Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Equivariant Gauge Theory and Four-Manifolds

dc.contributor.advisorHambleton, Ianen_US
dc.contributor.authorAnvari, Nimaen_US
dc.contributor.departmentMathematics and Statisticsen_US
dc.date.accessioned2014-06-18T17:03:46Z
dc.date.available2014-06-18T17:03:46Z
dc.date.created2013-08-31en_US
dc.date.issued2013-10en_US
dc.description.abstract<p>Let $p>5$ be a prime and $X_0$ a simply-connected $4$-manifold with boundary the Poincar\'e homology sphere $\Sigma(2,3,5)$ and even negative-definite intersection form $Q_{X_0}=\text{E}_8$ . We obtain restrictions on extending a free $\bZ/p$-action on $\Sigma(2,3,5)$ to a smooth, homologically-trivial action on $X_0$ with isolated fixed points. It is shown that for $p=7$ there is no such smooth extension. As a corollary, we obtain that there does not exist a smooth, homologically-trivial $\bZ/7$-equivariant splitting of $\#^8 S^2 \times S^2=E_8 \cup_{\Sigma(2,3,5)} \overline{E_8}$ with isolated fixed points. The approach is to study the equivariant version of Donaldson-Floer instanton-one moduli spaces for $4$-manifolds with cylindrical ends. These are $L^2$-finite anti-self dual connections which asymptotically limit to the trivial product connection.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/8204en_US
dc.identifier.other9187en_US
dc.identifier.other4534349en_US
dc.identifier.urihttp://hdl.handle.net/11375/13384
dc.subjectgroup actionsen_US
dc.subjectfour-manifoldsen_US
dc.subjectgauge theoryen_US
dc.subjectGeometry and Topologyen_US
dc.subjectGeometry and Topologyen_US
dc.titleEquivariant Gauge Theory and Four-Manifoldsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format