Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Hosszú's Functional Equation

dc.contributor.advisorK., T. M.en_US
dc.contributor.authorRedlin, Hermann Lotharen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:43:40Z
dc.date.available2014-06-18T16:43:40Z
dc.date.created2011-01-25en_US
dc.date.issued1978en_US
dc.description.abstract<p>In this thesis we make an extensive study of the algebraic solutions of the functional equation</p> <p>[equation removed]</p> <p>where the unknown function [equation removed] maps a ring to an abelian group G.</p> <p>After proving some general results about the solutions of the equation, we study it over rings generated by their units, over number rings, and over polynomial rings. We find that over a large class of rings, the equation is equivalent to Cauchy's functional equation, and we give ideal-theoretic criteria to specify when it is not.</p> <p>Our methods involve a wide variety of techniques and results from algebra and algebraic number</p> <p>We complete our study with an a class of functional equations which generalizes the above equation.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/3864en_US
dc.identifier.other4881en_US
dc.identifier.other1744399en_US
dc.identifier.urihttp://hdl.handle.net/11375/8679
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleHosszú's Functional Equationen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
3.55 MB
Format:
Adobe Portable Document Format