Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Thulium doped tellurium oxide amplifiers and lasers integrated on silicon and silicon nitride photonic platforms

dc.contributor.advisorD. B. Bradley, Jonathon
dc.contributor.advisorP. Knights, Andrew
dc.contributor.authorMiarabbas Kiani, Khadijeh
dc.contributor.departmentEngineering Physicsen_US
dc.date.accessioned2022-03-03T15:37:27Z
dc.date.available2022-03-03T15:37:27Z
dc.date.issued2022
dc.description.abstractSilicon photonics (SiP) has evolved into a mature platform for cost-effective low power compact integrated photonic microsystems for many applications. There is a looming capacity crunch for telecommunications infrastructure to overcome the data-hungry future, driven by streaming and the exponential increase in data traffic from consumer-driven products. To increase data capacity, researchers are now looking at the wavelength window of the thulium-doped fiber amplifier (TDFA), centered near 2 µm as an attractive new transmission window for optical communications, motivated by the demonstrations of low loss, low nonlinearity, and high bandwidth transmission. Large-scale implementation of SiP telecommunication infrastructure will require light sources (lasers) and amplifiers to generate signals and boost transmitted and/or received signals, respectively. Silicon (Si) and silicon nitride (Si3N4) have become the leading photonic integrated circuit (PIC) material platforms, due to their low-cost and wafer-scale production of high-performance circuits. Silicon does however have a number of limitations as a photonic material, including that it is not an ideal light-emitting/amplifying material. This proposed research pertains to the fabrication of on-chip silicon and silicon nitride lasers and amplifiers to be used in a newly accessible optical communications window of the TDFA band, which is a significant step towards compact PICs for the telecommunication networks. Tellurium oxide (TeO2) is an interesting host material due to its large linear and non-linear refractive indices, low material losses and large rare-earth dopant solubility showing good performance for compact low-loss waveguides and on-chip light sources and amplifiers. Chapter 1 provides an overview of silicon photonics in the context of particularly rare earth lasers and amplifiers, operating at extended wavelengths enabled by the Thulium doped fiber amplifier. Chapter 2 presents a theoretical performance of waveguides and microresonators as the efficient structure for laser and amplifiers applications designed for optimized use in Erbium and Thulium doped fiber amplifier wavelength bands. Then spectroscopic study thulium (Tm3+) has been studied as the rare earth element for Thulium doped fiber amplifier wavelength bands. Chapter 3 presents an experimental study of TeO2:Tm3+ coated Si3N4 waveguide amplifiers with internal net gains of up to 15 dB total in a 5-cm long spiral waveguide. Chapter 4 provides a study of TeO2:Tm3+ -coated Si3N4 waveguide lasers with up to 16 mW double-sided on-chip output power. Chapter 5 presents an experimental study of low loss and high-quality factor silicon microring resonators coated with TeO2 for active, passive, and nonlinear applications. Chapter 6 represents the first demonstration of an integrated rare-earth silicon laser, with high performance, including single-mode emission, a lasing threshold of 4 mW, and bidirectional on-chip output powers of around 1 mW. Further results with a different design are presented showing lasers with more than 2 mW of double-sided on-chip output power, threshold pump powers of < 1 mW and lasing at wavelengths over a range of > 100 nm. Importantly, a simple, low-cost design was used which is compatible with silicon photonics foundry processes and enables wafer scale integration of such lasers in SiP PICs using robust materials. Chapter 7 summarizes the thesis and provides paths for future work.en_US
dc.description.degreeDoctor of Engineering (DEng)en_US
dc.description.degreetypeDissertationen_US
dc.identifier.urihttp://hdl.handle.net/11375/27404
dc.language.isoenen_US
dc.subjectSilicon Photonicsen_US
dc.subjectIntegrated opticsen_US
dc.subjectRare earth doped silicon waveguide lasersen_US
dc.subjectSilicon nitride waveguide lasers and amplifiersen_US
dc.subjectOn-chip silicon lasersen_US
dc.subjectTellurium oxideen_US
dc.titleThulium doped tellurium oxide amplifiers and lasers integrated on silicon and silicon nitride photonic platformsen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Miarabbas Kiani_Khadijeh_2022Feb_PhD.pdf
Size:
4.89 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Final Thesis Submission Sheet_Khadijeh Miarabbas Kiani.pdf
Size:
388.77 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: