Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Optical Studies of Metamaterials and Bosonic Spectra of High-Tc Superconductors

dc.contributor.advisorTimusk, T.
dc.contributor.authorYang, Jing
dc.contributor.departmentPhysics and Astronomyen_US
dc.date.accessioned2015-03-13T16:00:13Z
dc.date.available2015-03-13T16:00:13Z
dc.date.issued2008
dc.description.abstractThe optical spectroscopy techniques have been used to investigate left-handed behavior of metamaterials as well as the electron-bosonic spectral functions (or Bosonic spectra) of high-transition-temperature superconductors (or high-Tc superconductors) in the research work of this thesis. The periodic double-ring split-ring resonator (SRR) array was one of the first proposed magnetic metamaterials which could give rise to a negative magnetic permeability (μ<0). In the traditional design of negative index metamaterials, the SRR arrays were combined with continuous metallic wires that provide a negative electric permittivity (∊<0). However, the requirement of an unbroken electrical connection between unit cells would be challenging in building contoured devices. In our study, we carefully examine the electromagnetic properties of the double-ring SRR arrays on silicon substrates in the mid-infrared frequency regime experimentally and numerically. For light at normal incidence, we observe that an electric resonance in the outer ring and a magnetic resonance in the inner ring exist at similar frequencies in one of our samples, which suggests that the double-ring SRR array could have simultaneous a negative permittivity and a negative permeability, or a left-handed behavior. Our conjectures are confirmed by the numerical simulations. We also propose a new left-handed metamaterial composed of two single-ring SRRs in each unit cell. The left-handed behaviors in our designs originate from the SRR structure itself only and therefore, there are no metallic continuous wires involved compared to the conventional left-handed SRR metamaterials. The high-Tc superconductor samples studied here are highly under-doped YBa2Cu3O6.35 (YBCO6.35), nearly optimally doped monolayer HgBa2CuO4+ઠ (Hg1201), Zn- and Ni- doped Bi2Sr2CaCu2O8+ઠ (Bi2212) single crystals. We experimentally determine the optical constants of the samples and numerically extract the electronboson spectral functions from the optical scattering rate by either an analytic formula or a maximum entropy inversion technique. We find that the bosonic mode obtained from the optical data is consistent with a peak in the q-averaged susceptibility seen in the magnetic neutron scattering studies. The comparisons of the bosonic spectra between YBCO6.35 and YBCO6.50, monolayer Hg1201 and trilayer Hg1223 (HgBa2Ca2Cu3O8+ઠ), Zn-doped and Ni-doped Bi2212 characterize the variation of the bosonic spectra with the hole concentration, Tc as well as the magnetic and nonmagnetic atom substitution.en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/16811
dc.language.isoenen_US
dc.subjectoptical spectroscopyen_US
dc.subjectmetamaterialen_US
dc.subjectbisonic spectraen_US
dc.subjecthigh-transition-temperature superconductorsen_US
dc.titleOptical Studies of Metamaterials and Bosonic Spectra of High-Tc Superconductorsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yang Jing.pdf
Size:
15.49 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: