Controlled degradation of low-fouling hydrogels for short- and long-term applications
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Degradable low-fouling hydrogels are ideal vehicles for drug and cell delivery. For each application, hydrogel degradation rate must be re-optimized for maximum therapeutic benefit. We developed a method to rapidly tune degradation rates of low-fouling poly(oligo(ethylene glycol) methyl ether methacrylate) (P(EG)xMA) hydrogels by modifying two interdependent variables: (1) base-catalyzed crosslink degradation kinetics, dependent on crosslinker electronics (electron withdrawing groups (EWGs)); and (2) polymer hydration, dependent on the molecular weight (MW) of poly(ethylene glycol) (PEG) pendant groups. By controlling EWG strength and PEG pendant group MW, P(EG)xMA hydrogels were tuned to degrade over 6 to 52 d. A six-member P(EG)xMA copolymer library yielded slow and fast degrading low-fouling hydrogels for short- and long-term delivery applications. The degradation mechanism was also applied to RGD-functionalized poly(carboxybetaine methacrylamide) (PCBMAA) hydrogels to achieve slow (52 d) and fast (13 d) degrading low-fouling, bioactive hydrogels.