Skip navigation
  • Home
  • Browse
    • Communities
      & Collections
    • Browse Items by:
    • Publication Date
    • Author
    • Title
    • Subject
    • Department
  • Sign on to:
    • My MacSphere
    • Receive email
      updates
    • Edit Profile


McMaster University Home Page
  1. MacSphere
  2. Open Access Dissertations and Theses Community
  3. Open Access Dissertations and Theses
Please use this identifier to cite or link to this item: http://hdl.handle.net/11375/11834
Title: Development of a Si-Based Resonant-Cavity-Enhanced Infrared Photodetector
Authors: Gagnon, Adrian J.
Advisor: Mascher, Peter
Department: Engineering Physics
Keywords: Infrared Photodetector;Resonant-Cavity-Enhanced;RCE;Microcavity;Multilayer Structure;Engineering Physics;Engineering Physics
Publication Date: Apr-2012
Abstract: <p>Resonant-cavity-enhanced (RCE) photodetectors have recently attracted attention due to their wavelength selectivity and high efficiency in comparison to conventional photodetectors. The goal of this ongoing research initiative is to develop a Si-based RCE infrared photodetector using inductively coupled plasma chemical vapor deposition (ICP-CVD) as the primary fabrication method. At the current stage of the project, wavelength-selective optical structures have been successfully fabricated using Si/SiO<sub>2</sub> layer pairs. These structures demonstrate sharp transmission peaks at their intended wavelength, making them potentially useful for efficient photodetection. The next phase of the photodetector development process involves using ion implantation to introduce dopants and create the bias.The project also explores the temperature sensing capability of the resonant-cavity structures. The temperature sensitivity tests indicate that the specific type of structure fabricated in this project may be relevant for fiber-optic temperature sensing applications. Additional testing is required to evaluate the performance characteristics of such structures as Fabry-Perot sensors capable of wavelength-encoded temperature measurement.</p>
URI: http://hdl.handle.net/11375/11834
Identifier: opendissertations/6772
7746
2432045
Appears in Collections:Open Access Dissertations and Theses

Files in This Item:
File SizeFormat 
fulltext.pdf
Open Access
1.25 MBAdobe PDFView/Open
Show full item record Statistics


Items in MacSphere are protected by copyright, with all rights reserved, unless otherwise indicated.

Sherman Centre for Digital Scholarship     McMaster University Libraries
©2022 McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8 | 905-525-9140 | Contact Us | Terms of Use & Privacy Policy | Feedback

Report Accessibility Issue