Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A Semi-Definite, Nonlinear Model for Optimizing k-Space Sample Separation in Parallel Magnetic Resonance Imaging

dc.contributor.advisorAnand, Christopheren_US
dc.contributor.advisorAlex Bain, Michael Noseworthyen_US
dc.contributor.advisorAlex Bain, Michael Noseworthyen_US
dc.contributor.authorWu, Qiongen_US
dc.contributor.departmentBiomedical Engineeringen_US
dc.date.accessioned2014-06-18T16:51:31Z
dc.date.available2014-06-18T16:51:31Z
dc.date.created2011-07-21en_US
dc.date.issued2011-10en_US
dc.description.abstract<p>Parallel MRI, in which k-space is regularly or irregularly undersampled, is critical for imaging speed acceleration. In this thesis, we show how to optimize a regular undersampling pattern for three-dimensional Cartesian imaging in order to achieve faster data acquisition and/or higher signal to noise ratio (SNR) by using nonlinear optimization. A new sensitivity profiling approach is proposed to produce better sensitivity maps, required for the sampling optimization. This design approach is easily adapted to calculate sensitivities for arbitrary planes and volumes. The use of a semi-definite, linearly constrained model to optimize a parallel MRI undersampling pattern is novel. To solve this problem, an iterative trust-region is applied. When tested on real coil data, the optimal solution presents a significant theoretical improvement in accelerating data acquisition speed and eliminating noise.</p>en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.identifier.otheropendissertations/5524en_US
dc.identifier.other6518en_US
dc.identifier.other2111501en_US
dc.identifier.urihttp://hdl.handle.net/11375/10480
dc.subjectsemi-definite problemen_US
dc.subjectoptimizationen_US
dc.subjectparallel imagingen_US
dc.subjectsensitivity profilingen_US
dc.subjectBiological Engineeringen_US
dc.subjectComputational Engineeringen_US
dc.subjectBiological Engineeringen_US
dc.titleA Semi-Definite, Nonlinear Model for Optimizing k-Space Sample Separation in Parallel Magnetic Resonance Imagingen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
935.31 KB
Format:
Adobe Portable Document Format