained from a NICOMP Model TC-200 computing autocorrelator at the 

C-I-L research laboratories in Toronto. All of the polymer samples 

studied were monodisperse, bimodal and polydisperse distributions 

prepared from Dow polystyrene latex particle standards. In addition 

to these samples a broad polyvinlyacetate distribution sample produced 

in an experimental continuous stirred tank emulsion polymerization 

reactor (Penlidis, 1985) was studied. 

The Model TC-200 computes the second-order autocorrelation 

function over 64 channels, each channel corresponding to one unit of 

time delay, t. The last eight channels are used to determine the 

baseline A in equation (3.27) at infinite time delay. An example of 

the autocorrelation function d2~r) that the Model TC-200 displays is 

shown in figure 4.9. The raw autocorrelation data, is easily obtained 

from the Model TC-200 and displayed in the format given in figure 

4.10. 

In addition to the 64 channel contents, the total number of 

photopulses processed by the autocorrelator, the number of prescaled 

pulses and the elapsed time of the correlation in milli-seconds is 
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Figure 4. 9- Raw autocorrelation function display from NICOMP 
~ Model TC-200; G ( ) 
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TOTAL COUNTS = 137088926 

PRESCALED COUNTS • 137105426 

RUN TIME<MSEC> • 732172 

CHANNEL CONTENTS 
111397 
107207 
103568 
100420 
97696 
95372 
93360 
91628 
90100 
88803 
87678 
86708 
85856 
85105 
79833 
79848 

110314 
106233 
102724 
99702 
97098 
94845 
92889 
91220 
89763 
88498 
87419 
86476 
85661 
84935 
79847 
79839 

109234 
105315 
101919 
99024 
96506 
94327 
92447 
90S31 
89430 
88218 
87179 
86270 
85479 
84760 
79839 
79845 

108193 
104428 
101161 
98352 
95919 
93837 
92028 
90467 
89104 
87948 
86928 
86055 
85284 
84622 
79841 
79838 

Figure 4.10- Channel content display from NICOMP Model TC-20C 

' I 
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displayed. These figures may be used to calculate the total number of 

counts and the baseline as a check on the displayed figures using the 

following relations 

total counts = prescaled counts x prescale factor (4.11) 

baseline = channel width x total counts x prescaled counts 
run time x 1000 x 2048 (4.12) 

The channel width and prescale factor are determined by the instrument 

during the initial stages of the run. The channel width is measured 

in micro-seconds. The factors of 1000 and 2048 account for the 

discrepancy in time units between channel width ~) and run time 

(ms), and the fact that the displayed correlator channel contents have 

all been predivided by 2048. Thus, the actual value of d~~) for the 

first channel is 111397 x 2048 = 2.2814 x 108 . 

The values of the variables listed in table 4.14 were the same 

for each sample studied. The photon pulses were measured at a 

scattering angle of 90 degrees. With this information it can be 

determined that K = 0.018673 nm~for equation (2.92). The following 

relationships between Dt, the translational diffusion coefficient, and 

r, with the particle diameter D, may be derived. 

Dt = 214.174 nm2 (4.13) 
D/2 ~ 

r = 0.074679 ~s (4.14) 
D/2 

from equations (2.91), (2.92) and (2.93). The particle diameter is 

equivalent to twice the hydraulic radius, Rh, for spherical particles, 

hence the denominators in equations (4.13) and (4.14) are D/2. 
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TABLE 4, 14 

Constants Used 1n Dynamic Light Scatter-ing Expar-1ments 

Symbol Comments Value 

T temperatura or the experiment 293 K 

'Is solventre1'ractive1ndax 1.330 

sin (8/2) scattering angle where the 
measur-ement occurr-ed 

0.701 

Ao laser wavelength 633 X 10-S Cll 

K an optical constant given by 

4nryin (9/2) 

Ao 

0.01BS73 : n,.-1 
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If prior information about the type of distribution being studied 

is available, the Model TC-200 has the capability of allowing the user 

to select a fit number to capitalize on this information. The fit 

numbers range from 0 to 6, where 0 would be selected when the 

distribution is known to be monodisperse or bimodal, and 6 for a broad 

distribution. The default fit number of 2, which appears to assume a 

slight bias towards bimodal distributions in the fitting procedure, 

was employed for most of the sample runs in this study. 

4.3.2 Analysis Program 

The program used to estimate the model parameters in equations 

(3.28) to (3.31), (3.34) and (3.35) is listed in appendix 2-D. Eight 

model choices are available to the user depending on the value of 

!TYPE. Table 4.15 details the correspondance between !TYPE and the 

form of the objective function. The flowchart depicted in figure 4.6 

is equally applicable to this program. 

The estimation subroutines UWHAUSDD and NNLS (non-negative least 

squares) were used to estimate the model parameters. UWHAUSDD was 

discussed in section 4.2.2. The NNLS estimation routine employed was 

developed by Lawson and Hanson (1974) at Pasadena's Jet Propulsion 

Laboratory; see appendix 2-E. Their algorithm does not require an 

external MODEL subroutine, but solves the set of linear equations 

~~f~F ~... , subject to X ~ 0 ( 4 .15) 

where the matrix ~ contains a set of n linear equation coefficients, ~ 

is a vector of p parameters and ~ is a vector of response values. The 
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TABLE 4.15 

Relation Between ITYPE and D~S Hodels 

ITYPE Equati.an Model: f 113jl Method of Estimation 

1 C3.31) 
m
I p1exp 1-r1t 1J 

J=1 PJ o 
NNLS - non-negative 
linear least squares 

2 

3 

C3.31} 

C3-27J f p
1
exp 1-r1t 11 

J:1 

transformed NNLS 

UWHAUSDD - linear 
least squares 

4 C3.24 pexp 1-r t 11 UH,HAUSDD -
least squares 

non-linear 

5 C3.25l ~exp 1-r1 t 11 + ~exp l-r2 t 1 1 UWHAUSDD -
least squares 

non-linear 

6 C3.261 p
1
exp l-r1t 

1 
J +p

2
exp l-r

2
t 1 I 

UWHAUSDD -
least squares 

linear 

7 C3.2SJ p
1
exp l-r1t 1 J +~exp l-r2 t 1 I 
+ P:Jexp l-r3 t 1 J 

UWHAUSOO -
least squares 

linear 

a C3.26l p
1
exp l-r1t 

1
J +~exp l-r2t 1 J 

+~J:Jexp l-r3 t 1 l+J34exp l-r4 t 1 I 
UWHAUSOO -
least squares 

linear 

http:Equati.an
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NNLS routine solves (4.15) through a QR matrix decomposition method. 

For this DLS application, the linear model has the following form. 

(4.16)exp(- r1t 1 ) exp(- r2t 1 ) exp(- rmt1 ) 131 
exp(- r1t 2) exp(- r2t 2) exp(- rmt2) 132 

exp(- r1 t~ g~-z:) 
With this model form, it is simple to estimate anywhere from one up to 

twenty parameters at a time. 

The parameters required by NNLS in the argument list are 

described below. 

A - n xp design matrix of measured or calculated 

quantities 

MDA - row dimension of ~ (equivalent to number of. 

observations) 

M - number of observations 

N - number of parameters (equivalent to p) 

- vector of observations or responses 

- vector of parameter estimates 

RNORM - contains euclidean norm of the residual 

vector 

- vectors of working space of length N and M 

respectively 

INDEX - an integer vector of working space of length 

at least N 

MODE - an NNLS success/failure flag 
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The data that is read and used by the main program from the data 

input file is dependent upon the value of !TYPE entered interactively 

by the user. An example input data file is given in figure 4.11. 

DEL~T - channel width (micro-seconds) 

TCOUNT - total number of photopulses counted 

PCOUNT - number of prescaled counts 

RUNT - run time (milli-seconds) 

PFAC - prescale factor 

COUNTS - channel contents (64 values) 

UWHAUSDD parameters NOB, NP, EPS1, EPS2, MIT, FLAM, FNU as 

discussed previously 

SPN - determines whether or not negative 

parameter estimates are allowed (yes, if 

SPN = -1; no, if SPN = 1) 

BETA! - initual guess of p parameters (only for 

!TYPE > 3) 

DL - lower diameter value (in nanometers) at 

which parameter estimates start at 

OMEGZ-\MAX - determines logarithmic spacing between 

parameter estimates on diameter scale 

SHIFTS - number of times a set of p parameters 

are estimated in each shift 

NEX - determines whether a weighted NNLS fit is 

performed (see equation (3.35)) where we 
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150 186178374 18616715 1055671 10 
311691 309025 306523 304122 
301799 299587 297448 295392 
293417 291525 289688 287925 
286243 284608 283035 281519 
280067 278654 277296 275973 
274720 273510 272337 271211 
270125 269087 268074 267111 
266173 265283 264431 263587 
262781 262014 261269 260540 
259849 259179 258535 257919 
257333 256748 256185 255642 
255114 254625 254161 253694 
253256 252812 252390 251980 
251586 251200 250834 250480 
240799 240811 240813 240814 
240837 240828 240826 240828 
1 56 5 1.E-6 1.E-9 15 0. 10. -1 
0.01 0.1 0.2 0.1 0.02 
3.0 5.0 6 1 1 

!DELTAT,TCOUNT,PCOUNT,RUNT,PFAC 
!COUNTS 

.. 
!UWHAUSDD 
!B~I (IF !TYPE > 2) 
! DL ,OMEGAMAX, SHIFTS ,NEXl, NEX2 

Figure 4.11- DLS input data file 
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minimize 

.f [cj1l(r)NEX _ ~ cj~l(-z: )NEX-1 j3.exp( _ r· t· ) ]2 
1=1 I i=1 I J J I 

(4.17) 

- (4.17) is equivalent to (3.35) when 

NEX = 2; NEX = 1 is the unweighted case 

Finally, several output data files are created by the main 

program. 

DLSOur.DAT - contains g~r) vs t data 

DIS.DAT - contains the parameter estimates of 

distribution fit 

PREDICT.DAT - contains the predicted values of g1~~) 

RESLIM.DAT - contains the residuals of the fits 
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RESULTS AND DISCUSSION 

5.1 Introduction 

Some of the results from the computer parameter estimation runs 

are presented with accompanying discussions and conclusions. 

5.2 Classical Light Scattering 

5.2.1 Wide Angle Light Scattering 

5.2.1.1 Experimental Results 

The results presented in this section were obtained from the 

analysis of the data given in tables 4.1 and 4.2. A Zimm plot of this 

data (K~c;R9 vs sin (8/2) + 100*c) is given in figure 5.1. From 

this figure, one can easily see the difficulty in obtaining results 

from a manual double extrapolation to zero polymer concentration and 

zero scattering angle. This alone justifies the use of computerized 

parameter estimation procedures. 

The following initial guesses for the parameters in equation 

(2.74) were obtained from the results reported by Roberts et al 

(1977). 

Mw = 340 000 

16'fl2<s2 ~ = 1.0 (<s2 >z =4.0 10-6 em)


3 :>.2 

A2 = 0.0004 

A3 = 0.01 


The results of the parameter estimation routines are presented in 

table 5.1. With these results, the contributions to the total error 
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variance by concentration and scattering angle errors can be made as 

well as the effect of their presence or absence on the parameter 

estimates. 

An important statistic to look at before discussing the results 

is the variance of the residuals given in the last column of table 

5.1. This is given by 

! ~va~i(ei)
•=1 

- ve; -J 
var( ei ))] e 

(5.1) 

where the first term is the actual residual for point i, the second 

term is the mean of all of the residuals and 'lle is the associated 

degrees of freedom. For the linear case, and approximately for the 

non-linear case, the expected value of the mean of the residuals is 

zero, and equation (5.1) becomes 

(5.2)~ va~~ei v~e 

and should have an expected value of one. However, all of the values 

of ·the variance of the residuals in table 5.1 are less that 0.1, one 

order of magnitude too small. This suggests that the assumed error 

structure is not correct, the magnitude of the estimated errors being 

too high. Since the effect on the parameter estimates and the 

variance of the residuals by the errors in scattering angle and 

concentration is small (with the exception of var(c) = (0.05 x c)2 
), it 

may be that too great a contribution is being attributed to the 

measurement of the galvanometer readings as predicted through equation 

(4.3). An examination of VARPROP.DAT revealed that the error variance 

calculated for the galvanometer readings accounted for greater than 
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90% of the total estimated error for most of the runs with the 

exception again being when var (c) - ( 0. 05 x c )2 • Even in this case, 

more than 80% of the estimated error was contributed by the 

galvanometer errors. This confirms that the errors in c and e have 

the least significance and the error propagation runs (!TYPE = 1,2) 

were therefore repeated with equation (4.3) modified to 

-2var(H 9 ) = 0.0005(G9 )9 (5.3) 

The results of these runs are presented in table 5.2. A comparison of 

tables 5.1 and 5.2 shows that the point estimates of the parameters 

have not been significantly affected by using equation (5.3). However 

the variance of the residuals are now of the appropriate magnitude, 

approaching a value of one. 

The discussion for the results in table 5.2 is divided into two 

categories; a study of the effects of the type of estimation routine 

employed and of the error structure assumed in the method of error 

propagation. 

5.2.1.2 Effect of Estimation Routine 

Table 4.12 contains a summary of the four estimation routines 

that were used from which the results in table 5.2 were obtained. 

Only the error propagation runs where var(c) = var(8) = 0 are 

discussed here since these results are the only ones that are 

comparable with those obtained from the non-linear least squares 

method. In all of these cases, only the error in the measurement of 

G9 (sol'n) is considered. 



TABLE 5. 1 

Summary of Results from WALS Parameter Estimation 

!TYPE Standard Deviation 

c e 

---·. -----­

-·-· ••·----·-----------·-··-•'••·N-<"o-·••• <• ----...----------• ~---------..------ -­ .... , -··-~-- ______,.__ --------­
Parameter Estimates :!: 95% Conf 1dence Intervals Variance of the 

A 
----·;;...--···------­

Residuals 

Mw ~16n2(s2) 'A
2 

(X104) A3 (X104) n e2 0 
3A2 ~~~~-~e----- .. --------------------­ ···---------- -----------­ ----·--·---··-------- ----····-­ ·····­ - ·------- ---­

1 0.0 

0.005 XC 

0.05 XC 

0.5 XC 

0.0 

0.0 

0.0 

0.0 

326, 000 :!: 30, 820 

326,000:!: 30,820 

326, 000 :!: 30, 820 

325, 900 :!: 30, 960 

1. 121 :!: 0. 149 

1. 121 :!: 0. 149 

1.121:!: 0.149 

1.123 ± 0.150 

4.567 :!: 0.387 

4.567:!: 0.387 

4,567 ± 0.387 

4.559:!: 0.388 

1. 193 :!: 

1.193 :!: 

1.193:!: 

1.197 :!: 

0. 132 

0.132 

0.132 

0.132 

0.0646 

0.0646 

0.0646 

0.0630 

.. 
0.0 

0. 005 XC 

0. 05 XC 

0.5 XC 

0.5 

0.5 

0.5 

0.5 

325, 700 :!: 
325, 700 :!: 

325, 700 :!: 

325, 600 :!: 

30, 610 

30, 610 

30, 620 

30, 760 

1. 118 ± 0. 148 

1.118:!: 0.148 

1.118:!: 0.148 

1. 120 :!: 0. 149 

4,567:!: 0.385 

•1.567:!: 0.385 

4,567:!: 0.385 

4.560 ± 0,386 

1.193 ± 0.131 

1. 193 :t 0 . 131 

1.193 :t.: 0.131 

1.197 ± 0.131 

0.0631 

0.0631 

0.0631 

0.0616 

.... 
0.... 

2 o.o 
0. 005 XC 

0.05 )( c 

0.5 XC 

0.0 

0.0 

0.0 

0.0 

322, BOO :!: 29, 420 

322, BOO :!: 29, 400 

322, 100 :!: 2B, 1'10 

301,300 ± 1~790 

1. 113 :!: 0. 143 

1.113:!: 0.143, 

1.103:!: 0.13"1 

0.967 ± O.OB3 

4.531:!: 0.384 

4.531 ± 0.384 

4,522:!: 0.373 

4.272 ± 0.326 

1. 211 ± 0. 132 

1.211 :!: 0.132 

1. 220 ± 0. 130 

1.341:!: 0.147 

0.0644 

0.0643 

0.0585 

0.0135 

0.0 

0.005 XC 

0.05 XC 

0.5 XC 

0.5 

0.5 

0.5 

0.5 

322, 900 ± 28, 870 

322, 900 ± 28, 850 

321, 900 ± 27, 770 

301,200 ± 17,770 

1. 111 ± 0. 140 

1. 111 :!: 0 . 140 

1.100 ± 0.135 

0.966:!: 0,063 

4.527 ± 0,378 

4.527:!: 0.378 

4.517 ± 0.370 

4.271 :!: 0.325 

1. 218 :!: 0. 130 

1.218 :!: 0.130 

1.226 ± 0.129 

1, 342 :!: 0. 147 

0.0611 

0.0610 

0.0560 

0.0134 

3 - - 417, 000 :!: 86, 410 1. 723:!: 0.444 5.075 ± 0.548 1.035:!: 0.161 

4 - - 320, 300 ± 27, 940 1. 111 :!: 0.139 4.512 ± 0.374 1.200 :!: 0.129 

-----------··------------------ ------ ·--------------·---------- -- ~-· ·-------------------­
~ 



TABLE 5.2 

summary of Results from WALS Pnrameter Estimation [mod1t1od var (H ) ) 

- ···- ··-··----- -----·-····- - .. -------- -----··-. -----·-- ---------·-. --- --- -- ··------ ... ----- --- --·· ·········· . ---·--. ---- ··- . ·- ·······-····--·-·····- __ .,, __________ -- ·--· --- .. --- - ···-- --- ----------------- ­

ITYPE Standard Deviation Parameter Estimates + 95X Confidence Intervals Variance of the ---------------------------------------- - ... ·---·-------·------- ­.... Residuals"" 'A (x104) A' (x104}c e Mw ~16n2(s2} 2 3 n e2 v<I____:l_v
3A. 1•1 var(e1 .. e -.. -----··· --- .. ······· ---------.------ ····------- ....... ·······- -- ··-····· ----- -----· ... ~- .. .. -- ... . -- ... -­

1 0.0 0.0 326, 000 :!: 30, 820 1. 121 :!: 0. 149 4.567 :!: 0.387 1.193:': 0.132 0.7570 

0.005 XC 0.0 326,000:!: 30,820 1. 121 :!: 0. 149 4.567:!: 0.387 1. 193 :!: 0. 132 0.7570 

0. 05 XC 0.0 326, 000 :!: 30, 840 1. 121 :!: 0. 149 . 4.566:!: 0.387 1. 193 :!: 0. 132 0.7547 

0.5 XC 0.0 324, 700 :!: 32, 180 1. 141 :!: 0. 157 4.493:!: 0.397 1.231 ± 0.136 0.5888 

0.0 0.5 323,200 ± 28,980 1.091± 0.141 4.563 ± 0.370 1. 198 :!: 0. 126 0.6078 
.....0.005 XC 0.5 323,200:!: 28,980 1.091± 0.1•11 4,563:!: 0.370 1.198 :!: 0.126 0.6078 
0 
tv0. 05 XC 0.5 3?3, 200 ! 29, 000 1. 091 :t: 0 .1•11 4 •563 ± 0 . 371 1.198 ± 0.126 0.6062 

0.5 X c 0.5 324.300! 30.720 1 • 119 :!: 0 . 150 4.526 :t 0.382 1.220:!: 0.131 0.4896 

2 0.0 0.0 322, 800 :!: 29, 420 1.113 ± 0.143 4.531:!: 0.384 1.211 :!: 0.132 0.7548 

0.005 XC 0.0 322,800:!: 29,250 1. 112 :!: 0. 142 4.530:!: 0.382 1.212 :!: 0.131 0.7453 

0.05 XC 0.0 313,300:!: 22,850 1.042:!: 0.109 4.413:!: 0.340 1. 2i'B :!: 0. 130 0.4180 

0. 5 XC 0.0 298,200 ± 16,540 0.935 ± 0.074 4.271 :!: 0.345 1. 340 ± 0 . 174 0.0249 

0.0 0.5 319,400:!: 25,940 1.080:!: 0.126 4.473 :!: 0.357 1 • 266 :!: 0. 125 0.5143 

0,005 XC 0.5 319, 300 :!: 25, 880 1.079 ± 0.126 4.472:!: 0.357 1.266 ± 0,125 0,5112 

0.05 XC 0.5 311,800:!: 22,270 1. 026 ± 0. 107 4.402 ± 0.337 1.293 ± 0,129 0.3483 

0.5 XC 0.5 297,600:!: 16,430 0.933:!: 0.074 4,263 :!: 0.343 1,344 :!: 0 • 173 0.0243 

3 - 417, 000 :!: 86, 410 1. 723 ± 0.444 5.075:!: 0.548 1.035 :!: 0.161-
4 - - 320, 300 :!: 27, 940 1. 111 :!: 0 • 139 4.512:!: 0.374 1 • 200 :!: 0 • 129 

-. ·-------·-··- --·-··---·--··-·-----·- ··-······ ·-····--- --·-··- -··-··-···-·- ...... ·····- ··-···-··---···-· ~ -·--··-------:---------------- ··--···· .......... 

~ 
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A glance at the four sets of parameter estimates clearly shows 

the results from a least squares analysis on K~C/Re (!TYPE - 3) to be 

the least accurate (with respect to the estimate of the weight average 

molecular weight) and the least precise. The poor results may be 

attributed to the violation of an assumption under which least squares 

analysis is valid, that being that K* c/Re has constant error 

variance. Recall that a strong quadratic relationship between the 

error variance of G9 (sol'n) and the scattering angle was demonstrated 

in figure 4.1. Since R9 appears in the denominator of K* cjR9 , the 

error variance of this latter variable would be far from constant. 

The parameter estimates from the other three routines all agree 

favourably with each other and with results obtained by Roberts et al 

(1977). All of the point estimates are well within the 95% confidence 

intervals of the other point estimates. 

The point estimates from the two error propagation applications 

are similar because the minimization of (3.12) is equivalent to 

minimizing 

~{ He· 
~ vardi91) 

( 5. 4) 


for !TYPE = 1, and 

1 (5.5)k{va~fuei [ - (K~:t. (K;:L]}' 
for !TYPE= 2, when var(c) = var(9) = 0. The only difference between 

(5.4) and (5.5) is the inversion of the ratio of predicted K~c/Re 

values to observed. Thus, there are only small differences in the 
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results from the error propagation applications. 

It is certain that accounting for the error structure exhibited 

in the measurement of G9 (sol'n) (figure 4.1) has yielded improved 

parameter estimates over simple non-linear regression of K* c;R9 • 

Note, however that non-linear regression of R9 yields results similar 

to those from error propagation. This was to be expected since R9 

contains the major source of error. However, the following analysis 

helps to explain the closeness of these results. 

It can easily be shown that (3.3) is equivalent to minimizing 

2 n • 2 2
Rb I~ Sln ~( ( Hgi)obs - ( H&j)pred (5.6) 

which is a weighted sum of squares where the weights are · given by 

sin2e1• The variation in 1/sin2e with e is quite similar to that of 

var[G9 (sol'n)] as given in equation (5.3). Figure 5.2 compares 

l/sin2e with 0.0005(G9~, normalized to 1.0 at 90°, as a function of 

e for the data used in this experiment. It is apparent from this 

figure that results obtained from a non-linear least squares 

application on Re are valid since appropriate relative weighting has 

been applied to the data points. Thus, these results compare 

favourably with those from the method of error proPigation. 

\­
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5.2.1.3 Effect of Error Structure on Error Propagation 

Errors in Polymer Concentration 

For ITYPE-1, increasing the relative error in polymer 

concentration from zero to 0.5% had little effect on the parameters 

listed in table 5.2. When the error is increased to 5.0% however, the 

point estimates of the parameters changed slightly and were less 

precise. The variance of the residuals also decreased from 0.75 to 

0.59 suggesting that a 5.0% relative error in the polymer 

concentration is too high, causing var(e 1 ) to be over- estimated. An 

examination of VARPROP.DAT showed the contribution of the error in 

concentration to be as high as 40% of the total error. 

Similar conclusions may be drawn for the results obtained with 

ITYPE=2, although these results are more sensitive to changes in the 

relative error in the polymer concentration. That is, increasing the 

error in concentration effects a noticeable change in the point 

estimates and their precision at lower relative errors than with 

ITYPE-1. In fact, the contribution to the total error by the error in 

polymer concentration is as high as 76% with an 0.5% relative error 

and effectively 100% with a 5.0% relative error. Clearly, the error 

in measuring concentration has a greater effect on the results when 

the light scattering model in equation (2.74) is re-expressed in terms 

of R9 and the method of error propagation is applied. This is 

because the concentration is more prominent in the partial derivative 

equations that comprise the calculation of the error variance, see 
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appendix 3. 

Note that the estimated confidence limits for the parameter 

estimates decrease with increasing concentration error for ITYPE=2. 

One would normally expect the precision of the parameter estimates to 

decrease if larger or more errors are accounted for. The formula used 

to estimate the 95% confidence limits was 

j=1,2, ... ,p (5.7) 

where Jv(~i) is the j'th diagonal element of the parameter covariance 

matrix, given by 

(5.8) 


where o-f is an estimate of the error variance, and in this case is 

given by 

a;} =f e~ ~ = variance of the residuals (5.9) 
i=1 var( ei V "e 

The value of the variance of the residuals decreases at a greater rate 

with increasing concentration errors than it did when ITYPE=l. It is 

actually two orders of magnitude too small when the relative error in 

polymer concentration was 5.0% suggesting that the assumed error 

structure is not correct. Thus, the resulting confidence limits 

estimated from equation (5.7) were too small. Therefore, incorrect 

error structures can yield misleading results. 
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Errors in Scattering Angle 

The runs discussed in the previous section were repeated with an 

error in the measurement of the scattering angle of 0.5 degrees 

included. The results in table 5.2 show that accounting for this 

error had little effect on the point estimates but reduced the 

estimates of the confidence limits. Again, this is probably due to 

over-estimating the error in measuring the scattering angle. In 

general though, the error in the scattering angle had little effect on 

the final results, even though it contributed up to 67% to the total 

error. 

It is interesting to comment on a trend that was observed in the 

magnitudes of the percent contribution that the error in the 

scattering angle makes to the total error when the percent 

contribution by the error in the polymer concentration is not 

dominant. The contribution to the total error is the greatest at low 

and high scattering angles, and the smallest at 90°, the trend being 

quadratic in nature. This corresponds to the lowest error 

contribution by the galvanometer readings at low and high angles where 

the least weighting is applied, and the greatest contribution at 90° 

where the most weighting is applied. This demonstrates that the 

quadratic weighting function determined in equation (5.3) is being 

applied correctly. This trend is masked when the error contribution 

by the polymer concentration becomes dominant at 5.0% relative error. 
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5.2.1.4 Residuals 

It is worthwhile to comment here on some observations made of the 

residuals from the parameter estimations routines. A typical residual 

plot is given in figure 5.3. The order of the residuals is with 

descending values of polymer concentration nested within ascending 

values of scattering angle; ie - (20 ; 0.01943, 0.01295, 0.00648, 

0.00486, 0.00254 g/ml), etc ... 

From figure 5.3, it is apparent that most of the residuals lie 

within ± 0.5, but there is a definite upward trend in the residuals 

from left to right. It turns out that the residuals below and above 

the main body each correspond to a measurement at 0.01943 g/ml polymer 

concentration - the highest value. This is much more evident in 

figure 5.4 where the relative error in polymer concentration is 5.0%. 

This clearly demonstrates the breakdown of the light scattering model 

(equation 2.74) that would be expected at high polymer concentrations 

(recall the assumptions listed in section 2.2.5). It is also evident 

from figure 5.4 that the main body of residuals broadens at the higher 

scattering angles. This too, is a result of model breakdown. 

5.2.1.5 Summary 

From the discussion presented above, it was concluded that when 

analyzing wide angle light scattering data, the primary concern should 

be to weight the galvanometer readings appropriately. In this study, 

a quadratic function of scattering angle was used to weight the data. 

It was shown that this function is easily incorporated into the method 

of error propagation and that non-linear regression of Re 
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automatically weighs the data according to a similar function ­

1/si~ A comparison of tables 5.1 and 5.2 shows that the form of 

the function is more important than the magnitude as the point 

estimates of the parameters were not greatly affected by a reduction 

in the function of one order of magnitude. Applications of these 

methods yielded the best results. However, care must be taken to 

account for the proper error structure if the method of error 

propagation is used. Poor estimates of the error variance in the 

measured variables may give misleading results. 

On the basis of these results, it is recommended that non-linear 

regression of Re be used to obtain estimates of the model parameters 

and their associated confidence intervals. If good estimates of the 

error variance in polymer concentration and scattering angle are 

available, the method of error propagation used for ITYPE•l may be 

applied. The application for ITYPE•2 was too sensitive to changes in 

the level of the error assumed in the polymer concentration. 

5.2.2 Low Angle Laser Light Scattering 

5.2.2.1 Experimental Results 

The results discussed in this section were obtained from the 

analysis of four sets of polyvinyl-acetate/ethyl-acetate (PVAc/EAc) 

data and three sets of replicate pairs of polyacrylamide/water data, 

making ten sets in total. A typical plot of K~c/R9 vs c is given in 

figure 5.5. The parameters Rw and A2 in equation (2.87) are usually 
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estimated by an "eye-ball" fit of the data in figure 5.5, or from a 

linear least squares fit. 

A number of items that may affect the results of the LALLS data 

analysis are discussed below. Note that the analyses of sample B10-7 

is based on only four data points instead of five. This is because it 

was found that one of the data points in the set was a severe outlier 

and the results from the parameter estimation routines were worthless. 

5.2.2.2 Effect of Error Structure on Error Propagation 

Recall that the estimated standard in G9 and G0 were 10 12 

and 12 - 24 units respecitvely. Estimates of the parameters Mw and 

were obtained for all four possible combinations. of and GA2 G9 0 

errors while applying the estimated concentration errors from equation 

4.10 to all cases. 

Changing levels of the standard deviation in and G hadG9 0 

little effect on the point estimates of the parameters. However, 

increasing the standard deviation in G0 from 12 to 24 units decreased 

the values of the variance of the residuals by a factor of between 

three and four. In most samples studied, this decrease was away from 

the expected value of 1.0, thus suggesting that an estimated error 

variance of (24) is too high. An increase of the standard deviation 

in G9 from 10 to 12 units, while also decreasing the variance of the 

residuals, had a much smaller effect on them than the change in G0 • 

,. 
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Since the standarad deviations of 12 and 24, for and GG9 0 

respectively, were based on including extreme values in the analysis 

of variance (see appendix 4), it is now evident that the lower values 

of 10 and 12 are more appropriate. Indeed, the variance of the 

residuals is close the expected value of 1.0 for more of the samples 

studied under this case than any of the other three. It is also 

encouraging that consistent results were obtained for two 

independantly performed sets of experiments on two different polymer 

systems. Table 5.3 summarizes the results for ITYPE = 1,2 for 

standard deviations in G9 and G0 of 10 and 12 respectively. 

The contribution to the total error variance by the error in the 

measurement of G0 was by far the greatest at an average of 81% and 

94% when the estimated standard deviations in G0 was 12 and 24 units 

respectively. Most of the remaining error in the total error variance 

came from the measurement of G9 • The contribution of the error in the 

measurement of the polymer concentration was rarely greater than 1% 

and was usually insignificant, accounting for an average of 0.3% of 

the total error variance. Since this contribution is so small, the 

runs were repeated with var(c 1 ) = 0 for all i, and using the values of 

10 and 12 for the standard deviations of G9 and G0 • These results 

appear in table 5.4. 

Comparing table 5.4 with the results in table 5.3, it is apparent 

that neglecting the errors in measuring polymer concentration has not 

had much of an effect on the final results. However, neglecting the 
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errors in does have an adverse effect on the results. Both theG9 

values of the variance of the residuals and the confidence limits, 

increase, suggesting that the total error variance has been 

under-estimated. Thus, the error in measuring G9 should be included 

in the analysis. 

5.2.2.3 Effect of Estimation Routine 

The results for !TYPE • 3,4 are given in table 5.5. Comparing 

tables 5.4 and 5.5, it can be seen that, for each sample, the 

parameter estimates for the four different cases are not significantly 

different from each other. 

Applying the same type of analysis on the two error propagation 

techniques as in the WALS case, the minimization of (3.12) can be 

shown to be equivalent to minimizing 

+ ~ var(G0 ~- (5.10)~ (~r~'~f [1.o- ~K~:UK~;[J [var<Gel Go j 

1

for !TYPE • 1, and 

for !TYPE - 2, when var(c) = 0.0. Once again, the only difference 

between these two formulas is the inversion of the ratio of predicted 

K•c/Re values to observed. Thus, only small differences in the 

results between the two error propagation applications were to be 

expected. 

http:var(G0~-(5.10
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While applying the method of error propagation to LALLS data is 

more desireable since it employs a·more appropriate error structure in 

its analysis, the simpler methods of linear and non-linear regression 

of Kif c/R8 and cannot abe discounted since these methods oftenR8 

offered comparable results. 

5.2.2.4 Effect of Recorded Value for ~ 

Recall that in section 4.2.1, two different methods of recording 

the value for the measurement of from chart recordings wasG8 

discussed. One method recorded a lower envelope value while the other 

recorded an average value from the main body of the chart recording 

while ignoring gross peaks. The first method is the one commonly used 

by experimenters. Employing the second technique effected an average 

increase of 10 units in the Ge values. Values from both methods were 

recorded only for the PVAcjEAc samples. The results from using the 

latter method are presented in table 5.6. 

Comparing tables 5.5 and 5.6, it can be seen that no significant 

difference exists other than a trend towards higher point estimates of 

Kw. Certainly, as the values of G8 increase, K1 c/Re decreases and 

the estimate of Mw would be expected to increase (since the 

intercept, 1;gw decreases). Since recording an average value from 

the main body of a chart recording can be less certain than recording 

a lower envelope value, and quite subjective regarding what 

constitutes a gross peak, this slight increase in 
0 
Mw may be 

considered somewhat arbitrary and variable. Therefore, use of the 
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TABLE 5. 3 

Summary of LALLS Results- Error Propagation (ccnce~tra':ion error included) 

Sample ITVPE Parameter Estimates 95~ Conf1dence :::ntervals Variance of the± 
----- Residuals-- ···-­

,... 

Mw ~2 (x 1041 f ~ ~ 
1•1 var(e1J "e 

810-5 1 

2 

1, 278, 000 ± 160, 200 

1. 267, 000 ± 155. 800 
1. 261 ± 1.287 

1.208 ± 1.270 

1.005 
0.996 

810-7 1 
2 

2. 167, 000 ± 389, 400 

2, 149. 000 ± 381, 600 
1.43! ± 0.484 

! . ..:22 ± 0.48! 
2.142 
2.290 

811-8 i 

2 

1. 157, 000 ± 63, 630 

1,159,000 ± 61, 880 

3.323 ± 0.294 
3.339 ± 0.290 

0.183 
0.178 

811-9 1 
2 

2, 021, 000 ± 255, 900 

2. 009, 000 ± 266, 100 
0.844 ± 0.336 
0.376 ± 0.356 

1.513 
1.-<:58 

R-9E 1 

2 

181, 000 

180, 400 
± 11. 680 

± 11. 980 

4.327 ± 0.576 
-<:.306 ± 0.596 

0.640 
0.644 

R-9! 1 

2 

205, BOO 

204, 600 
± 15, 950 

± 15. 810 

3.904 ± 0.756 
3.862 ± 0.762 

1.333 
1.275 

A- i 0 C 1 
2 

799, 300 

BOO, 100 
± 34, 290 

± 34, 230 
3.24! + 0. !58 
3.2..:8 ± 0.157 

0.150 
0.152 

R-!OH 1 

2 

9B2,600 ± 102, 800 
979, 900 ± 96. iOO 

3.723 ± 0.195 
3.729 + 0. !84 

0.9B4 

0.902 

R- 1 10 1 

2 

1. 616, 000 ± 379, 300 

1, 591, 000 ± 345. 000 
3.524 ± 
3.5!6 + 

0.256 
0.242 

1.967 

1.915 

R-11G 1 
2 

1. 432, 000 ± 189, 000 

1, 430, 000 ± 184. 600 
3.383 ± 0. 170 
3.39! + 0. 16:' 

0.853 

0.847 
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TABLE 5.4 

Summary of LALLS Results- Error Propgation !no error in concentration) 

sample ITYPE Parameter Estimates ± 95X Confidence Interval Variance of the 

Residuals 
.... 
Mw A2 (x 1041 2~;.

1•1 var(e1J ve 

810-5 1 
2 

1. 278. 000 :!: 
1, 267. 000 :!: 

160,200 
155, 800 

1. 260 :!: 
1. 207 :!: 

1.288 
1.271 

1.008 
0.999 

810-7 1 
2 

2. 161, 000 :!: 
2. 143, 000 :!: 

385, BOO 
378,500 

1. 427 :!: 
1. 419 :!: 

0.484 
0.481 

2.017 
2.151 

811-8 1 
2 

1, 157, 000:!: 
1,159,000:!: 

62,440 
61,690 

3.323 :!: 
3.339 :!: 

0.294 
0.2.90 

0.183 
0.178 

811-9 1 
2 

2. 022. 000:!: 
2. 009, 000:!: 

255,900 
266,200 

0.885 :!: 
0.877 :!: 

0.336 
0.356 

1.518 
1.462 

A-9E 1 
2 

181, 200 :!: 

180, 500:!: 
11.650 
11, 980 

4.335 :!: 
4.315 :!: 

0.577 
0.598 

0.656 
0.661 

A-9I 1 
2 

205, 600:!: 
204. 300:!: 

16,040 
15,860 

3.901 :!: 
3.855 :!: 

0.776 
0.778 

1.426 
1.358 

A-10C 1 
2 

799, 100 :t 
799. 900 :t 

33, 710 
33,650 

3.241 :!: 
3.248 ± 

0.157 
0.157 

0.151 
0.153 

A-10H 1 
2 

981, 700 ± 
978. 900 ± 

101, 300 
94, 730 

3.728:!: 
3.728:!: 

0.194 
0.183 

0.989 
0.907 

R-110 1 
2 

1. 614, 000± 
1. 589, 000± 

377, 300 
343,300 

3.523 :!: 
3.515 :!: 

0.256 
0.241 

1.978 
1.925 

R-11G 1 
2 

1. 431, 000± 
1,430,000± 

187,500 
183, 100 

3.387:!: 
3.391 :!: 

0.170 
0.167 

0.855 

0.849 
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TABLE 5.5 

Summary of LALLS Results - Linear and Non-Linear Least Squares 

Sample ITYPE Parameter Estimates ± 95% Confidence Intervals 

,. 

Mw A2 (X 104 ) 


810-5 3 
4 

1, 3-41. 000 :!: 

1. 339, 000 :t 
131,800 

158,900 

1.680 :!: 

1.659 :t 
0.929 

0.923 

810-7 3 
4 

2. 058,000:!: 
2. 068, 000:!: 

353. 700 
438, 100 

1.385 :!: 
1. 391 :!: 

0.494 
0.517 

811-8 3 
4 

1. 171. 000:!: 137,200 
1.174,000:!: 170,500 

3.378 :!: 
3.378 :!: 

0.421 
0.494 

811-9 3 
4 

2. 086, 000:!: 
1. 979. 000:!: 

216.200 
268, 200 

0.929 :!: 
0.795:!: 

0.276 
0.320 

R-9E 3 
4 

177,900 :!: 
172,800 :!: 

12.650 
10. 300 

4.183:!: 
3.971 :!: 

0.609 
0.444 

R-91 3 
4 

210,500 :!: 
206, 100 :!: 

14,600 
12. 900 

4.007 :!: 
3.863 :!: 

0.541 
0.423 

R-10C 3 
4 

837,000 :!: 
833,300 :!: 

88,690 
83,960 

3.355 :!: 0.196 
3.336 ± 0.200 

R-10H 3 
4 

1. 051, 000:!: 207,300 
1. 036,000:!: 202. 400 

3.794:!: 
3.748:!: 

0.309 
0.356 

R-110 3 
4 

1. 791, 000:!: 521,500 
1. 686,000:!: 477. 100 

3.623 ± 0.248 
3.545 ± 0.333 

R-11G 3 
4 

1. 475.000 ± 260,500 
1. 459,000::!: 224. 000 

3.440 ::t 0.209 
3.420 ± 0.214 
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TABLE 5. 6 

summary of LALLS Results - Average Recorded Value of s8 Used 

sample I TYPE Parameter Est1•ates + 95" Confidence Intervals Variance of the 

Residuals 

""' 'A2 lx to4 J I VMw ~~~-8i•1 var(e1J 

Bi0-5 1 
2 
3 
4 

1. 286,000 ± 164, 100 

1. 275, 000 :!: 159, 600 
1. 352, 000 :!: 137,500 
1. 352, 000:!: 171. 000 

1. 232 :!: 1.301 
1. 183 ± 1.285 
1.666 ± 0.953 
1.654 ± 0.975 

1.049 
1.041 

810-7 1 
2 
3 
4 

2, 164.000:!: 365,000 
2, 148, 000 :!: 360,800 
2, 065,000 ± 343.500 
2, 071, 000 ± 420.500 

1.397 :!: 0.455 
1.389 ± 0:455 
1.355 ± 0.476 
1.356 :!: 0.493 

1.827 
1.959 

811-8 1 
2 
3 
4 

1. 175, 000 ± 69, 750 
1. 177. 000 ± 68,820 
1. 183,000 ± 146,400 
1. 183,000:!: 181,900 

3.316 ± 0.318 
3.334 ± 0.313 
3.345 ± 0.441 
3.335 ± 0.520 

0.221 
0.212 

811-9 1 
2 
3 
4 

2, 160, 000 ± 356,200 
2, 134, 000 ± 373.300 
2, 216, 000 ± 298,300 
2, 056, 000 ± 324, 700 

0.981 ± 0.413 
0.964 ± 0.446 
0.999 :!: 0.337 
0.827 :!: 0.361 

2.522 
2.400 
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lower envelope value in the analysis is preferred. 

5.2.2.5-Summary 

From the above discussions, it is recommended that non-linear 

regression of Re be used to analyze LALLS data. This is preferred 

over linear regression of Ktc/R 9 since the quantity containing the 

majority of the measurement error, R9 , does not appear in the 

denominator. However, if good estimates of the error structure can be 

obtained, or are available, use the method of error propagation to 

make effective use of this information. Recall that it was found that 

measurement error in the polymer concentration had little or no effect 

on the error structure while those in the measurement of G0 had the 

greatest effect. 

Finally, it was recommended that the lower envelope value should 

be used when recording a value for G9 from a chart recording. 

5.3 Dynamic Light Scattering 

The objective here was to determine the suitability of an 

analytical dynamic light scattering instrument (NICOMP Model TC-200 

Computing Autocorrelator) in analysing samples of known particle size 

distributions (PSD's), and to demonstrate some of the difficulties in 

re-constructing PSD's from raw autocorrelation data. The latter 

objective was served by the analysis routines discussed previously. 

This was the sole purpose of these routines and were in no way an 
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attempt to reproduce the results obtained from the analytical 

instrument. 

Eleven samples were studied, four of which were two sets of 

replicate pairs. Five of the samples were monodisperse standards of 

Dow polystyrene latex particles. From these standards, three 

different types of distributions were made. Finally, there was one 

unknown polydisperse sample. Table 5.7 lists all of the samples 

examined. 

5.3.1 Results from the NICOMP Model TC-200 

The samples listed in table 5.7 were taken to the C-I-L Research 

Laboratory in Toronto for analysis on their NICOMP instrument. Figure 

5.6 is typical of the results obtained from this instrument. Note 

that a distribution of particle sizes has been fit, thus the "mean 

diameter" reported by the instrument is actually an estimate of the 

weighted particle size diameter. This instrument allows the user to 

choose one of three weightings that may be applied in the estimation 

of the mean diameter. These were (1) mass weighted, ~m (2) area 

weighted, i58 and (3) intensity weighted, n, particle size 

diameter estimates. A summary of the analysis results using the 

default fit number of two and the mass weighting option, is given in 

table 5.8. The standard deviations reported in table 5.8 were 

calculated based on a normal Gaussian fit of the sample results. 
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TABLE 5.7 


Composition of Sample Studied Using DLS 

Sample ID 	 Particle composition (nm) 

M34 	 34 

M98 	 98 

M176 	 176 

M220 	 220 

M275 	 275 .... 
898/275 	 1.000 part 98 

0.901 part 275 

0176-.A 0.496part 176 
0176-B i.OOOpart 220 ~I - 222 

0.505part 275 Dm- 226 

898/0176-A 1.136part 98 
898/0176-8 0.496part 176 

1.000 part 220 
0.505part 275 

R2-20 	 unknown broad polyvinylacetate 
distribution 
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TABLE 5.8 

Summary of Results Obtained from a NICOMP Modal TC-200 


CoMputing Autocorralator * 


Sample IO 

M34 

M98 

M176 

M220 

M275 

898/275 

0176-A 

0176-8 

898/0176-A 

898/0176-B 

A2-20 

"" 10ml1 lnm) 

32.5 

93.4 

166.6 

223.0 

299.8 

99.7 

228.3 

224.6 

120.5 

104.6 

1279.6 

A 

Aanga
1

(nml to;;;J2 lnml Range2 !nm) St. Dav. !nmJ 

31.5 - 42.8 lflf 

85.7- 100.0 3.4 

155.1 - 187.5 7.1 

205.7- 240.0 8.6 

272.7- 321.4 12.2 

94.7- 109.0 315.1 257.1- 400 ..0 

187.5- 272.7 21.5 

204.5- 264.7 15.5 

107.1- 130.4 257.4 214.2 - 333.3 

96.7- 111.1 240.8 200.0 - 300.0 

1071.4 - 1500.0 178.6 

If- Nith the exception of sample R2-20. all the above results were obtained using fit number 2. 

A2-20 results were obtained with fit number 6. 

lftt- Standard deviation was unavailable. 
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Thus, standard deviations were not reported for the bimodal samples 

since the Gaussian estimate was only unimodal. 

From examining the results in table 5.8, two things became 

apparent that help explain the observed phenomena in the results from 

the bimodal samples. First, a distribution of particle sizes is 

always fit regardless of the nature of the sample. This was 

demonstrated in figure 5.6, which is the result from the monodisperse 

sample M98. Second, this distribution broadens as the particle size 

increases. This is evident from the results of the monodisperse 

samples M34, M98, Ml76, M220 and M275. The range of particle sizes 

over which the weight average particle size has been estimated 

increases from 11.3 nm, for sample M34, to 48.7 nm, for sample M275. 

This is caused by a decrease in the resolution of the particle size 

scale as the particle size increases. Comparing the results from 

sample M220 in figur~ 5.7 with figure 5.6 clearly demonstrates this. 

The stacked bar graph in figure 5.8 visually displays the overall 

trend of increasing distribution breadths (ranges) as the particle 

size increases. The residual portion of the graph also shows that 

good estimates of Di were obtained for the unimodal samples; the 
A 

residuals being the known Di All of the Di 's were 

within 10% of the known Di and most were within 5%. 

As mentioned previously, the above two points help explain two 

problems that prevent an accurate analysis of bimodal samples. The 

first problem was that the results from the mode containing the larger 
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particles were not as reliable as those from the mode containing the 

smaller particles. This was especially evident in, sample 898/275 

where both modes were monodisperse. We would expect the distribution 

of the second mode to be wider in light of the second point mentioned 

above, but it was nearly three times as broad as the distribution 

resulting from sample M275, see figure 5.8. This broadening was 

caused by the presence of the first mode which requires fitting at 

lower particle diameters. This then forced the second mode to be fit 

at a position on the logarithmic diameter scale where the resolution 

is even poorer than it was in the monodisperse sample M275. As a 

result, the estimate of the weight average particle size of the second 

mode was biased towards higher values. This is evident in the 

residual portion of figure 5.8. However, this problem is reduced if 

the two modes are closer together, or if they are polydisperse, 

instead of monodisperse. Such were the observations made in samples 

898/176-A and 898/176-8. The presence of the smaller particles that 

make up the second modes distribution brings the fitted results into 

an area of increased resolution on the particle size scale. Notice 

however, that it is impossible to discern the nature of the second 

mode. No indication of the polydisperse second mode in these samples 

was given by the width of the distribution fit. It is actually 

narrower than the width of the fit to the monodisperse second in 

sample 898/275. Thus, one might erroneously conclude that the second 

modes in samples 898/275, and 898/176-A or 898/176-8 were polydisperse 

and monodisperse respectively. 



131 


The second problem was that good estimates of the mass ratios of 

the two modes in the bimodal samples ·were difficult to obtain. For 

sample B98/275, the estimated mass ratio of 275 nm particles to 98 nm 

particles was 1.02:1.0. The known mass ratio is 0.90:1.0. It is not 

surprising that the estimated mass ratio is too high since the ~~ for 

the second mode was over-estimated due to the reasons discussed above. 

For sample 898/0176-A and 898/0176-8, the estimated mass ratios of the 

polydisperse mode to the monodisperse mode were 1.14:1.0 and 1.46:1.0 

respectively. The known ratio here is 1.76:1.0. In these two 

samples, the mass ratio was under-estimated. Since it is difficult to 

discern a polydisperse second mode from a monodisperse mode, it must 

be assumed that, in the polydisperse case, the total mass of particles 

would be under-estimated, thus yielding a smaller mass ratio. 

There is quite likely an ideal bimodal sample that rests at a 

transition point for which good estimates of the weight average 

particle sizes and mass ratio may be obtained. There is a transition 

between over-estimating and under-estimating the D1 's and mass ratios 

as the difference between the 51 's of the two modes decreases and the 

mass ratio increases, see figure 5.9. Any samples deviating from this 

ideal will be improperly fit. Thus, care must be taken when 

interpreting results from bimodal samples. 

For unimodal polydisperse samples, an indication of their 

polydispersi ty may be obtained. The simulated polydisperse samples 

0176-A and 0176-8 were fit over a significantly wider range of 
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decreasing resolution 

ideal sample with respect tc a'ler,._,e 
particle sizes and polydispe!""ity 

correct mass ratio 

same polydispersity 

mass ratio over-estimated as cHfference ce<;>~een particle sizes increase 

same average particle sizes 

mass ratio under-estimated as po 1yd ispers ity increases 

Figure 5.9- Transition exists between obtaining g'Jod estimates of both 

Di 'sand the mass ratio f,or bimodal samples 
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particle sizes than any of the monodisperse samples from which they 

were composed. The analysis of the unknown sample, R2-20, also 

indicates that it is polydisperse. However, this analysis is suspect 

since results from previous size exclusion chromatography tests 

yielded a mean particle size of 160 nm. This result is one order of 

magnitude smaller than the DLS estimate of 1280 nm. It may be that 

coagulation of the sample occurred between the time of the two 

analyses. 

In conclusion, it can be stated that reliable results may be 

obtained from this instrument if the sample is unimodal. However, 

care must be taken when interpreting bimodal results. Any prior 

knowledge the user has concerning his samples will certainly aid in a 

correct interpretation of his results. 

5.3.2 	 Reconstruction of Particle Size Distributions ~ Fitting 

Sums of Exponentials 

The exponential models listed in table 4.15 were used to estimate 

the particle sizes and distributions from the first-order, normalized 

autocorrelation fuction f 1(r). This function is easily constructed 

from the channel contents, which represent the second-order, 

un-normalized autocorrelation function d~~); refer to figure 4.10. 

The function rf1>(-r) is computed automatically by the analysis program 

using equation (2.95) and was used as the objective function in the 
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exponential models. The results and conclusions from these models are 

presented in· three section, depending upon the fitting technique; (1) 

non-linear least squares estimation; (2) linear least squares 

estimation; and (3) exponential sampling. 

5.3.2.1 Non-Linear Least Squares Estimation 

This section covers the results from model types four and five, a 

single exponential, and a sum of two exponentials respectively. Here, 

both the exponential co-efficient and exponent of the models were 

estimated. The results are presented in table 5.9. It should be 

noted that the estimates of for a single exponential were merelyp1 

the initial value of ~1~L) at zero time lag and have no physical 

significance. However, when fitting a sum of two exponentials to a 

bimodal sample, the estimates of and represent the relativep1 p2 

contribution of each model to the total measured intensity 

autocorrelation function. Thus, an estimate of the intensity ratio 

may be obtained. This may be compared with a predicted intensity 

ratio that can be calculated from the known mass ratio through the Mie 

theory. 

The particle size estimates in table 5.9 exhibit, with the 

exception of sample M176, a bias towards being over-estimated. Figure 

5.10 is a bar graph of the residuals between the known particle size 

diameter (or intensity average diameter for the polydisperse samples) 
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and the estimated value. This bias suggests that too much emphasis is 

put on the data at higher time lags. This would tend to give a higher 

estimate of the mean decay time. This corresponds to larger particles 

which diffuse more slowly through the solution. Therefore, the 

parameters were re-estimated using Morrison's suggested fitting 

criterion which places more weight on the data at lower time lags 

(refer to equation 4.17). The resulting estimates were, however, only 

marginally smaller. For example, 41.5 nm and 238.4 nm for samples M34 

and 0176-A respectively. The weighting factor NEX was increased from 

a value of two to five in increments of one in an attempt to realize a 

significant decrease in the parameter estimates. However, the final 

estimates for each value of NEX were still only marginally smaller 

than those from the unweighted case. Thus, it was concluded that 

Morrison's weighted model as presented in equation (4.17) offered 

little benefit over the simpler unweighted model. 

To effect a real shifting of weight to the data at lower time 

lags, Morrison's formula was modified to include a second factor, NEX2 

as follows. Minimize 

(5.121 

where 1 < NEX2 < NEXl. Setting NEX1 = NEX2 = 1 is equivalent to 

Morrison's origonal formula. The introduction of NEX2 compounds the 

effect of NEX1 in shifting the weight to the data at smaller time 

lags. After re-estimating the model parameters with several 
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combinations of NEXl, NEX2 values, it was found that NEX1 = 2 and NEX2 

= 1.1 offered the best overall estimates; see table 5.10. The 

overall effectiveness of using these weights in the model was assessed 

by comparing figure 5.11 with figure 5.10. Figure 5.11 shows that the 

residuals were smaller and better behaved than previously. Indeed, 

the sum of squares of the residuals was reduced to 1,662 nm2from 6,677 

nm2. 

As mentioned previously, the estimated intensity ratios of the 

bimodal samples may be compared with the intensity ratios calculated 

from the known mass ratios. Appendix 5 outlines these calculations 

for the bimodal samples 898/275 and B98/D176-A and B. The results of 

these calculations are compared with the experimental results in table 

5.11. Comparing the weighted results with the unweighted, one can 

clearly see the shifting of weight from larger to smaller particle 

sizes. This is more evident in sample 898/275 where the 

over-estimation of the intensity ratio has been reduced by 15%. It is 

less obvious for the other two samples since the intensity ratio 

already appears to be grossly under-estimated. However, recall that 

the second mode of these samples was an aggregate of three different 

particle sizes as shown in figure 5.12. This figure shows the 

theoretically predicted intensities for each particle size, the sum 

being the total intensity ratio of 9.17:1. The estimate of the total 

intensity ratio is more of a point estimate along the distribution, 

the remaining information being unavailable. This is a serious 

limitation of this method of estimation. Without prior information on 

a bimodal sample, the nature of the sample can never be resolved. 
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TABLE 5.9 

Su~amary of Results Obtained from Non-Linear Least Squares Estimation 
ITYPE • 4, 5 

Par-ameter Estimates 

Salllple IO ITYPE 
. ,.. 

p1 
A o1 lnml "' p2 

,.... 
o21nml 

1434 4 0.6414 41.9 

1498 4 0.6527 102.1 

14176 4 0.6869 176.0 

M220 4 0.7408 230.0 

14275 4 0.6525 303.8 

898/275 5 0.0977 102.0 0.5354 312.7 

0176-A 4 0.6689 239.2 

0176-B 4 0.6739 236.0 

898/0176-A 5 0.1331 119.8 0.5464 259.5 

898/0176-B 5 0.1640 125.7 0.5395 265.9 

R2-20 4 0.5404 1235.1 
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TABLE 5.10 

Summar-y of Results Obtained from Weighted Non-Linear Least Squar-es Estimation 

ITYPE- 4, 5 (NEX1- 2, NEX2 • i.1) 

Par-ameter Est1111ates 

,.. ,.. 
Sample IO !TYPE 01 (nml "' ""o2 tnml111 112 

----------­
M34 4 0.6155 37.7 

M98 4 0.6272 92.0 

M176 4 0.6622 159.5 

M220 4 0.7195 208.4 

M275 4 0.6255 275.8 

898/275 5 0.1071 100.6 0.4976 286.5 

0176-A 4 0.6432 216.7 

0176-B 4 0.6486 213.7 

898/0176-A 5 0.1353 112.7 0.5184 235.2 

898/0176-8 5 0.1602 116.5 0.5190 239.6 

R2-20 4 0.5088 1235.1 

---·· -------------· 
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TABLE 5. 11 


Compal"'lson of Calculated IMie Theory) and Experimentally Deter-mined (OLS} 

Bimodal Intensity Ratios. ITYPE • 4, 5 

L'ltensity Ratios 

Sample IO Ratio Calculated Exper-imental Exper-imental 

(unwe1ghted) (weighted) 

898/275 2750 
"'9iii 

2.45 
1 

5.48 
1 

4.65 
1 

858/0176-A 01760 
980 

9.17 
1 

4.11 
1 

3.83 
1 

898/0176-B 01760 
980 

9.17 
1 

3.29 
1 

------ ­

3.24 
1 

.. 




Figure 5.10 - Residual Bar Graph 
Non-Linear !.east Squares 
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Figure 5.11 - Residual Bar Graph 
Weighted Non-Linear Least Squares 
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This, of course, also holds for the unimodal polydisperse samples 

0176-A and 0176-B. 

A further drawback of these types of models is that they are too 

simple to adequately fit the data. Figures 5.13 and 5.14 are the 

residual plots from the analyses of samples M34 (ITYPE=4) and B98/275 

(ITYPE=5) respectively. The residuals in these figures are the 

difference between the first-order, normalized autocorrelation 

function, c;/11(r.), and that reconstructed from the model parameters. 

From the behaviour of the residuals, it is apparent that the model is 

not sufficiently utilizing all the information available in the data. 

5.3.2.2 Linear Least Squares Estimation 

Parameter estimation results from model types six, seven and 

eight are presented in this section; refer to table 4.15. 

Respectively, these models contain two, three and four parameters. 

These parameters were all pre-exponential coefficients of a linear 

model. Thus, a linear least squares approach was used for parameter 

estimation. Estimates were obtained for given values of r 

corresponding to the known particle sizes; refer to equation (4.14). 

The focus of these models was on samples B98/275, 0176-A, 0176-B, 

B98/D176-A and B98/D176-B. The results are summarized in table 5.12. 
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The first thing that is apparent from these results is that, with 

the exception of sample 898/275, one parameter estimate was negative 

indicating a negative contribution to the total measured intensity for 

that given particle size. These negative results are entirely 

spurious and offer no insight into the nature of the sample. 

Once again, the tendency to place more emphasis on the 

contribution to the total intensity by the larger particles is evident 

by the greater parameter estimates at the larger given particle sizes. 

Employing the weighting factors from the previous section did little 

to improve these results .. 

Converting the results to intensity ratios relevant to 98 nm 

particles, and comapring them with those predicted from the Mie theory 

proved the experimental results to be wildly divergent from what might 

be expected. Here, we run across a problem inherent in fitting linear 

sums of exponentials; extremely high correlation between the 

parameter estimates. In the models with greater than two parameters, 

the elements of the parameter correlation matrix exceeded 0.99, and 

were often greater than 0.999. High correlation between parameter 

estimates was also present in the results from ITYPE=S discussed 

previously. However, in the case of applying a linear exponential 

model to dynamic light scattering data, the physical relationship 

between the model and the light scattering process has been removed by 

eliminating the degree of freedom offered in fitting the exponent in 
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TABLE 5.12 

Sum:nary of Results Obtained from Linear Least Squares Estimation 

ITYPE • 6, 7, 8 

Parameter Estimates 

Sample IO ITYPE 
,.. 
p1 "' p2 

,.. 
p3 

A 
p4 

898/275 6 0.0266 0.6017 

0176-A 7 0.2205 -0.0252 0.4754 

0176-8 7 0.2464 -0.0334 0.4628 

898/0176-A 6 
8 

-0.0145 
0.0478 

0.6889 
0.2529 -0.0928 0.4716 

898/0176-B 6 

8 
-0.0063 

0.0427 
0.7048 
0.3615 -0.2669 0.5662 

....­

I 
I 
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the model. The linear exponential model is entirely empirical in 

nature. 

A further serious drawback to this method is that prior knowledge 

regarding the particle sizes is required. 

5.3.2.3 Exponential Sampling 

The discussion of the results from the exponential sampling 

technique is presented in two parts corresponding to Ostrowsky's 

method using linear least squares, and Morrison's method using 

non-negatively constrained linear least squares. 

Ostrowsky's Method 

In all of the results presented below, Ostrowsky's method was 

applied to fit five pre-exponential coefficients (m=5) over six shifts. 

(n=6). Thus, thirty parameter estimates were used to re-construct the 

particle size distributions. 

Figure 5.15 is a re-constructed particle size distribution (PSD) 

from 30 parameter estimates for the monodisperse sample M98. This 

figure is typical of the results obtained using Ostrowsky's method. 

While the intensity average particle size diameter of the 

re-constructed distribution is 112.4 nm, the range of particle sizes 

for which positive estimates were is obtained was quite broad; 34 ­

280 nm. As with the linear models, !TYPE= 6, 7, 8, several small 

negative parameter estimates were obtained. A summary of results from 
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the remaining samples is given in table 5.13. 

The results in table 5.13 represent the smoothest re-constructed 

PSD's obtained over a variety of trials with different values of w~ 

and the initial starting diameter D0 • It was found that the quality 

of the fit was greatly dependent upon the choices of w~ and D0 • 

Generally, as the starting diameter value increased, nonsensical 

estimates were obtained. This is a result of forcing the model to 

estimate parameters at higher and higher particle sizes far beyond the 

actual value. Recall that the scale is logarithmic with respect to 

the particle sizes. Also, as the value of wmu decreased, the 

re-constructed PSD deteriorated into an oscillatory function with 

large negative parameter estimates. This is a result of restricting 

the parameter estimates to a narrower range of particle sizes. The 

results presented in table 5.13 strike a balance between these two 

extremes. Ostrowsky's recommendation of a minimum ~ value of 3.0 

provided consistent results for the unimodal samples. Note that the 

initial starting diameter increased as the size of the particles in 

the sample increased. For the bimodal samples, the chosen value of 

wmax is consistent with Ostrowsky's recommendation that adjacent 

maxima positions be approximately in the ratio exp(2~/wmax) in order 

for resolution of the peaks to occur. While the peaks of the bimodal 

samples were resolved, the re-constructed distribution itself was 

poorly behaved as figure 5.16 demonstrates. 
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As in section 5.3.2.1 the 
A

ni 's in table 5.13 were biased 

towards over estimation. Therefore, the parameters were re-estimated 
~ 

and the ~i 's re-calculated with the data weighted according to 

equation (5.12) with NEX1 = 2 and NEX2 = 1.1 as before. These results 

are summarized in table 5.14. Figures 5.17 and 5.18 are stacked bar 
~ 

graphs of the n; residuals and the estimated distribution width for 

the unweighted and weighted cases respectively. The residuals are the 
A 

estimated D; 's minus the known value. Looking at the residuals 

portion of the graph, it is apparent that weighing the data has 

yielded better overall results. The sum of squares of the residuals 

was reduced to 8,930 from 36,500, and the residuals themselves were 

not all positive. However, weighing the data had little effect on the 

width of the estimated distribution. 

With respect to the estimated intensity ratios, the weighted data 

shifted the emphasis far too greatly on the data at low time lags. 

This is shown in table 5.15 where the unweighted estimates of the 

intensity ratios for samples B98/D176-A and B98/D176-B are much closer 

to the expected ratio of 9.17:1 than are the weighted estimates. This 

was not entirely unexpected since, in the weighted case, we are now 

placing more emphasis on an entire distribution of parameter estimates 

as opposed to just one, as was the case in section 5.3.2.1. 

Thus, as was the case with the NICOMP Model TC-200, there are 

some trade-offs between obtaining good estimates of the particle sizes 

and the modal ratio for bimodal samples. 



Figure 5.15 - Reconstructed PSD 
Sample M98 - Ostrowsky's Method 
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Figure 5.16 - Reconstructed PSD 
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TABLE 5.13 

Summary of Results Obtained from Ostrowsky's Method of Exponential Sampling 

ITYPE - 3 

Estimated Height Average Particle Size and Range (nml 

,.,A 

Sample ID Do i6jl1 Range !D;"l2 Range2Wmax 1 

M34 3.5 2.0 46.3 14 - 153 

M98 3.0 3.0 112.4 34 - 280 

M176 3.0 5.0 196.2 57 - 467 

14220 3.0 10.0 287.8 81 - 600 

M275 3.0 10.0 355.3 115 - 785 

698/275 7.0 50.0 99.8 78 - 114 270.1 192 - 377 

0176-A 3.0 10.0 294.1 81 - 600 

0176-B 3.0 10.0 283.3 81 - 600 

898/0176-A 7.0 50.0 101.5 78 - 122 251.9 132 - 377 

898/0176-8 6.0 30.0 104.7 65 - 132 248.9 157 - 377 

R2-20 3.0 40.0 1454.0 460 - 3140 
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TABLE 5.14 

Summary of Results Obtained from Ostrowsky· s Method of Exponential Sampling 

with Weighting Applied, ITYPE • 3 (NEX1 • 2, NEX2 • 1.1) 

------ -----·· 
Estimated Weight Average Particle Size and Range lnml 

"' "' Sample ID Wmax Do io-;-11 Range1 ffill2 Range2 

M34 3.5 2.0 41.2 10 - 114 

M98 3.0 3.0 104.0 29 - 280 

14176 3.0 5.0 182.1 57 - 467 

M220 3.0 10.0 262.2 81 - 554 

M275 3.0 10.0 331.8 97 - 785 

898/275 7.0 50.0 99.4 78 - 114 256.3 192 - 350 

0176-A 3.0 10.0 264.3 81 - 554 

0176-8 3.0 10.0 260.4 81 - 554 

898/0176-A 7.0 50.0 84.7 60 - 105 211.0 110 - 352 

898/0176-8 6.0 30.0 80.0 55 - 102 217.8 111 - 377 

R2-20 3.0 40.0 1348.3 387 - 3140 
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TABLE 5.15 

Co111parison of Calculated (Mia Theory) and Experimentally Datermlned (DLS} 


Bimodal Intensity Ratios, ITYPE- 3 


Intanslt:y Ret:los 

SaiiiPle ID Ratio Calculated Experimental Experimental 

(unwe1 gh ted} (Weighted) 

899/275 2750 3.04 ~~ 
980 1 1 1 

es:t/01.76-A 01760 7.46 2.56--- .!!£ 
980 1 1 1 

898/017&-B 01760 9.17 6.97 2.12 
980 1 1 1 
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Morrison's Method 

In this section, results from Morrison's method of exponential 

sampling using non-negative linear least squares (NNLLS) will be 

presented. For comparison purposes, 30 parameter estimates for all 

the samples were obtained using the exact same wmax and D0 values 

given in table 5.13 (unweighted case). The results from these runs 

were virtually identical to those given in table 5.13. Figure 5.19 

demonstrates how closely the re-constructed PSD's matched for sample 

M98. The major difference was that there were no negative estimates 

obtained with the NNLLS. This comparison establishes the near 

equivalency of the two methods for given values of wmax and 0 0 • 

As Morrison suggested, a sum of 20 exponentials per shift was 

then fit to the data. Again, six shifts were used, thus a total of 

120 estimates were obtained for distribution re-construction. Table 

5.16 summarizes the results obtained. The value of wmax was no 

longer constrained to being less than ten as it was in Ostrowsky's 

method as none of the problems with large negative parameter estimates 

and oscillatory behaviour were encountered. Thus, the resolution on 

the logarithmic scale was greatly increased and superior PSD's were 

estimated as figure 5.20 and 5.21 demonstrate. The stacked bar graph 

in figure 5.22 is clearly an improvement from that in figure 5.18. 

The width of the fitted distributions are much narrower than 

previously giving a more accurate picture of the nature of the sample, 

and overall, the residuals were smaller. The sum of squares of the 
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TABLE 5. 16 

Summary of Results Obtained from Morrison's Method of Exponential Sampling 

ITYPE • 1 

Estimated Weight Average Particle Size and Range lnml 

"' A 

Sample ID wmax Do i0j"l1 Range1 iofi 2 Range 2 

M34 10.0 2.0 37.2 27 - 49 


M98 10.0 4.0 95.4 71 - 127 


M176. 10.0 20.0 171.2 125 - 222 


M220 30.0 120.0 219.9 198 - 240 


M275 50.0 150.0 291.0 275 - 309 

898/275 30.0 50.0 105.5 95 - 115 315.7 286 - 347 

0176-A 15.0 50.0 230.0 188 - 277 

0176-B 15.0 50.0 226.3 182 - 267 

899/0176-A 25.0 50.0 120.0 106 - 134 259.1 231 - 290 

898/0176-8 20.0 50.0 88.8 76 - 101 223.2 195 - 260 

R2-20 20.0 200.0 1188.0 1014 - 1352 



Figure 5.19 - Reconstructed PSD's 
Sample M98 - Ost. and Morr. Methods 
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Figure 5.20 - Reconstructed PSD 
Sample M220 - Morrison's Method
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Figure 5.21 - Reconstructed PSD 

Sample D90/D176-A - Morrison's Method 
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Figure 5.22 - Resiclual/Range Bar Graph 
Morrison's Unwciehted Results 
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residuals was 3,700; an improvement from 8,930 for the weighted 

Ostrowsky results. 

Morrison's method was also used to fit distributions to weighted 

data (NEX1 • 2 and NEX2 = 1.1). Since the results from the raw, 

unweighted data were already quite good, a similar improvement in the 

results that was obtained with Ostrowsky's method was not expected 

here. Indeed, the results were very similar, the sum of squares of 

the residuals being 3,310, compared with 3,670. It may be argued that 

with the increased resolution available through Morrison's method, 

weighing the data should be unneccesary. The re-constructed 

distribution are almost symmetrical about the peak with respect to the 

absolute diameter (not the logarithmic diameter), and non-zero 

estimates are not obtained at the higher values on the logarithmic 

scale. When the resolution is poor, it is these estimates far from 

the peak on the logarithmic scale that lead to the over-estimation of 

the average particle sizes observed in Ostrowsky's method. Thus, 

weighing the data to counteract the emphasis of higher particle sizes 

was not required. 

The estimated intensity ratios for the bimodal sample 898/275, 

898/0176-A and 898/0176-B were 5.08:1, 4.18:1 and 14.51:1 

respectively. These do not compare very well with 2.45:1 (898/275) 

and 9.17:1 (898/0176-A and B), nor are they as good as the estimates 

obtained with Ostrowsky's method; refer to table 5.15, unweighted 

case. Thus, although bimodal peak resolution and position had 
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improved over Ostrowsky's method, this method does not appear to be as 

sensitive to relative proportions. Constraining the estimates to be 

non-zero may also be forcing a mal-distribution of the relative 

parameter magnitudes in each mode, thus yielding an erroneous 

intensity ratio estimate. 

5.3.2.4 Residuals 

The residuals from fitting the autocorrelation function to the 

sums of exponentials were calculated for each shift. Thus, six sets 

of residuals were obtained for a total of either 30 or 120 residuals 

for Ostrowsky's and Morrison's methods respectively. Residual plots 

for each set of estimated parameters proved to be nearly identical, 

thus an average of the six residuals was taken as representative. 

Figures 5.23 and 5.24 are the residual plots from Ostorwsky's and 

Morrison's methods for sample M98. It is apparent from these figures 

that the residuals are correlated. This is not too surprising given 

the nature of the models used to fit the raw data. In the simpler 

cases of fitting one or two exponential functions to data of 

exponential form, the residuals from the fit will certainly be 

correlated as figures 5.13 and 5.14 showed. 

For residuals whose behaviour is that of a first-order 

autocorrelation function, AR(1), a transformation of the data may be 

applied that will remove this correlation, refer to Kadiyala (1968) 

and Riddell (1977). Instead of estimating the parameters ~ in the 

model 



Figure 5.23 - DLS Residuals 

Sample M98 - Ostrowsky's Method 
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Figure 5.24- - DLS Residuals 
Samplo M98 - Morrison's Method 
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(5.13) 

where the residuals, ~' follow an AR(1) behaviour, estimate the 

parameters ~· in the transformed model 

w= zrf + u (5.14)=- ­
where 

w = C'l (5.15)- =­z =ex (5.16) 
~ = ce (5.17)
- =­

The transformation matrix ~ is 

( 1 - (/il)1;,. 0 0 0 0 0 (5.18)~ = 
-¢ 1 0 0 0 0 

. 
0 0 0 -~ 1 0 

0 0 0 0 -lP 1 


where ¢ is the autocorrelation coefficient in the first-order 

autocorrelation function 

(5.19) 


and at is random noise. 

This type of transformation lends itself very well to the 

non-negative linear least squares algorithm. Applying the 

transformation to equation (4.15), we now solve the transformed set of 

linear equations for ~~ 

subject to 't'?l 0 (5.20) 

This type of analysis was built into the estimation routine DLSPLOT 

and was chosen by selecting ITYPE = 2. However, an estimate of~ 

must be provided to the routine. This may be obtained from a time 

series analysis of the residuals by fitting them to an AR(1) model. 
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Using the time series package INTER84 available on the Chemical 

Engineering Department's VAX mini-computer at McMaster University, ~ 

was estimated to be 0.844 for the data given in figure 5.24. It 

should be stated that an AR(1) model was found to be adequate for this 

data and no higher order terms were significant. The parameters in 

the transformed model were then re-estimated choosing !TYPE = 2. 

Figure 5.25 was the resulting reconstructed PSD for sample M98. While 

the shape of the distribution and the estimated intensity weighted 
A

particle size diameter did not change greatly (D1 = 95.3 as opposed 

to 95.4 from table 5.16), the residuals were much better behaved, see 

figure 5.26. This procedure was repeated for the other samples 

studied with· similar results. 

5.3.2.5 Summary 

In the general case where no prior information regarding the 

sample is available, exponential sampling using non-negative linear 

least squares (Morrison's method) is recommended. Good estimates of 

the intensity weighted particle size diameters were obtained. The 

distribution of particles sizes fit were narrow for the monodisperse 

samples and close to the expected distribution for the polydisperse 

samples. The peaks of the bimodal were samples were also clearly 

resolved. Finally, the data need not be weighted for this method of 

analysis. 



Figure 5.25 - Reconstructed PSD 
Sample M98 - Transformed Morr. Method 
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Figure 5.26 - Transfo1·med DLS Residuals 
Sample M98 - Morrison's Method 
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In addition, the transformation matrix in equation (5.18) was 

easily applied to this method. Although no significant change in the 

final results was observed, it it still desireable to uncorrelate the 

residuals to ensure they are not adversely affecting the results. 

This method does not however, appear to have the freedom that 

Ostrowsky's method does in providing good intensity ratio estimates 

for bimodal samples. If this information is important, the user may 

want to run both methods of analysis and cross-check the intensity 

ratio results and use those that are deemed the most appropriate, 

should they differ significantly. 

If the experimenter knows his sample to be monodisperse (in one 

or more modes), or if just an estimate of the average particle size is 

required, he may use the simpler weighted non-linear least squares 

approach. However, the user must be wary that the weights used were 

empirical in nature. Non-negative least squares would still be 

preferred. 
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APPENDIX 1 

Proof of Equivalent Scattering Geometries 

Let: 	 X = r cosG 
Y = r cos 9 1 
z = r cose2 

Then 	 sine,=!;_ 
r 

By the 	Pythagorean Theorem, 

A2 	 = r2 _ y2 

= r 2 - r 2cos2G1 
= r 2(1- cos2e1 ) 

B2Now, sin29 2 = 
? 

Similarly, 

B2 = r2 - z2 

2 2
= r - r cos262 


= r 2 ( 1 - cos2e2) 


:. sin ~2 = 1 - cos2e2 

Then, 
sin2G + sin2e2 = 2 - cos2e1 - cos2e2 

= 2 + cos2 9- - cos2EJ - cos2e1 
x2 y2 2= 2 + cos2e - - - z
~ "'? "'? 

2= 2 + cos2e -(x2 + y + z2 ) 
r2 

But, 

sin261 + sin2e2 = 2 + cos2e - ~ 
r 

2 + cos2e- 1 
= 1 + cos2e 

Q.E.D 
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SUBROUTINE UWHAUS(NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS, 
1 EPSl,EPS2,MIT,FLAM,FNU,SCRAT) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION SCRAT(1) 
OPEN (UNIT=30,FILE='SUMPROP.DAT',STATUS='UN~~OWN') 

C this program is compatible with double precision programs 
c and not with single precision programs 
c 

IA=1 
IB=IA+NP 
IC=IB+NP 
ID=IC+NP 
IE=ID+NP 
IF•IE+NP 
IG..,IF+NOB 
IH=IG+NOB 
II=IH+NP*NOB 
IJ=IH 
CALL HAUS59(NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS,EPS1, 
l EPS2,MIT,FLAM,FNU,SCRAT(IA),SCPAT(IB),SCPAT(IC), 
2 SCRAT(ID) ,SCRAT(IE) ,SCRAT(IF),SCRAT(IG) ,SCRAT(IH), 
3 SCRAT(II),SCRAT(IJ) ) 
RETURN 
END 
SUBROUTINE HAUS59(NPRBO,MODEL,NBO,Y,NQ,TH,DIFZ,SIGNS, 
l EPlS, EP2S ,MIT ,_FLAM,FNU, Q,P, E,PHI ,TB,F ,R,A,D, DELZ) 
IMPLICIT REAL*S(A-H,O-Z) . 
DIMENSION TH(l),DIFZ(1),SIGNS(1),Y(l),Q(l),P(l),E(l), 
1 PHI(1),TB(l),F(l),R(l),A(1),D(l),DELZ(1) 
OACOS(X)=DATAN(OSQRT(1.000/X**2-1.0D0)) 
NP=NQ 
NPROB=NPRBO 
NOB=NBO 
EPS1=EP1S 
EPS2=EP2S 
NPSQ=NP*NP 

NSCRAC=S*NP+NPSQ+2*NOB+NP*NOB 
WRITE(06,1000) NPROB,NOB,NP,NSCRAC 
WRITE(06,1001) 
WRITE (30,1001) 
CALL GASS60(1,NP,TH,TEMP,TMEP) 
WRITE( 06 ,Hl02) 
WRITE (30,1002) 
CALL GASS60(1,NP,DIFZ,TEMP,TEMP) 
IF(MINO(NP-1,50-NP,NOB-NP,MIT-1,999-MIT))99,15,15 

15 IF(FNU-1.0)99,99,16 
16 CONTINUE 

DO 19 I=l,NP 
TEMP=DABS(DIFZ(I)) 
IF(DMIN1(1.0D0-TEMP,DABS(TH(I))))99,99,19 

19 CONTINUE 
GA=FLAM 
NIT=1 
LAOS=O 
IF(EPS1) 5,70,70 

5 EPS1=0 
70 SSQ=O 

CALL MODEL(NPROB,TH,F,NOB,NP) 
DO 90 I=1,NOB 
R(I)=Y(I)-F(I) 

90 SSQ=SSQ+R(I)*R(I) 
* 
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WRITE(06,9011) 
9011 FORMAT(' INITIAL FUNCTION VALUES') 


WRITE(06,2001) (F(I),I=1,NOB) 

WRITE(06,9012) 


9012 FORMAT(////' INITIAL RESIDUALS') 

WRITE(06,2001) (R(I),I=1,NOB)


• 
WRITE(06,1003) SSQ 

100 	 GA=GA/FNU 
INTCNT=O 
WRITE(06,1004) NIT 

101 	 3S=1-NOB 
DO 130 3=1,NP 
TEl".P=TH (3) 
P(J)=DIFZ(J)*TH(3) 
TH(J)=TH(J)+P(J) 
Q(J)=O 
JS=JS+NOB 
CALL MODEL(NPROB,TH,DELZ(JS),NOB,NP) 
I3=3S-1 
DO 120 I=1,NOB 
I3:aiJ+1 
DELZ(I3)=DELZ(I3)-F(I) 

120 Q(J)=Q(J)+DELZ(I3)*R(I) 
Q(J)=Q(J)/P(J) 

130 TH(J)=TEMP 
IF(LAOS) 131,131,414 

131 	 DO 150 I=1,NP 
DO 151 J=1,I 
SUM=O 
K.J=~l'OB* (3-1) 
KI=NOB*(I-1) 


DO 160 K = 1, NOB 

KI = KI + 1 

KJ = KJ + 1 


160 	 SUM = SUM + DELZ(KI) * DELZ(KJ) 

TEMP= SUM/(P(I)*P(3)) 

3I = J + NP*(I-1) 

D(JI) = TEMP 

IJ = I + NP*(J-1) 


151 D(IJ) =TEMP 
150 	 E(I) = DSQRT(D(JI)) 
666 	 CONTINUE 


DO 153 I = 1, NP 

IJ = I-NP 

DO 153 J=1,I 

IJ = IJ + NP 

A(IJ) = D(IJ) / (E(I)*E(J)) 

3I = J + NP*(I-1) 


153 	 A(JI) = A(IJ) 
C A= SG.LED MOMENT MATRIX 

II = - NP 
DO 155 I=l,NP 
P(I)=Q(I)/E(I) 
PHI(I)=P(I) 
II = NP + 1 + II 

155 A(II) = A(II) + GA 
c 

I=1 
CALL MATIN(A, NP, P, I, DET) 

c P/E CORRECTION VECTOR 
STEP=1.0 


SUM1=0. 

SUM2=0. 

SUM3=0. 
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DO 231 I=1,NP 

SUM1=P(Il*PHI(Il+SUM1 

SUM2=P(Il*P(Il+SUM2 

SUM3= PHI(Il * PHI(Il + SUM3 


231 	 PHI(Il = P(Il 
TEMP= SUM1/(DSQRT(SUM2l*DSQRT(SUM3ll 


TEMP = OMIN1(TEMP, 1.000l 

TEMP = 57.295*DACOS(TEMPl 

WRITE(06,1041l DET,TEMP 


170 	 DO 220 I = 1, NP 

P(Il = PHI(Il *STEP / E(I) 

TB(I) = TH(I) + P(I) 


220 	 CONTINUE 

WRITE(06,7000) 


7000 	FORMAT(30HOTEST POINT PARAMETER VALUES 

WRITE(06,2006l (TB(Il,I=1,NPl 

DO 221 I = 1, NP 

IF(SIGNS(Il) 221, 221, 222 


222 	 IF(DSIGN(1.0DO,TH(Ill*DSIGN(1.0DO,TB(I)l) 663, 221, 221 
221 	 CONTINUE 


SUMB=O 

CALL MODEL(NPROB, TB, F, NOB, NPl 

DO 230 I=1,NOB 

R(Il=Y(I)-F(Il 


230 	 SUMB=SUMB+R(Il*R(I) 
WRITE(06,1043l SUMB 
IF(SUMB - (1.0+EPS1l*SSQl 662, 662, 663 

663 	 IF( DMIN1(TEMP-30.0DO, GAll 665, 665, 664 
665 	 STEP=STEP/2.0 

INTCNT = n•Tct-•T + 1 
IF(INTCNT - 36l 170, 2700, 2700 

664 	GA=GA*FNU 

INTCNT = INTCNT + 1 

IF(INTCNT- 36l 666, 2700, 2700 


662 WRITE(06,1007l 
DO 669 I=1,NP 

669 TH(Il=TB(I) 
CALL GASS60(1, NP, TH, TEMP, TEMP) 


WRITE(06,1040) GA,SUMB 

IF(EPS2l 229,229,225 


229 IF(EPS1) 270,270,265 

225 DO 240 I = 1, NP 


IF(DABS(P(I))/(1.E-20+DABS(TH(Ill)-EPS2) 240, 240, 241 

241 IF(EPS1) 270,270,265 

240 CONTINUE 


WRITE(06,1009) EPS2 

GO TO 280 


265 IF(DABS(SUMB - SSQ) - EPS1*SSQ) 266, 266, 270 

266 WRITE(06,1010) EPSl 


GO TO 280 

270 	 SSQ=SUMB 


NIT=NIT+1 

IF(NIT- MIT) 100, 100, 280 


2700 WRITE(06,2710) 

2710 FORMAT(//115HO**** THE SUM OF SQUARES ~~OT BE REDUCED TO THE SUM 


lOF SQUARES AT THE END OF THE LAST ITERATION - ITERATING STOPS /l 
c 
c END ITERATION 
c 
280 WRITE (30,1007) 

CALL GASS60(1,NP,TH,TEMP,TEMP) 

WRITE (30,1040l GA,SUMB 

WRITE (30,1045) NIT 


1045 	 FORMAT(//lX,' NUMBER OF ITERATIONS ',I3,//l 

WRITE ( 06,1011) 
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WRITE(06,2001) (F(I),I=1,NOB) 

WRITE(06,1012) 

WRITE(06,2001) (R(I),I=1,NOB) 

WRITE(06,1017) 

WRITE (30,1017) 


1017 	FORMAT(////16H XPRIME-X MATRIX) 

CALL GASS60(4,NP,TEMP,TEMP,D) 

SSQ=SUMB 

IDF=NOB-NP 

WRITE(06,1016) 

WRITE (30,1016) 

I=O 


CALL 	 MATIN(D, NP, P, I, DET) 
CALL GASS60(4,NP,TEMP,TEMP,D) 


DO 7692 I=1,NP 

II = I + NP*(I-1) 


7692 	E(I) = DSQRT(D(II)) 

DO 340 I=1,NP 

JI = I + NP*(I-1) - 1 

IJ = I + NP*(I-2) 

DO 340 J = I, NP 

JI "' JI + 1 

A(JI) = D(JI) / (E(I)*E(J}} 

IJ = IJ + NP 


340 A(IJ} = A(JI} 

WRITE (06,1015) 

WRITE (30,1015} 


CALL GASS60(3, NP, TEMP, TEMP, A) 
IF(IDF} 341, 410, 341 

341 	SDEV = SSQ/FLOAT(IDF} 

WRITE(06,1014) SDEV,IDF 

WRITE (30,1014} SDEV,IDF 


SDEV = DSQRT(SDEV} 

DO 391 I=1,NP 

P(I}=TH(I}+2.0*E(I)*SDEV 


391 	 TB(I)=TH(I}-2.0*E(I)*SDEV 
WRITE(06,1039) 
WRITE (30,1039) 

CALL GASS60(2, NP, TB, P, TEMP) 
WRITE (06,1050} 

1050 FORMAT(/19HOCONFIDENCE FIGURES 
DO 392 I=1,NP 

392 TB(I}=2*E(I}*SDEV 
CALL GASS60(1, NP, TB, TEMP, T~~) 

LAOS = 1 
GO TO 101 

414 	 DO 415 K = 1, NOB 

TEMP = 0 

DO 420 I=1,NP 

DO 420 J=l,NP 

ISUB = K+NOB*(I-1) 

DEBUG! = DELZ(ISUB} 


C 	 DEBUG1 = DELZ(K + NOB*(I-1}) 
ISUB = K+NOB*(J-1} 
DEBUG2 DELZ(ISUB) 

C 	 DEBUG2 DELZ(K + NOB*(J-1)) 
IJ = I + NP*(J-1} 
DEBUG3 D(IJ}/(DIFZ(I}*TH(I)*DIFZ(J)*TH(J}) 

420 TEMP = TEMP + DEBUG! * DEBUG2 * DEBUG3 

TEMP= 2.0*DSQRT(DABS(TEMP)}*SDEV 


R(K)=F(K}+TEMP 

415 F(K)=F(K)-TEMP 


WRITE(06,1008} 

IE=O 


DO 425 I=1,NOB,10 
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IE=IE+10 
IF(NOB-IE) 430,435,435 


430 IE=NOB 

435 WRITE(06,2001) (R(J),J=I,IE) 

425 WRITE(06,2006) (F(J),J=I,IE) 

410 WRITE(06,1033) NPROB 


RETURN 

99 WRITE\06,1034) 


GO TO 410 

1000 FORMAT(38H1NON-LINEAR ESTIMATION, PROBLEM NUMBER I3,// IS, 


1 14H OBSERVATIONS, IS, 11H PARAMETERS I14, 17H SCRATCH REQUIRED) 
1001 FORMAT(/25HOINITIAL PARAMETER VALUES ) 
1002 FORMAT(/54HOPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS ) 
1003 FORMAT(/25HOINITIAL SUM OF SQUARES = E12.4) 
1004 FORMAT(/////45X,13HITERATION NO. I4) 
1007 FORMAT(/32HOPARAMETER VALUES VIA REGRESSION ) 
1008 FORMAT(////54HOAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VAL 

1UE ) 
1009 FORMAT(/62HOITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LE 

1SS THAN E12.4) 
1010 FORMAT(/62HOITERATION STOPS - RELATIVE CHANGE IN SUM OF SQUARES LE 

1SS THAN E12.4) 

1011 FORMAT(22H1FINAL FUNCTION VALUES 

1012 FORMAT(////10HORESIDUALS ) 

1014 FORMAT(//24HOVARIANCE OF RESIDUALS = ,E12.4,1H,I4, 


l20H DEGREES OF FREEDOM ) 
1015 FOP-~T(////19HOCORRELATION MATRIX 
1016 FORMAT(////17HOXPRIME-X INVERSE) 
1033 FO~~T(//19HOEND OF PROBLEM NO. I3) 
1034 FO~~T(/16HOPARAMETER ERROR ) 
1039 FORMAT(/71HOINDIVIDUAL CONFIDENCE LIMITS FOR E~CH PARAMETER (ON LI 

1NEAR HYPOTHESIS) ) 

1040 FO~AT(/9HOLAMBDA =E10.3,40X,33HSUM OF SQUARES AFTER REGRESSION 


lE15.7) 

1041 FORMAT(14H DETERMINANT = E12.4, 6X, 25H ANGLE IN SCALED COORD. 


1 F5.2, 8HDEGREES ) 

1043 FORMAT(28HOTEST POINT SUM OF SQUARES E12.4) 

2001 FO~~T(/10E12.4) 


2006 FORMAT(10E12.4) 

END 

SUBROUTINE MATIN(A, NVAR, B, NB, DET) 


IMPLICIT REAL*8(A-H,Q-Z) 

DIMENSION A(NVAR, 1), B(NVAR, 1) 


PIVOTM = A(1,1) 

DET = 1.0 


DO 550 ICOL = 1, NVAR 

PIVOT = A(ICOL, ICOL) 


PIVOTM = DMIN1(PIVOT, PIVOTM) 

DET = PIVOT * DET 

c 
C DIVIDE PIVOT ROW BY PIVOT ELEMENT 
c 

A(ICOL, ICOL) = 1.0 

PIVOT = DMAX1(PIVOT, 1.0D-30) 


PIVOT = A(ICOL, ICOL)/PIVOT 

DO 350 L=1 ,NVAR 


350 A(ICOL, L) = A(ICOL, L)*PIVOT 

IF (NB) 371,371,372 


372 DO 370 L=1,NB 

370 B(ICOL, L) = B(ICOL, L)*PIVOT 

c 
C REDUCE NON-PIVOT ROWS 
c 

371 	 DO 550 L1=1,NVAR 

IF (L1-ICOL) 551,550,551 
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551 

450 

552 
500 

550 

10 
15 
20 

30 

40 

60 

80 

90 

70 

72 
71 

96 

95 

97 

98 
100 

500 

600 

720 

721 


1 


T = A(L1, ICOL) 
A(L1, ICOL) = 0. 

DO 450 L=1 ,NVAR 
A(L1, L) = A(L1, L) - A(ICOL, L)*T 

IF (NB) 552,550,552 
DO 500 L=1,NB 

B(L1, L) = B(L1, L)-B(ICOL,L)*T 
CONTINUE 
RETURN 
END 

SUBROUTINE GASS60(ITYPE, NQ, A, B, C) 
IMPLICIT REAL*8(A-H,O-Z) 

DIMENSION A(NQ),B(NQ),C(NQ,NQ) 
NP = NQ 
NR = NP/10 

LOW= 1 

LUP = 10 


IF( NR )15,20,30 
RE'l'URN 
LUP=NP 
IF (LOW-LUP) 30,30,15 
WRZTE(06,500) (J,J=LOW,LUP) 
WRITE (30,500) (J,J=LOW,LUP) 
GO TO (40,60,80,80), ITYPE 
~~ITE(06,600) (A(J),J=LOW,LUP) 
WRITE (30,600) (A(J),J=LOW,LUP) 
GO TO 100 
WRITE(06,600) (B(J),J=LOW,LUP) 
WRITE (30,600) (B(J),J=LOW,LUP) 
GO TO 40 
IF(ITYPE.EQ.4) GO TO 70 
DO 90 I=LOW,LUP 
WRITE(06,720) I,(C(J,I),J=LOW,I) 
WRITE (30,720) I,(C(J,I),J=LOW,I) 
GO TO 71 
DO 72 I=LOW,LUP 
WRITE(06,721) I,(C(I,J),J=LOW,I) 
~~ITE (30,721) I,(C(I,J),J=LOW,I) 
CONTINUE 
LOW2=LUP+1 
IF (LOW2-NP) 96,96,100 
IF (ITYPE.EQ.4) GO TO 9/ 
DO 95 I=LOW2,NP 
WRITE(06,720) I,(C(J,I),J=LOW,LUP) 
WRITE (30,720) I,(C(J,I),J=LOW,LUP) 
GO TO 100 
DO 98 I=LOW2,NP 
WRITE(06,721) I,(C(I,J),J=LOW,LUP) 
WRITE (30,721) I,(C(I,J),J=LOW,LUP) 

LOW = LOW + 10 

LUP = LUP + 10 

NR = NR - 1 

GO TO 10 


FORMAT (/IS, 9Il2) 

FORMAT(10E12.4) 

FORMAT(1HO,I3,1X,F7.4,9F12.4) 

FORMAT(1HO,I3,1X,E10.4,9E12.4) 

CONTINUE 

RETURN 

END 
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c 
C This p~ogram pe~forms a data analysis on use~ supplied Wide Angle 
C Light Scattering data. It is cu~~ently dimensioned to handle a 
C problem where galvanomete~ measu~ements have been taken over a g~id 
C of five polymer concentrations and 12 scatte~ing angles. 
c 
C All va~iables a~e double precision 
c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION BETA(4),DIFF(4),SIGNS(4),SCRAT(500),X(60),Z(60),0B3EC(60), 

# DTHETA( 60) ,GSOLN( 60) ,GSOLV( 60) 
COMMON/PH/C(60),THETA(60),KCROBS(60),W(60),HTHETA(60),RTHETA(60), 

# VARH( 60), VARC( 60), VART( 60), VARE (60) ,GBAR( 60), 
# KSTAR,RB,GB,CVAR,TVAR,ITYPE 

c 
C The user must define an external MODEL subroutine for the estimation 
c program UWHAUSDD. 
c 

EXTERNAL MODEL 
REAL*8 KCROBS,KCRCAL,KSTAR 

c 
C Only one input data file, WALSPROP.DAT is required by the program. Inputs 
C are described below. 
c 

OPEN(UNIT=l,FILE='WALSPROP.DAT',STATUS='OLD') 
c 
c The following output data files are created by the p~ogram: 
c 
c ZIMMPROP.DAT stores the absissa and or~inate data required to 
c construct a Zimm plot 
c VARPROP.DAT contains the relative contributions of each error 
c variance te~m accounted for in the error 
c p~opogation model to the total error variance 
c STATPROP.DAT store the complete ~WHAUSDD results for later 
c viewing if desired 
c SUMPROP.DAT contains a summary of UWHAUSDD results such as 
c parameter estimates, confidence intervals and 
c correlation matrix 
c RESIDS.DAT contains the residuals from the fit 
c 

OPEN(UNIT=lO,FILE='ZIMMPROP.DAT',STATUS='UNKNOWN') 

OPEN(UNIT=ll,FILE='VARPROP.DAT',STATUS='UNKNOWN') 

OPEN(UNIT=20,FILE='STATPROP.DAT',STATUS='UNKNOWN') 

OPEN(UNIT=40,FILE='RESIDS.DAT',STATUS='UNKNOWN') 

IZERO=O 


c 

C Choose a parameter estimation routine 

c 


PRINT * , 'ENTER ITYPE- 1,2,3,4:' 

PRINT * 1. Error propagation on Kc/R' 

PRINT * 2. Error propagation on R' 

PRINT * 3. Non-linear least squares on Kc/R' 

PRINT * 4. Non-linear least squares on R' 

READ * , ITYPE 


c 

C Input data file WALSPROP.DAT, must contain: 

c 

c KPRIME an arbitrary constant used in the absissa to 

c construct a Zimm plot 

c CVAR, DTVAR estimates of the standard deviations in measuring 

c the polymer concentration (in percent of the 

c concentration) and scattering angle (in degrees) 

c UWHAUSDD parameters NOB, NP, ESPl, EPS2, MIT, FLAM, FNU 

c BETA Initial guesses of model parameters 

c C, DTHETA - polymer concetrations and scattering angles at 
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c which measurements were recorded 
c GSOLV - measured galvanometer readings for the solvent at 
c angle of measurement 
c GSOLN - measured galvanometer readings for the polymer 
c solutions 
c 

READ (1,*) KPRIME 
READ ( 1, *) CVAR, DTVAR 
READ (1,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU 
WRITE (6,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU 
WRITE ( 6 , * ) CVAR, DTVAR 
WRITE (20,*) KPRIME,CVAR,DTVAR 
WRITE (20,*) NPROB,NOB,NP,EPSl,EPS2,MIT,FLAM,FNU 
READ (1,*) (BETA(I),I=l,NP) 
WRITE (6,*) (BETA(I),I=1,NP) 
READ (1,*) (C(I),I=l,S) 
READ (l,*) (DTHETA(I),I=l,S6,5) 
READ (1,*) (GSOLV(I),I=1,56,5) 
READ (1,*) (GSOLN(I),I=1,NOB) 
READ (l,*) KSTAR,RB,GB 

c 
C Fill the concentration vector (C) with the appropriate values 
c 

DO .J=l,S 
DO K=l,11 

C(.J+S*K)=C(.J) 
END DO 

END DO 
c 
C Convert DTVAR from degrees to radians and CVAR from a percentage 
c 

PI=4.0*DATAN(1.DO) 
TVAR=DTVAR*PI/180.0 
C'VAR=CVAR/100 

c 
C Calculate GBAR, the average galvanometer reading at each angle, and fill 
C GBAR, GSOLV, DTHETA, THETA vectors with the appropriate values 
c 

DO .J=l,56,5 
GBAR(.J)=GSOLN(.J) 
THETA(.J)=DTHETA(.J)*PI/180.0 
DO K=l, 4 

GBAR(.J)=GBAR(.J)+GSOLN(.J+K) 
GSOLV(.J+K)=GSOLV(.J) 
DTHETA(.J+K)=DTHETA(.J) 
THETA(.J+K)=THETA(.J) 

END DO 
GBAR(.J)=GBAR(.J)/5 
DO K=l,4 

GBAR(.J+K)=GBAR(.J) 
END DO 

END DO 
WRITE (6,*) GBAR 

c 
C Calculate HTHETA, the difference bet~een the galvanometer readings of 
C the solution and the solvent; RTHETA, the polymer Rayleigh ratio; 
c KCROBS, the observed value of Kc/R; and X, the values of the absissa 
C for the Zimm plot 
c 

DO J=l,60 
HTHETA(.J)=GSOLN(J)-GSOLV(.J) 
RTHETA(.J)=RB/GB*DSIN(THETA(.J))*HTHETA(.J) 
KCROBS(.J)=KSTAR*C(.J)/RTHETA(J) 
X(.J)=DSIN(THETA(.J)/2.0)**2+KPRI~*C(.J) 

END DO 



185 


PRINT 49 
PRINT 50,(C(I),KCROBS(I),DTHETA(I),I=l,NOB) 

c 
C Arbitrarily set the objective vector (used by UWHAUSDO) to zero, which 
C is appropriate for the error propagation applications 
c 

DO 	 I=l,NOB 

OBJEC(I)=O.O 


END DO 
c 
c Set the step differential used by V~USDO to evaluate the objective 
C function and set SIGNS equal to 1, thus not allowing negative parameter 
C estimates 
c 

DO 	 I=l ,NP 

DIFF(I)=O.OOOl 

SIGNS(I)=l 


END DO 
c 
c If either of the non-linear least squares applications has been chosen, 
C set the objective vector to the appropriate function values 
c 

IF (ITYPE.EQ.3) THEN 

DO I=l,NOB 


OBJEC(I)=KCROBS(I) 

END 00 


ELSE IF (ITYPE.EQ.4) THEN 

DO I=l,NOB 


OBJEC(I)=RTHETA(I) 

END 00 


END IF 
C· 
C Call the estimation subroutine UWKAUS 
c 

CALL UWHAUS(NPROB,MODEL,NOB,OBJEC,NP,BETA,OIFF,SIGNS,EPS1,EPS2,MIT, 
# FLAM,FNU,SCRAT) 

c 
C Calculate the predicted values of Kc/R using the final parameter estiamtes 
C and the residuals 
c 

