Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Multivariate longitudinal data clustering with a copula kernel mixture model

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Many common clustering methods cannot be used for clustering multivariate longitudinal data when the covariance of random variables is a function of the time points. For this reason, a copula kernel mixture model (CKMM) is proposed for clustering such data. The CKMM is a finite mixture model that decomposes each mixture component’s joint density function into a copula and marginal distribution functions, where a Gaussian copula is used for its mathematical traceability. This thesis considers three scenarios: first, the CKMM is developed for balanced multivariate longitudinal data with known eigenfunctions; second, the CKMM is used to fit unbalanced data where trajectories are aligned on the time axis, and eigenfunctions are unknown; and lastly, a dynamic CKMM (DCKMM) is applied to unbalanced data where trajectories are misaligned, and eigenfunctions are unknown. Expectation-maximization type algorithms are used for parameter estimation. The performance of CKMM is demonstrated on both simulated and real data.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By