DO 	 I=l,NOB 
KCRCAL=l.O/BETA(l)*(l.O+BETA(2l*DSIN(THETA(I)/2.0)**2) 

i +2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2 

RES=KCROBS(I)-KCRCAL 

WRITE (10,300) X(I),IZERO,KCROBS(I),KCRCAL 


300 	 FORMAT(' ',F9.7,5X,I2,5X,Ell.5,5X,E11.5) 
WRITE (40,310) I,RES 

310 FORMAT(' ',I3,5X,El1.5) 

END DO 

CVAR=CVAR* 100 

WRITE (30,120) ITYPE 

WRITE (30,500) CVAR 

WRITE (30,505) DTVAR 


500 FORMAT(///,' ','CONC ST. DEV.= ',F6.4,' %OF CONC') 

505 FORMAT(' ','ANGLE ST. DEV.= ',F6.4,' DEGREES') 

c 

C If the method of error propgation was employed, calculate the relative 

C contribution made by each term in the error propagation formula to the 

C total error variance 

c 


IF 	 (ITYPE.LE.2) THEN 
DO 	 I=l,NOB 


VARH(I)=VARH(IljVARE(I) 

VARC(I)=VARC(I)jVARE(I) 

VART(I)=VART(I)jVARE(I) 
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VARE(I)=VARE(I)jVARE(I) 
WRITE (11,400) VARH(I),VARC(I),VART(I),VARE(I) 

END DO 
END IF 

400 	 FORMAT(' ',4(E11.5,3X)) 
PRINT 100 
PRINT 110,(C(I),DTHETA(I),W(I),I=1,NOB) 
WRITE (20,999) (W(I),I=1,NOB) 
WRITE (-30, 999) (W( I), I=1 ,NOB) 

999 FORMAT (' ',5X,D24.16) 
49 FO~ ('1',8X,'C',11X,'KCROBS',11X,'THETA'//) 
SO FORMAT (5X,F7.S,SX,E11.5,5X,F6.2) 
100 FO~ ( '1' ,SX, 'C', 7X, 'THETA' ,SX, 'W' //) 
110 FORMAT (3X,F7.5,3X,F6.2,3X,E11.5) 
120 FORMAT(///,' ','ITYPE = ',I2//) 

STOP 
END 

c 
c 
c 

SUBROUTINE MODEL(NPROB,BETA,F,NOB,NP) 

IMPLICIT REAL*8(A-H,O-Z) 

DIMENSION BETA(NP),F(NOB) 

COMMON/PH/C(60),THETA(60),KCROBS(60),W(60),HTHETA(60),RTHETA(60), 


# VARH(60),VARC(60),VART(60),VARE(60),GBAR(60), 

t KSTAR,RB,GB,CVAR,TVAR,ITYPE 


REAL*8 KSTAR,KCROBS 
c 
C Define the functional subfunctions HVAR and CVARR to calculate the 
c appropriate error variance for HTHETA and c (concentration) 
c 

HVAR(XX)=O.OOOS*XX**2 
CVARR(XXX)=(CVAR*XXX)**2 

c 
C If one of the error propagation applications was chosen, then calculate 
C for each data point: 
C the values of the differential equations 
c the value of e 
C the individual error variance contributions 
C the total error variance 
C the weighting and the objective function value 
c 

IF 	 (ITYPE.EQ.1) THEN 
DO 	 I=1,NOB 

DEDH=-KSTAR*C(I)/(RB/GB*DSIN(THETA(I))*HTHETA(I)**2) 
DEDC=KSTAR/(RB/GB*DSIN(THETA(I))*HTHETA(I)) 

# -2.0*BETA(3)-6.0*BETA(4)*C(I) 
DEDT=-KSTAR*C(I)*DCOS(THETA(I))/(RB/GB*DSIN(THETA(I))**2 

# *HTHETA(I))-BETA(2)/BETA(1)*DSIN(THETA(I)/2.0D0) 
I *DCOS(THETA(I)/2.0DO) 

E=KSTAR*C(I)/(RB/GB*DSIN(THETA(I))*HTHETA(I))­
# 1.0/BETA(1)*(1.0+BETA(2)*DSIN(THETA(I)/2.0)**2)­
# 2.0*BETA(3)*C(I)-3.0*BETA(4)*C(I)**2 

VARH(I)=DEDH**2*HVAR(GBAR(I)) 

VARC(I)=DEDC**2*CVARR(C(I)) 

VART(I)=DEDT**2*TVAR**2 

VARE(I)=VARH(I)+VARC(I)+VART(I) 

W(I)=l.OjVARE(I) 

F(I)=E*DSQRT(W(I)) 


END DO 

ELSE IF (ITYPE.EQ.2) THEN 


DO 	 I=l,NOB 
DEDH=RB/GB*DSIN(THETA(I)) 
DENOM=(l.0+BETA(2)*DSIN(THETA(I)/2.0)**2+ 

I 	 2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2)**2 

http:5X,D24.16
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DEDC=KSTAR*BETA(l)*(3.0*BETA(4)*C(I)**2-l.O­
ll BETA( 2) *DSIN(THETA( I )/2 .0) **2 )/DENOH 

DEDT=RB/GB*DCOS(THETA(I))*HTHETA(I)+ 
ll KSTAR*C(I)*BETA(l)*BETA(2)* 
ll (DSIN(THETA(I)j2.0)*DCOS(THETA(I)/2.0))/DENOM 

E=RTHETA(I)-KSTAR*C(I)/(1.0/BETA(l)*(l.O+BETA(2)*DSIN 
ll (THETA(I)/2.0)**2)+2.0*BETA(3)*C(I) 
ll +3.0*BETA(4)*C(I)**2) 

VARH(I)=DEDH**2*HVAR(GBAR(I)) 
VARC(I)=DEDC**2*CVARR(C(I)) 
VART(I)=DEDT**2*TVAR**2 
VARE(I)=VARH(I)+VARC(I)+VART(I) 
W(I)=l.OjVARE(I) 
F(I)=E*DSQRT(W(I)} 

END DO 
c 
C If one of the non-linear least squares applications was chosen, then 
C for each data point, calculate the value of the appropriate objective 
C function 
c 

ELSE IF (ITYPE.EQ.3) THEN 
DO I=l,NOB 

F(I)=l.OjBETA(l}*(l.O+BETA(2)*DSIN(THETA(I)/2.0)**2)+ 
I 2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2 

END DO 
ELSE IF (ITYPE.EQ.4) THEN 

DO I=l,NOB 
F(I)=KSTAR*C(I}/(1.0/BETA(l)*(l.O+BETA(2)*DSIN(THETA(I) 

# j2.0)**2)+2.0*BETA(3)*C(I)+3.0*BETA(4)*C(I)**2) 
END DO 

END IF 
RETURN 
END 
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c 
C This program performs a data analysis on user supplied Low Angle Laser 
C Light Scattering data. It is currently dimensioned to handle no more 
C than five data points. 
c 
c All variables are double precision. 
c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION BETA(2),DIFF(2),SIGNS(2),SCRAT(500),Z(5),0BJEC(5), 

# D(5),DVALUE(5),DCODE(5) 
COMMON/PH/C(5),KCROBS(5),W(5),RS0~~(5),RTHETA(5), 

# VARG( 5), VARGO ( 5), VARC( 5) ,VA.RE!60) ,GSOLN( 5), 
# KSTAR,GVAR,CVAR(5),G0VAR,GSOLN0(5),ITYPE 

c 
C The user must define an external MODEL subroutine for the estimation 
c program UWHAUSDD. 
c 

EXTERNAL MODEL 

REAL*8 KCROBS,KCRCAL,KSTAR 

INTEGER DCODE 


c 
C Only one input data file, LALLSPROP.DAT is required by the program. Inputs 
C are described below. 
c 

OPEN(UNIT=l,FILE='LALLSPROP.DAT',STATUS='OLD') 
c 
C The following output data files are created by the program: 
c 
c KCRVSC.DAT stores the absissa and ordinate data required to 
c construct a Kc/R vs c plot 
c VARPROP.DAT contains the relative contributions of each error 
c variance term accounted for in the error 
c propagation model to the total error variance 
c STATPF.OP.DAT stores the complete ~~dAUSDD screen output for 
c later viewing if desired 
c P.ESIDS.DAT contains the residuals from the fit 
c 

OPEN(UNIT=lO,FILE='KCRVSC.DAT',STATUS='UN~~OWN') 

OPEN(UNIT=ll,FILE='VARPROP.DAT',STATUS='UNKNOWN') 
OPEN(UNIT=20,FILE='STATPROP.DAT',STATUS='UNKNO~~·) 

OPEN(UNIT=50,FILE='RESIDS.DAT',STATUS='UNKNOWN') 
IZERO=O 

c 
C Choose a parameter estimation rou~ine 
c 

PRINT * ' ENTER ITYPE- 1,2,3,4:' 

PRINT *, 1. Error propagation on Kc/R' 

PRINT *, 2. Error propagation on R' 

PRINT *, 3. Linear least squares on Kc/R' 

PRINT * 4. Non-linear least squares on R' 

READ * , I TYPE 


c 
C Input data file LALLSPROP.DAT, must contain: 
c 
c GVAR, GOVAR estimates of the standard deviations in G(theta) 
c and G(zero angle) 
c CVAR estiamtes of the variance in the polymer 
c concentrations 
c UWHAUSDD parameters NOB, NP, EPSl, EPS2, MIT, FLAM, FNU 
c BETA initial guesses of the model parameters 
c c polymer concentrations at which measurements 
c were recorded 
c GSOLN, GSOLNO measured galvanometer readings of G(theta) and 
c G(zero angle) at each polymer concentration 
c DCODE a coded integer value between 1 and 5 corresponding 
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C to a specific attenuation function 
C KSTAR, RSOLV, DIGMA- the values of K, R(solv.), and an optical 
C constant particular to a set of data 
c 

READ (1,*) GVAR,GOVAR 
READ (1,*) (CVAR(I),I=l,S) 
READ (1,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU 
WRITE (6,*) NPROB,NOB,NP,EPS1,EPS2,MIT,FLAM,FNU 
WRITE (6,*) CVAR 
WRITE (20,*) CVAR 
WRITE (20,*) NPROB,NOB,NP,EPSl,EPS2,MIT,FLAM,FNU 
READ (1,*) 
WRITE (6,*) 
READ (1,*) 
READ (1,*) 
READ (1,*) 
READ (1,*) 
READ (1,*) 

c 

(BETA(I),I=1,NP) 
(BETA(I),I=1,NP) 

(C(I),I=1,5) 
(GSOLN(I),I=1,5) 
(GSOLNO(I),I=l,S) 
(DCODE(I),I=1,5) 
KSTAR,RSOLV,DSIGMA 

C Define the correspondance between OCOOE and the attenuating function. 
c 

OVALUE(1)=1.0553D-6 
OVALUE(2)=6.6728D-8 
OVALUE(3)=1.6549D-8 
OVALUE(4)=4.3026D-9 
OVALUE(5)=2.61730-7 

c 
c Calculate the absolute values of CVAR; determin~ the appropriate values 
C for D, the attenuating function; calculate RSOw~. the measured Rayleigh 
C ratio for the solution; RTHETA, the polymer Rayleigh ratio; and KCROBS, 
C the observed values of Kc/R. 
c 

00 	J=1,NOB 

CVAR(J)=C(J)**2*CVAR(J) 

O(J)=DVALUE(DCODE(J)) 

RSOLN(J)=GSOLN(J)/GSOLNO(J)*DSIG~~*O(J) 

RTHETA(J)=RSOLN(J)-RSOLV 

KCROBS(J)=KSTAR*C(J)/RTHETA(J) 

WRITE (10,*) C(J),KCROBS(J) 


END DO 

WRITE (6,*) CVAR 

PRINT 49 

PRINT SO,(C(I),KCROBS(I),I=l,NOB) 


c 
c Arbitrarily set the objective vector (used by UWHAUSOO) to zero, which 
C is appropriate for the error propagation applications. 
c 

00 I=l,NOB 
OBJEC(I)=O.O 

END 00 
c 
C Set the step differential used by UWHAUSDD 
C function and set SIGNS equal to 1, thus not 
C estimates. 
c 

00 	I=l,NP 

OIFF(I)=O.OOOl 

SIGNS(I)=l 


END 00 
c 

to evaluate the objective 
allowing negative parameter 

C If either the linear or non-linear least squares applications has been 
C chosen, set the objective vector to the appropriate function values. 
c 

IF 	 (ITYPE.EQ.3) THEN 

00 I=l,NOB 
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OBJEC(I)=KCROBS(I) 

END DO 


ELSE IF (ITYPE.EQ.4) THEN 

DO I=1,NOB 


OBJEC(I)=RTHETA(I) 

END DO 


END IF 
c 
C Call the estimation routine UWHAUS. 
c 

CALL UWHAUS(NPROB,MODEL,NOB,OBJEC,NP,BETA,DIFF,SIGNS,EPS1,EPS2,MIT, 
# FLAM,FNU,SCRAT) 

c 
C Calculate the predicted values of KcjR using the final parameter estimates, 
c and the residuals. 
c 

DO 	 I=l,NOB 

KCRCAL=1.0/BETA(1)+2.0*BETA(2)*C(I) 

RES=KCROBS(I)-KCRCAL 

WRITE (50,310) I,RES 


310 FORMAT(' ',I3,5X,E11.5) 
CVAR(I)=OSQRT(CVAR(I)) 


END DO 

WRITE (30,120) ITYPE 

WRrTE (30,500) GVAR 

WRITE (30,502) GOVAR 

~~ITE (30,505) CVAR 


500 FO~~T(///,' ','MEASURED INTENSITY ST. DEV.= •,:6.2) 

502 FORMAT(' ','MEASURED INTENSITY AT 0.0 OEG., ST. DEV.= ',F6.2) 

505 FORMAT(' ','CONC ST. DEV.= ',5(3X,Ell.5),///) 

c 

C If the method of error propagation was employed, calculate the relative 

C contribution made by each term in the error propagation formula to the 

C total error variance. 

c 


IF 	 (ITYPE.LE.2) THEN 
DO 	 I=1,NOB 


VARG(I)=VARG(I)/VARE(I) 

VARGO(I)=VARGO(I)/VARE(I) 

VARC(I)=VARC(I)/VARE(I) 


END DO 
END IF 
WRITE (11,400) · (VARG (I), VARGO (I), VARC (I),VARE (I), I=1 ,NOB) 
w~ITE (30,400) (VARG(I),VARGO(I),VARC(I),VARE(I),I=1,NOB) 

400 	 FORMAT(' ',4(E11.5,3X)) 

PRINT 100 

PRINT 110,(C(I),W(I),I=1,NOB) 

WRITE (20,999) (W(I),I=1,NOB) 


999 FORMAT (' ',5X,D24.16) 

49 FORMAT ( '1', SX, 'C', 11X, 'KCROBS' ,11X,// 1 


50 FORMAT (5X,F7.5,5X,E11.5) 

100 FORMAT ('1',5X,'C',7X,SX,'W'//) 

110 FORMAT (3X,F7.5,3X,E11.5) 

120 FORMAT (///,' ','ITYPE= ',I2//) 


STOP 
END 


c 

c 

c 


SUBROUTINE MODEL(NPROB,BETA,F,NOB,NP) 

IMPLICIT REAL*S(A-H,O-Z) 

DIMENSION BETA(NP),F(NOB) 

COMMON/PH/C(5),KCROBS(5),W(5),RSOLN(5),RTHETA(5), 


ll VARG( 5) ,VARGO (5), VARC( 5) ,VARE(60) ,GSOL..':( 5), 

ll KSTAR,GVAR,CVAR(5),G0VAR,GSOLN0(5),ITiPE 


http:5X,D24.16
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REAL*8 KSTAR,KCROBS 
DO I=l,NOB 

c 
c If one of the error propogation applications was chosen, then calculate 
C for each data point: 
c - the values of the differential equations 
C - the value of e (the error) 
C - the individual error variance contributions 
C - the total error variance 
C the weighting and the objective function value 
c 

IF (ITYPE.EQ.l) THEN 
DEDG=-KSTAR*C(I)/(RTHETA(I)**2)*RSOLN(I)/GSOLN(I) 
DEDGO=-DEDG*GSOLN(I)/GSOLNO(I) 
DEDC=KSTAR/RTHETA(I)-2*BETA(2) 
E=KSTAR*C(I)/RTHETA(I)-l.O/BETA(l)-2.0*BETA(2)*C(I) 

ELSE IF (ITYPE.EQ.2) THEN 
DEDG=RSOLN(I)/GSOLN(I) 
DEDGO=-RSOLN(I)/GSOLNO(I) 
DEDC=-(KSTAR/BETA(l))/((l.0/BETA(l)+2.0*BETA(2)*C(I))**2) 
E=RTHETA(I)-KSTAR*C(I)/(l.O/BETA(l)+2.0*BETA(2)*C(I)) 

END IF 
IF ((ITYPE.EQ.l).OR.(ITYPE.EQ.2)) THEN 

VARG(I)=DEDG**2*GVAR**2 
VARGO(I)=DEDG0**2*GOVAR**2 
VARC(I)=DEDC**2*CVAR(I) 
VARE(I)=VARG(I)+VARGO(I)+VARC(I) 
W(I)=l.O/VARE(I) 
F(I)=E*DSQRT(W(I)) 

END IF 
c 
C If either the linear or non-linear least squares applications was chosen, 
C for each data point, calculate the value of the appropriate objective 
C function. 

IF (ITYPE.EQ.3) THEN 
F(I)=l.O/BETA(l)+2.0*BETA(2)*C(I) 

ELSE IF (ITYPE.EQ.4) THEN 
F(I)=KSTAR*C(I)/(l.O/BETA(l)+2.0*BETA(2)*C(I)) 

END IF 
END DO 
RETURN 
END 
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c 
C This program performs a data analysis of user supplies Dynamic Light 
C Scattering data. It is currently dimensioned to handle raw 
C autocorrelation data made up of 56 time lag measurements and eight 
C measurements at infinite time delay. 
c 
C All variables except those pertaining to the NNLLS routine are double 
c precision. 
c 

~LICIT REAL*8 (A-H,O-Z) 

INTEGER SHIFTS,SPN 

DIMENSION YY(56),DIFF(20),SIGNS(20),BETA(20),FUN(l50,30), 


t TIME(65),SCRAT(l000),BETAI(20),PRED(56,8),FF(56), 
I DIAM(4),RES(56,8),PREOT(56,6) 

REAL*4 A(56,20),X(20),B(56),W(20),ZZ(56),TRANMAT(56,56),PHI, 
t AT(56,20),BT(56) 

INTEGER*2 INDEX(SO),MOOE 
COMMON/PH/TTIME(56),GAMMA(20),TOC(4),ITYPE,KSQR,COUNTS(64),NEX1, 

I NEX2 
REAL*8 INTS,INTL,MINCOUNT,KSQR,MAXRES,MINRES,NEXl,NEX2 

c 
C The user must define an external MODEL subroutine for the estimation 
C p~ograms UWHAUSDD and NNLLS. 
c 

EXTERNAL MODEL 
c 
C Only one input data file, OLSIN.DAT is required by the program. Inputs 
c are described later. 
c 

OPEN (UNIT=l,FILE='OLSIN.OAT',STATUS='UNKNOWN') 
c 
C The following output data programs are created by the program: 
c 
c DLSOU'l'. OAT - contains first-order normalized autocorrelation 
c data as a function of time 
c DIS.DAT - contains the parameter estimates of the 
c distribution fit 
c PREDICT.DAT - contains the predicted values of the first-order 
c normalized autocorrelation function 
c RESLIM.DAT contains the residuals of the fit 
c 

OPEN (UNIT=2,FILE='DLSOUT.DAT',STATUS='UNKNOWN') 

OPEN (UNIT=3,FILE='DIS.OAT',STATUS='UNKNOWN') 

OPEN (UNIT=4,FILE='PREDICT.DAT',STATUS='UNKNOWN') 

OPEN (UNIT=S,FILE='RESIDS.DAT',STATUS='UNKNOWN') 

OPEN (UNIT=lO,FILE='RESLIM.DAT',STATUS='UNKNOWN') 


c 
C Choose a parameter estimation routine. Note that all estimation problems 
C except ITYPE = 2,3 are linear in the parameters. 
c 

PRINT •. 'ENTER ITYPE - 1 to 8: • 

PRINT • 1. LAWSON r. HANSON NNLS' 

PRINT • , 2. LAWSON r. HANSON NNLS - TRANFORMED DATA' 

PRINT • 3. OSTROWSKY SUM OF EXPONENTIALS' 

PRINT * , 4. ONE EXPONENTIAL, TWO PARAMETERS' 

PRINT • , s. TWO EXPONENTIALS, FOUR PARAMETERS' 

PRINT * 6. TWO EXPONENTIALS, TWO PARAMETERS' 

PRINT * , 7. THREE EXPONENTIALS, THREE PARAMETERS' 

PRINT * 8. FOUR EXPONENTIALS, FOUR PARAMETERS' 

READ * , ITYPE 


c 

C Input data file DLSIN.DAT must contain: 

c 

c DELTAT - channel width (micro-seconds) 

c TCOUNT - total number of photopulses counted 
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c PCOUNT number of prescaled counts 
c RUNT - run time (milli-seconds) 
c PFAC prescale factor 
c COUNTS contents of each individual channel (up to 64), the 
c second-order un-normalized autocorrelation function 
c values 
c UWHAUSDD parameters NOB, NP, EPSl, EPS2, MIT, FLAM, FNU 
c SPN determines whether negative parameter estimates will 
c be allowed or not; YES if SPN = -1; NO if SPN = 1 
c BETAI - initial guess of p parameters (only for !TYPE > 0) 
c DL lower diameter value (in nano-metres) at which 
c parameter estimates start 
c OMEGAMAX determines logarithmic spacing between parameter 
c estimates on diameter scale 
c SHIFTS number of times a set of p parameters are estimated 
c in each shift; s·HIFTS is only equal to 1 unless 
c Ostrowsky's or Morrison's exponential sampling 
c methods are used 
c NEX determines whether a weighted NNLLS fit is performed 
c or not 
c 
C Note that some of these input variables are specific to either the 
C UWHAUSDD or NNLLS estimation routines. 
c 

READ (1,*) DELTAT,TCOUNT,PCOUNT,RUNT,PFAC 

READ (1,*) (COUNTS(I),I=l,64) 

READ (1,*) NPROB,NOB,NP,EPSl,EPS2,MIT,FLAM,FNU,SPN 

IF (ITYPE.GE.3) READ (1,*) (BETAI(I),I=l,NP) 

READ (1,*) DL,OMEGAMAX,SHIFTS,NEXl,NEX2 


c 
C Determine the total number of parameters 
c 

NPT=NP*SHIFTS 
c 
C Transform the initial parameter estimates 
C translation diffusion coefficient values. 
c 

IF ((ITYPE.EQ.4).0R.(ITYPE.EQ.5)) 
# BETAI(2)=214.174/(BETAI(2)/2.0) 

to 	be estimated. 

from diameter values to 

IF (ITYPE.EQ.S) BETAI(4)=214.174/(BETAI(4)/2.0) 

IF (ITYPE.GE.6) THEN 


00 	I=l,NP 

READ (1,*) DIAM(I) 

TDC(I)=214.174/(DIAM(I)/2.0) 


END 00 
END IF 

c 
C Calculate the initial gamma value where parameter estimation stat·ts. 
c 

GAMMA(l)=0.074679j(DL/2.0) 
c 
C Calculate the value of the optical constant k(squared) and the cconstant pi. 
c 

KSQR=0.018673**2 
PI=4.0*DATAN(1.DO) 

c 
C Determine an average value for 
C measurements. 
c 

BL=COUNTS(57) 
00 !=58,64 

BL=BL+COUNTS(I) 
END 00 
BL=BL/8.0 

c 

the baseline from the eight baseli.ne 

http:baseli.ne
http:PI=4.0*DATAN(1.DO
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c Let MINCOUNT be the average baseline value and intialize the time. 
c 

MINCOUNT=BL*2048.0 
TIME(l)=O.O 

c 
c Calculate the first-order, normalized autocorrelation function values from 
C the second-order, an-normalized autocorrelation function values, a1nd 
C increment the time accordingly for each channel. 
c 

DO 	 I=l,S6 

COUNTS(I)=DSQRT(COUNTS(I)/BL-1.0) 

WRITE (2,*) TIME(I),COUNTS(I) 

TIME(I+l)=TIME(I)+DELTAT 


END 00 
c 
C Check : 
c 
c 1. the total number of counts 
c 2. the baseline value 
c 

CHECKl=PCOUNT*PFAC*2048 
CHECK2=DELTAT*lE-6*TCOUNT*PCOUNT*lOOO/RUNT/MINCO~n 

TCOUNT=TCOUNT*2048 

WRITE (6,10) TCOUNT,CHECKl 

WRITE (6,20) CHECK2 


10 FORMAT(' ',SX,'TOTAL COUNTS ',Fl5.2,5X,Fl5.2,//) 

20 FORMAT(' ',5X,'BASELINE RATIO= ',Fl5.12) 

c 

c If either Ostrowsky's or Morrison's exponential sampling method w;as chosen, 

c then determine the intervals between each gamma value at which a J~arameter 


c is estimated and between each shift. 

c 


IF 	 (ITYPE.LE.3) THEN 

INTL=DEXP(-PI/OMEGAMAX) 

GAMMA(2)=INTL*GAMMA(l) 

INTS=DLOG(INTL)/SHIFTS 


c 

c Define the initial gamma values at which parameter estimation takes place. 

c 

00 I=3,NP 
GAMMA(I)=INTL*GAMMA(I-1) 

END DO 
END IF 

c 
c If the data is to be transformed to account 
c apply the appropriate transformation formula 
C fitted AR(l) model parameter. 
c 

IF 	 (ITYPE.EQ.2) THEN 

PRINT 65 


65 	 FORMAT (' ', SX, 'i:NTER PHI') 
READ*, PHI 
TRANMAT(l,l)=SQRT(l.O-PHI**2) 
00 I=2,NOB 

TRANMAT(I,I)=l.O 
TRANMAT(I,I-l)=-PHI 

END DO 
END IF 

c 

for autocorrelated errors, then 
for an AR(l) model. PHI is 

c Set YY to be the objective function for the UWHAUSDD parameter estimation 
C routine. If NEX > l, then the objective function is weighted according 
c to Morrison's forumla. 
c 

00 	I=l,NOB 

TTIME(I)=TIME(I) 
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YY(I)=COUNTS(I)**NEXl 

PRED(I,l)=TIME(I) 

PRED(I,2)=YY(I) 


END DO 
c 
C Set the step differential used by UWHAUSDD to evaluate the objective 
c function and set SIGNS to either allow or disallow negative parameter 
C estimates. 
c 

DO 	 I=l,NP 

DIFF(I)=O.OOOl 

SIGNS(I)=SPN 

BETA(I)=BETAI(I) 


END DO 

c 
C For each shift, call the appropriate estimation routine. 
c 

DO 	 I=l,SHIFTS 
IF (ITYPE.GE.3) THEN 

c 
C For Ostrowsky's exponential sampling method and the special cases where 
C only two to four parameters are estimated, call UWHAUSDD. 
c 

CALL UWHAUS(NPROB,MODEL,NOB,YY,NP,BETA,DIFF,SIGNS,EPSl,EPS2,MIT, 
FLAM, FNU, SCRAT) 

c 
c For Morrison's exponential sampling approach, using NNLLS, first set up 
C the appropriate matrices and vectors before calling the estimation routine. 
c 

ELSE IF (ITYPE.LE.2) THEN 
c 
C ·Initialize the parameter vector, X, to be zero. 
c 

DO Il=l,NP 

X( Il )=0 .0 


END DO 


c 
C Define the single precision A matrix and the B vector. 
c 

DO 	 Il=l,NOB 

B(Il)=SNGL(YY(Il)) 

DO I2=l,NP 


A(Il,I2)=SNGL(COUNTS(Il)**(NEX1-NEX2)* 
DEXP(-GAMMA(I2)*TTIME(Il))) 

END DO 
END DO 

c 
C Transform the A matrix and B vector to account for autocorrelated errors 
C according to an AR(l) model if ITYPE = 2 was chosen. 
c 

IF 	 (ITYPE.EQ.2) THEN 
DO 	 Il=l,NOB 


SUMTB=O.O 

DO J2=l,NOB 


SUMTB=SUMTB+TRANMAT(Il,J2)*B(J2) 
END DO 
BT(Il)=SUMTB 
DO Jl=l,NP 

SUMTA=O.O 
DO Kl=l,NOB 

SUMTA=SUMTA+TRANMAT(Il,Kl)*A(Kl,Jl) 
END DO 
AT(Il,Jl)=SUMTA 

END DO 

ENP DO 
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DO Il=l,NOB 
B( Il )=BT( Il) 
PRED( I1, 2 )=B( Il) 
DO I2=l,NP 

A(Il,I2)=AT(Il,I2) 
END DO 

END DO 
END IF 

c 
c Call the NNLLS estimation routine (single precision) 
c 

CALL NNLS(A,NOB,NOB,NP,B,X,RNORM,W,ZZ,INDEX,MODE) 
WRITE (6,*) RNORM,MODE 
WRITE (6,*) X 

c 
C If the NNLLS routine has destroyed the contents of INTS (the interval 
C between successive shifts), restore it. 
c 

IF (INTS.EQ.O) INTS=DLOG(INTL)/SHIFTS 
c 
C Transform the final parameter estimates to double precision. 
c 

DO Il=l,NP 
BETA(Il)=DBLE(X(Il)) 

END DO 
END IF 

c 
C Evaluate the model subroutine at the final values of the parameter 
c estimates. 
c 

CALL MODEL(NPROB,BETA,FF,NOB,NP) 
DO .J=l,NOB 

PRED(.J,I+2)=FF(.J) 
END DO 

c 
C If Ostrowsky's or Morrison's exponential sampling method was chosen, store 
C final parameter estimates as a function of diameter on both an absolute and 
C a logarithmic scale; increment the starting value of gamma by one shift 
C interval; and re-initialize the initial guesses of the parameters. 
c 

IF (ITYPE.LE.3) THEN 
DO .J=l,NP 

FUN(I+(.J-l)*SHIFTS,2)=BETA(.J)*OMEG~/PI 

FUN(I+(.J-l)*SHIFTS,3)=0.074679*2.0/G~(.J) 

FUN(I+(.J-l)*SHIFTS,l)=DLOG(FUN(I+(.J-l)*SHIFTS,3)) 
END DO 
GAMMA(l)=DEXP(DLOG(GAMMA(l))+INTS) 
BETA(l)=BETAI(l) 
DO .J=2,NP 

GAMMA(.J)=INTL*GAMMA(.J-1) 
BETA(.J)=BETAI(.J) 

END DO 
NPROB=NPROB+l 

c 
C If one of the non-linear estimation routines was chosen, then calculate 
C the absolute values of the diameters from the appropriate fitted. 
C parameters. 
c 

ELSE IF ((ITYPE.EQ.4).0R.(ITYPE.EQ.5)) THEN 
DIAM(l)=214.174*2.0/BETA(2) 
WRITE (3,60) BETA(l),DIAM(l) 
IF (ITYPE.EQ.5) THEN 

DIAM(2)=214.174*2.0/BETA(4) 
WRITE (3,60) BETA(3),DIAM(2) 

END IF 
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c 
c If one of the linear estimation routines where no more than four parameters 
c have been estimated was chosen, simply output the appropriate number of 
c parameter estimates. 
c 

ELSE IF (ITYPE.GE.6) THEN 

DO K=l ,2 


WRITE (3,60) BETA(K),DIAM(K) 
END DO 
IF (ITYPE.GE.7) WRITE (3,60) BETA(3),DI~(3) 
IF (ITYPE.EQ.8) WRITE (3,60) BETA(4),DI~(4) 

END IF 
END DO 

c 
c Output the parameter estimates. 
c 

IF (ITYPE.LE.3) WRITE (3,30) ((FUN(I,J),J=l,3),I=l,NPT) 
c 
c Calculate the predicted values of the first-order, normalized 
c autocorrelation function for the case where autocorrelated errors 
c was accounted for. 
c 

IF 	 (ITYPE.EQ.2) THEN 

DO I=l,NOB 


DO 	 J=l,SHIFTS 

SUMC=O.O 

DO K=l,NOB 


SUMC=SUMC+TRANMAT(I,K)*PRED(K,J+2) 
END DO 
PREDT(I,J)=SUMC 

END DO 

END DO 

DO I=l,NOB 


DO 3=3,SHIFTS+2 

PRED(I,J)=PREDT(I,J-2) 


END DO 

END DO 


END IF 

WRITE (4,40) ((PRED(I,J),J=l,8),I=l,56) 


c 
c At each observation, calculate the residuals from each shift, determine 
C the maximum and minimum residual and calculate an averaqe residual. 
c 

DO 	 I=l,NOB 

RES(I,l)=PRED(I,l) 

SUMRES=O.O 

MAXRES=PRED(I,2)-PRED(I,3) 

MINRES=PRED(I,2)-PRED(I,3) 

DO J=2,SHIFTS+l 


RES(I,J)=PRED(I,2)-PRED(I,J+l) 

SUMRES=SUMRES+RES(I,J) 

IF (RES(I,J).GT.MAXRES) MAXRES=RES(I,J) 

IF (RES(I,J).LT.MINRES) MINRES=RES(I,J) 


END DO 

RES(I,SHIFTS+2)=SUMRES/SHIFTS 

IF (NEXl.GT.l) THEN 


DIVFAC=COUNTS(I)**(NEX1-NEX2) 
RES(I,SHIFTS+2)=RES(I,SHIFTS+2)/DIVFAC 
MAXRES=MAXRES/DIVFAC 
MINRES=MINRES/DIVFAC 

END IF 

c 

C At each observation, output the time laq, the averaqe residual, and the 

C larqest and smallest residuals. 

c 
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WRITE (10,70) RES(I,l),RES(I,SHIFTS+2),MAXRES,MINRES 
END DO 
WRITE (5,40) ((RES(I,J),J=l,8),I=l,56) 

30 FORMAT (' ',Fl6.12,5X,Fl6.4,5X,Fl6.8) 
40 FORMAT(' ',l(F8.1,7(5X,Fll.7))) 
60 FORMAT(' ',Fl6.4,5X,Fl6.8) 
70 FORMAT (' ',l(F8.1,3(5X,Fl1.7))) 

STOP 
END 

c 
c 
c 

SUBROUTINE MODEL(NPROB,BETA,F,NOB,NP) 
IMPLICIT REAL*B(A-H,O-Z) 
REAL*B KSQR,NEXl,NEX2 
DIMENSION BETA(NP),F(NOB) 
COMMON/PH/TTIME(56),GAMMA(20),TDC(4),ITYPE,KSQR,COUNTS(64),NEX1, 

i NEX2 
c 
C If Ostrowsky's or Morrison's exponential sampling method was chosen, then 
c calculate the sum of exponentials according to how many parameters are to 
C be estimated. 
c 

IF (ITYPE.LE.3) THEN 
DO II=l,NOB 

SUMl:NG=O.O 
DO JJ=l,NP 

ADDIT=COUNTS(II)**(NEX1-NEX2)*DEXP(-GAMMA(JJ)*TTIME(II)) 
SUMING=SUMING+BETA(JJ)*ADDIT 

END DO 
F(II)=SUMING 

END DO 
c 
C If one of the non-linear estimation problems was chosen, then determine the 
C appropriate objective function with either two or four parameters. 
c 

ELSE IF ((ITYPE.EQ.4).0R.(ITYPE.EQ.5)) THEN 
DO II=l,NOB 

SUMING=COUNTS(II)**(NEX1-NEX2)*BETA(l)* 
i DEXP(-BETA( 2) *KSQR*TTil'.E (II)) 

IF (ITYPE.EQ.5) SUMING=SUMING+CO~~S(II)**(NEX1-NEX2)* 
# BETAl3)*DEXP(-BETA(4)*KSQR*TTIME(II)) 

F(II)=SUMING 
END DO 

c 
C If one of the simpler linear models was chosen, then calculate the 
C appropriate objective function according to how many parameters are to 
C be estimated. 
c 

ELSE IF (ITYPE.GE.6) THEN 
DO II=l,NOB 

SUMING=O.O 
DO JJ=l,2 

SUMING=SUMING+COUNTS(II)**(NEX1-NEX2)*BETA(JJ)* 
# DEXP(-TDC(JJ)*KSQR*TTIME(II)) 

END DO 
IF (ITYPE.GE.7) SUMING=SUMING+COUNTS(II)**(NEX1-NEX2)* 

# BETA(3)*DEXP(-TDC(3)*KSQR*TTIME(II)) 
IF (ITYPE.EQ.S) SUMING=SUMING+COUNTS(II)**{NEX1-NEX2)* 

# BETA(4)*DEXP(-TDC(4)*KSQR*TTIME(II)) 
F(II)=SUMING 

END DO 
END IF 
RETURN 
END 
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C SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE) 
C C.L. LAWSON AND R.J. HANSON, JET PROPULSON LABORATORY, 1973 JUNE 15 
C APPEARS IN 'SOLVING LEAST SQUARES PROBL~~·. PRENTICE-HALL, 1974 
c 
C *********** NON-NEGATIVE LEAST SQUARES ******•**** 
c 
C GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN N-VECTOR, 
C X, WHICH SOLVES THE LEAST SQUARES PROBLEM 
c 
c A * X = B SUBJECT TO X .GE. 0 
c 
C A( ),MDA,M,N MDA IS THE FIRST DIME~SIONING PARAMETER FOR THE ARRAY, 
C A( ) . ON ENTRY A( ) CONTAINS THE M BY N MATRIX, A. 
C ON EXIT, A( ) CONTAINS THE PRODUCT MATRIX, Q*A, WHERE 
C Q IS AN M BY M ORTHOGONAL MATRIX GENERATED IMPLICITLY 
C BY THIS SUBROUTINE. 
C B( ON ENTRY, B( I CONTAINS THE M-VECTOR, B. ON EXIT, B( ) 
C CONTAINS Q*B. 
C X( ON ENTRY, X( I NEED NOT BE INITIALIZED. ON EXIT, X( ) WILL 
C CONTAIN THE SOLUTION VECTOR. 
C RNORM ON EXIT, RNORM CONTAINS THE EUCLIDEAN NORM OF THE RESIDUAL 
C VECTOR. 
C W( ) AN N-ARRAY OF WORKING SPACE. ON EXIT, W( ) WILL CONTAIN THE 
C DUAL SOLUTION VECTOR. W WILL SATISFY W(I) = 0 FOR ALL I IN 
C SET P AND W(I) .LE. 0 FOR ALL I IN SET z. 
C ZZ ( ) AN M-ARRAY OF WORKING SPACE. 
C INDEX( ) AN INTEGER WORKING ARP~Y OF LENGTH AT LEAST N. 
C ON EXIT, THE CONTENTS OF THlS ARP~Y DEFINE TH~ SETS 
C P AND Z AS FOLLOWS •.. 
c 
c INDEX ( 1 ) THROUGH INDEX ( tiSTEP) SET P 
c INDEX(IZ1) THROUGH INDEX(IZ2) SET Z 
c IZ1 = NSTEP + 1 = NPP1 
c IZ2=N 
c 
c MODE THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS. 
c 1 THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY. 
c 2 THE DIMENSIONS OF THE PROBLEM ARE BAD. 
c EITHER M .LE. 0 OR N .LE. 0 
c 3 ITERATION COUNT EXCEEDED. MORE THAN 3*N ITERATIONS. 
c 

SUBROUTINE NNLS (A,MDA,M,N,B,X,RNORM,W,ZZ,INDEX,MODE) 

DIMENSION A(MDA,N), B(M), X(N), W(N), ZZ(M) 

INTEGER INDEX(N) 

ZERO=O. 

ONE=1. 

TW0=2. 
FACTOR=0.01 

c 
MOOE=1 
IF (M.GT.O.ANO.N.GT.O) GO TO 10 
MOOE=2 
RETURN 

10 ITER=O 
ITMAX=3*N 

c 
c INITIALIZE THE ARRAYS INDEX( ) AND X( ). 
c 

DO 20 I=1,N 
X(II=ZERO 


20 INDEX(I)=I 

c 


IZ2=N 

IZ1=1 

NSETP=O 


http:FACTOR=0.01
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NP?l=l 
c 
C ***** MAIN LOOP BEGINS HERE ***** 
c 
30 CONTINUE 
c 
c QUIT IF ALL COEFFICIENTS ARE ALREADY IN THE SOLUTION 
c OR IF M COLS OF A HAVE BEEN TRIANGULARIED. 
c 

IF (IZl.GT.IZ2.0R.NSETP.GE.M) GO TO 350 
c 
c COMPUTE COMPONENTS OF THE DUAL (NEGATIVE GRADIENT) VECTOR W( ) • 
c 

DO 	 50 IZ=IZ1,IZ2 

J=INDEX ( IZ) 

SM=ZERO 

DO 40 L=NPP1,M 


40 SM=SM+A(L,J)*B(L) 
SO W(J)=SM 
c 
C FIND LARGEST POSITIVE W(J) 
c 
60 WMAX=ZERO 

DO 	 70 IZ=IZ1,IZ2 

J=INDEX(IZ) 

IF (W(J).LE.WMAX) GO TO 70 

WMAX=W(J) 

IZMAX=IZ 


70 CONTINUE 
c 
c IF WMAX .LE. 0 GO TO TERMINATION. 
c THIS INDICATES SATISFACTION OF THE KU~~-TUCKER CONDITIONS. 
c 

IF (WMAX) 350,350,80 

80 IZ=IZMAX 


J=INDEX(IZ) 
c 
c THE SIGN OF W(J) IS OK FOR J TO BE MOVED TO SET P. 
c BEGIN THE TRANSFORMATION AND CHECK NEW DIAGONAL ELEMENT TO 
c AVOIC NEAR LINEAR DEPENDANCE. 
c 

ASAVE=A(NPP1,J) 

CALL H12(1,NPP1,NPP1+1,M,A(1,J),1,UP,DUMMY,1,1,0) 

UNORM=ZERO 

IF (SETP.EQ.O) GO TO 100 

DO 90 L=1,NSETP 


90 UNORM=UNORM+A(L,J)**2 

100 UNORM=SQRT(UNORM) 


IF (DIFF(UNORM+ABS(A(NPP1,J))*FACTOR,UNORM)) 130,130,110 

c 

C COL J IS SUFFICIENTLY INDEPENDENT. COPY B INTO ZZ, UPDATE 

C ZZ AND SOLVE FOR ZTEST ( =PROPOSED NEW VALUE FOR X(J) ). 

c 

110 DO 120 L=1,M 

120 ZZ(L)=B(L) 


CALL H12(2,NPP1,NPP1+1,M,A(l,J),1,UP,ZZ,l,1,1) 
ZTEST=ZZ(NPP1)/A(NPP1,J) 


c 

c SEE IF ZTEST IS POSITIVE. 

c 


IF (ZTEST) 130,130,140 

c 

c REJECT J AS A CANDIDATE TO BE MOVED FROM SET Z TO SET P. 

c RESTORE A(NPPl,J), SET W(J)=O, AND LOOP BACK TO TEST DUAL 

c COEFFS AGAIN. 
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c 
130 	 A(NPP1,J)=ASAVE 

W(J)=ZERO 
GO TO 60 

c 
C THE INDEX J=INDEX(IZ) HAS BEEN SELECTED TO BE MOVED FROM 
C SET Z TO SET P. UPDATE B. UPDATE INDICES. APPLY 
c HOUSEHOLDER TRANSFORMATIONS TO COLS IN NEW SET z. ZERO 
c SUBDIAGONAL ELTS IN COL 3. SET W(J)=O. 
c 
140 DO 150 L=1,M 
150 B(L)=ZZ(L) 
c 

INDEX(IZ)=INDEX(IZ1) 

INDEX(IZ1)=J 

IZ1=IZ1+1 

NSETP=NPP1 

NPP1=NPP1+1 


c 
IF (IZ1.GT.IZ2) GO TO 170 
DO 160 JZ=IZ1,IZ2 

JJ=INDEX(JZ) 
160 CALL H12(2,NSETP,NPP1,M,A(1,3),1,UP,A(1,JJ),1,MDA,1) 
170 CONTINUE 
c 

IF 	 (NSETP.EQ.M) GO TO 190 
DO 180 L=NPP1,M 

180 A(L,J)=ZERO 
190 CONTINUE 
c 

W(J)=ZERO 
c 
c SOLVE THE TRIANGULAR SYSTEM. 
c STORE THE SOLUTION TEMPORARILY IN ZZ( ). 
c 

ASSIGN 200 	TO NEXT 
GO TO 400 

200 CONTINUE 
c 
c ***** SECONDARY LOOP BEGINS HERE ***** 
c 
c ITERATION COUNTER 
c 
210 ITER=ITER+1 

IF (ITER.LE.ITMAX) GO TO 220 

MODE=3 

WRITE (6,440) 

GO TO 350 


220 CONTINUE 

c 

c SEE IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE. 

c IF NOT, COMPUTE ALPHA. 

c 

ALPHA=TWO 
DO 	 240 IP=l,NSETP 


L=INDEX(IP) 

IF (ZZ(IP)) 230,230,240 


c 
230 	 T=-X(L)/(ZZ(IP)-X(L)) 


IF (ALPHA.LE.T) GO TO 240 

ALPHA=T 

JJ=IP 


240 CONTINUE 
c 
c IF ALL NEW CONSTRAINED COEFFS ARE FEASIBLE THEN ALPHA WILL 
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c STILL = 2. IF SO, EXIT FROM SECONDAR7 LOOP TO MAIN LOOP. 
c 

IF (ALPHA.EQ.TWO) GO TO 330 
c 
C OTHERWISE, USE ALPHA WHICH WILL BE BET"tlEEN 0 AND 1 TO 
C INTERPOUTE BETWEEN THE OLD X AND THE NEW ZZ. 
c 

DO 250 IP=l,NSETP 
L=INDEX(IP) 

250 X(L)=X(L)+ALPHA*(ZZ(IP)-X(L)) 
c 
c MODIFY A AND B AND THE INDEX ARRAYS TO MOVE COEFFICIENT I 
c FROM SET P TO SET Z. 
c 

I=INDEX(JJ) 
260 X(I)=ZERO 
c 

IF (JJ.EQ.NSETP) GO TO 290 

JJ=JJ+l 

DO 280 J=JJ,NSETP 


XI=XNDEX(J) 

INDEX(J-l)=II 

CALL Gl(A(J-l,II),A(J,II),CC,SS,A(J-l,II)) 

A(J,II)=ZERO 

DO 270 L=l,N 


IF (L.NE.II) CALL G2(CC,SS,A(J-l,L),A(J,L)) 
270 CONTINUE 
280 CALL G2(CC,SS,B(J-l),B(J)) 
290 NPP1=NSETP 

NSETP=NSETP-1 

IZl=IZl-1 

INDEX(IZ1)=I 


c 

c SEE IF THE REMAINING COEFFS UT SET P ARE FEASIBLE. THEY SHOULD 

C BE BECAUSE OF THE WAY :.LPHA W'...S < DETEP-'-t!NED. 

C IF ANrl ARE INFEASIBLE, IT IS DUE TO ROUND-OFF ERROR. 

C ANY THAT ARE NONPOSITIVE WILL BE SET TO ZERO AND MOVED 

C FROM SET P TO SET Z. 

c 

DO 300 JJ=l,NSETP 
I=INDEX(JJ) 
IF (X(I)) 260,260,300 

300 CONTINUE 
c 
c COPY B( ) INTO ZZ( ). THEN SOLVE AGAZN AND LOOP BACK. 
c 

DO 310 I=1,M 
310 ZZ(I)=B(I) 


ASSIGN 320 TO NEXT 

GO TO 400 


320 CONTINUE 
GO TO 210 


c 

c ***** END OF SECONDARY LOOP ***** 

c 

330 DO 340 IP=1,NSETP 


I=INDEX(IP) 

340 X(I)=ZZ(IP) 

c 

c ALL NEW COEFFS ARE POSITIVE. LOOP BACK TO BEGINNING. 

c 


GO TO 30 

c 

c ***** END OF MAIN LOOP ***** 

c 
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C COME TO HERE FOR TERMINATION. 

C COMPUTE THE NORM OF THE FINAL RESIDUAL VECTOR. 

c 

350 SM=ZERO 


IF (NPPl.GT.M) GO TO 370 
DO 360 I=NPPl,M 

360 SM=SM+B(I)**2 
GO TO 390 

370 DO 380 J=l,N 
380 W(J)=ZERO 
390 RNORM=SQRT(SM) 

RETURN 
c 
C THE FOLLOWING BLOCK OF CODE IS USED AS AN INTERNAL SUBROUTINE 
C TO SOLVE THE TRIANGULAR SYSTEM, PUTTING THE SOLUTION IN ZZ(I). 
c 
400 DO 430 L=l,NSETP 

IP=NSETP+l-L 

IF (L.EQ.l) GO TO 420 

DO 410 II=l,IP 


410 ZZ(II)=ZZ(II)-A(II,JJ)*ZZ(IP+1) 
420 JJ=INDEX(IP) 
430 ZZ(IP)=ZZ(IP)/A(IP,JJ) 

GO TO NEXT, (200,320) 
440 FO~~T (35HO NNLS QUITTING ON ITERATION COUNT.) 

END 
c 
c 
c 
c SUBROUTINE Hl2(MODE,LPIVOT,L1,M,U,IUE,,UP,C,ICE,ICV,NCV) 
c 
c CONSTRUCTION AND/OR APPLICATION OF A SINGLE HOUSEHOLDER 
c TRANSFORMATION... Q =I+ U*(U**T)/B 
c 
c MODE = 1 OR 2 TO SELECT ALGORITHM H1 OR H2 RESPECTIVELY 
c LPIVOT IS THE INDEX OF THE PIVOT ELEMENT 
c L1 ,M IF .Ll .LE. M, THE TRMISFORMATION WILL BE CONSTRUCTED TO 
c ZERO ELEMENTS INDEXED FROML1 THROUGH M. IF Ll .GT. M, THE 
c SUBROUTINE DOES AN IDENTITY TRANSFORMATION. 
c U( ),IUE,UP ON ENTRY TO H1, U( ) CONTAINS THE PIVOT VECTOR. 
c IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS. 
c ON EXIT FROM H1, U( ) AND UP CONTAIIN QUANTITIES 
c DEFINING THE VECTOR U OF THE HOUSEHOLDER 
c TRANSFORMATION. 
c ON ENTRY TO H2, U( ) AND UP SHOULD CONTAIN QUANTITIES 
c PREVIOUSLY COMPUTED BY H1. THESE WILL NOT BE 
c MODIFIED BY H2. 
c C( ) ON ENTRY TO Hl OR H2, C( ) CONTAINS A MATRIX WHICH WILL BE 
c REGARDED AS A SET OF VECTORS TO WHICH THE HOUSEHOLDER 
c TRANSFORMATION IS TO BE APPLIED. ON EXIT, C( ) CONTAINS THE 
c SET OF TRANSFORMED VECTORS. 
c ICE STORAGE INCREMENT BETiiEEN ELEMENTS OF VECTORS INC( ). 
c ICV STORAGE INCREMENT BEniEEN VECTORS INC( ). 
c NCV NUMBER OF VECTORS INC( ) TO BE TRANSFORMED. IF NCV .LE. 0, 
c NO OPERATIONS WILL BE DONE ON C( ). 
c 

SUBROUTINE H12(MODE,LPIVOT,L1,M,U,IUE,UP,C,ICE,ICV,NCV) 

DIMENSION U(IUE,M), C(l) 

DOUBLE PRECISION SM, B 

ONE=l. 


c 

IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.0R.L1.GT.M) RETURN 

CL=ABS(U(l,LPIVOT)) 

IF (MODE.EQ.2) GO TO 60 


c 
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c ***** CONSTRUCT THE TRANSFOP.l"..-'\TION ***** 
c 

DO 10 J=L1,M 
10 CL=AMAX1(ABS(U(I,J)),CL) 

IF (CL) 130,130,20 
20 	 CLINV=ONE/CL 

SM=(DBLE(U(1,LPIVOT))*CLINV)**2 
DO 30 J=L1,M 

30 SM=SM+(DBLE(U(1,J))*CLINV)**2 
c 
c CONVERT DBLE. PREC. SM TO SNGL. PREC. SM1 
c 

SM1=SM 

CL=CL*SQRT(SM1) 

IF (U(1,LPIVOT))50,50,40 


40 	 CL=-<:L 
50 	 UP=U(1,LPIVOT)-CL 

U(1,LPIVOT)=CL 
GO TO 70 

c 
c ***** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C 
c 
60 IF (CL) 130,130,70 
70 IF (NCV:LE.O) RETURN 

B=DBLE(UP)*U(1,LPIVOT) 
c 
c B MUST BE NONPOSITIVE HERE. IF B ~ 0, RETURN. 
c 

IF (B) 80,130,130 
80 	 B=ONE/B 

I2=1-ICV+ICE*(LPIVOT-1) 
INCR=ICE*(L1-LPIVOT) 
00 120 J=1,NCV 

I2=I2+ICV 

I3=I2+INCR 

I4=I3 

SM=C(I2)*DBLE(UP) 

DO 90 I=L1,M 


SM=SM+C(I3)*DBLE(U(1,I)) 

90 I3=I3+ICE 


IF (SM) 100,120,100 

100 	 SM=SM*B 


C(I2)=C(I2)+SM*DBLE(UP) 

DO 110 I=L1,M 


C(I4)=C(I4)+SM*DBLE(U(1,I)l 

110 I4=I4+ICE 

120 CONTINUE 

130 RETURN 


END 

c 

c 

c 


SUBROUTINE G1(A,B,COS,SIN,SIG) 
c 
C COMPUTE ORTHOGONAL ROTATION MATRIX. 
C COMPUTE .. MATRIX (C, S) SO THAT (C, S)(A) SQRT(A**2+B**2) 
C (-X,C) (-S,C)(B) 0 
C COMPUTE SIG = SQRT(A**2+B**2) 
C SIG IS COMPUTED LAST TO ALLOW FOR THE POSSIBILITY THAT SIG 
C MAY BE IN THE SAME LOCATION AS A OR B. 
c 

ZERO=O 

ONE=1 

IF (ABS(A).LE.ABS(B)) GO TO 10 

XR=B/A 
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YR=SQRT(ONE+XR**2) 
COS=SIGN(ONE/YR,A) 
SIN=COS*XR 
SIG=ABS(A)*YR 
RETURN 

10 	 IF (B) 20,30,20 
20 	 XR=A/B 

YR=SQRT(ONE+XR**2) 
SIN=SIGN(ONE/YR,B) 
COS=SIN*XR 
SIG=ABS (B) *YR 
RETURN 

30 	 SIG=ZERO 
COS=ZERO 
SIN=ONE 
RETURN 
END 

c 
c 
c 

SUBROUTINE G2(COS,SIN,X,Y) 
XR=COS*X+SIN*Y 
Y=-SIN*X+COS*Y 
X=XR 
RETURN 
END 

c 
c 
c 

FUNCTION DIFF(X,Y) 
DIFF=X-Y 
RETURN 
END 
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APPENDIX 3 

Evaluation of Partial Derivatives 

For WALS 

Vertically polarized light was used for the data set studied, 
1 + cos2e = 1 in equation (3.21) and thus, 

For !TYPE = 1: 
e = f(Re,c,6; ~, 132 ,133 ,134 ) 

= K*c - ..1.[1 + 
Rb/Gb ( sine He) 131 

bf = K" - 2133 - 6I34C 

be Rb/Gb (sine He) 


bf =- K,.c cos$ - h_sin(e/2)cos(e/2) 
b9 Rb/Gb ( sin29~ 131 

For !TYPE = 2: 
e = f(Re,c,e;B1'B2 ,p3 ,p )4 = Rb/GbsineHe- K*c 

1/~ [ 1 + p.pin2(6/2)] + 2 f3:F + 3 134c2 

bf = Rb/Gbsin e 

bHe 


~ = Rb/GbcoseHe+ @1!32Kllc sin(6/2 )cos(e/2) 
212be [1 + f32sin2(e/2) + 2133c + 3134c
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For LALLS 

The baseline value (bl) in equation (3.27) was zero for all of 
data sets used, therefore 

' ' 1
Ra = 	Qa.. (0"' ). f D - Rsolv 


Go 


For !TYPE = 1: 
e = f ( R9 , c; 131 , 132 ) 

= K'c 
1Ge/Go (o-' ')...' / D - Rsolv 

bf =­ K"' c (o-' X r1o 

bGa [ Ga/G0 (o-' 'A" r1o - Rsolv ]2" G0 


~ = - K_. c Ge(o-' X f 1D 

]2
bGo [Ge/G0 (a-'A' r1o- Rsolv G~ 

For !TYPE = 2: 
e = f ( R9 , c ; ~1 ~ 13~) 

= Ge/G0 (o- .A I D - Rsolv 

~ = (a-' :A' r1o 

bGa G0 




---
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APPENDIX 4 


Analysis of Variance on LALLS Polyac~lamidejWater Data 


Basis - Three sets of paired replicate experiments given in the tables 
below: (R-9E,R-9I), (R-10C,R-10H), (R-llD,R-llG) 

Ge 

Cone. R-9E R-9I Var !Gel 

Go 

R-9: R-9I var (G0 J 

c 928 915 

c 925 922 

c 930 910 

c 915 930 

c 910 965 

97.5 

4.5 

200.0 

112.5 

1512.5
11 

I 

465 

552 

.. 
734 

247 

400 

427 722.0 

504 1152.0
11 

I656 3042.0. 

i 
923 - ... 

i 
I 

383 144.5 

pooled variance 385.4 (5) 1265.1 (4) 

(degrees of freedom) 103.6 (4) 406.3 (3) 

Ge Go 

Cone. R-10C R-10H R-10C R-10H Var (G0 lvar !Ge J 

- 't72.0 229 931c 937 925 

c 930 905 

c 910 907 

c 920 920 

c 930 918 

pooled variance 

(degrees of freedom) 

312.5 

4.5 

0.0 

72.0 

92.2 (5) 

I 
239 965 I - ., 
270 263 24.5I 

I 
336 328 32.0 

519 491 392.0 /1 

l 
149.5 {3) 

28.3 {2) 
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~' 

Ge Go 

Cone. R-110 R-11G 

c 908 918 

c 913 928 

c 920 912 

c 900 925 

c 930 920 

pooled variance 
(degrees of freedom) 

var {G 9 J 

50.0 

112.5 

32.0 

312.5 

50.0 

111.4 (5) 

i 
I 
I 

II 
11 

I 
I 

R-110 

798 

829 

888 

238 

366 

R-11G 

805 

832 

241 

267 

384 

Var !G0 J 

24.5 

4.5 

... 

Jl. 
420.5 

162.0 

152.9 (4) 
63.7 (3) 

Overall pooled variance for: 

G9 - var(G9 ) = 385.4 + 92.2 + 111.4 = 196.3, 15 degrees of freedom 
3 (d.o.f.) 

:. st. dev. (G9 ) = 14 

G0 - var(G0 ) = 4(1265.1 + 152.9) + 3(149.5) = 556.4, 11 d.o.f 
4 + 4 + 3 

:. st. dev. (G0 ) - 24 

~ - Overall pooled variance, neglecting the noted high values, for: 

G9 - var (G9 ) = 5(92.2 + 111.4) + 4(103.6) = 102.3, 14 d.o.f. 
5 + 5 + 4 

:. st. dev. (G9 ) = 10 

G0 - var (G0 ) = 2(406.3 + 28.3) + 3(63.7) = 151.5, 7 d.o.f. 
2 + 2 + 3 

.·. st. dev. (G0 ) - 12 

T - Different attenuators were in,:. Po values not comparable. 
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APPENDIX 5 

Calculation of Intensity Ratios from known Mass Concentrations 

Via the Mie Theory 


The number of particles per gram of solution, N may be found 
from: 

N = .£.._ 

jlV 


where c = solution concentration in grams of particles 
grams total solution 

;0 =particle density in_s_ = 1.04 for polystyrene latex 
·Cm3 particles 

V = particle volume in cm3 . 

=fl(D x lo-a )3 ; D = particle diameter in A 


6 


N = 6 c ( 1) 
1. 04 11 (D X 10 8 )3 

The concentrations of the solutions used to prepare the 
samples were: 

= 4.347 x lo-sc9a 

= 1.896 X 10-Sc176 

= 3.825 X 10-Sc220 

1.931 x lo-sC21s = 

Inserting the above concentrations and corresponding diameters 
in (1): 

Nga 84.81 X 109 

N176 = 6.39xl09 

N220 = 6.60 X 109 

N27S = 1. 71 X 109 
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From the Mie theory, the relative intensity contributions 
per particle size was found to be*: 

= o. 00113i 98 

i176 = 0.02680 

i220 = 0. 07157 

i275 = 0.13792 

Therefore, the theoretical intensity ratio for sample 
B98/D176, relative to 98 nm particles, is: 

R = (6.39(0.02680) + 6.60(0.07157) + 1.71(0.13792)] X 109 

84.81(0.00113) X 109. 
= 9.17 

Similarly, for sample B98/275: 

R = 1.71(0.13792) X 109 

84.81 (0. 00113) X 109 

= 2.45 


*- The i-values were determined from "Angular Scattering Functions 
for Spherical Particles" by W.J. Pangonis and w. Heller (1960) 
for the intensity of a wave scattered by a single sphere from an 
incident polarized beam of unit intensity whose electric vector 
is perpindicular to the plane of observation. For these samples, 
the angle of observation, Y , was 90° and the m-value was 1.2. 
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