Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Investigation of Multi-Digit Tactile Integration

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

When examining objects using tactile senses, individuals often incorporate multiple sources of haptic sensory information to estimate the object’s properties. How do our brains integrate various cues to form a single percept of the object? Previous research has indicated that integration from cues across sensory modalities is optimally achieved by weighting each cue according to its variance, such that more reliable cues have more weight in determining the percept. To explore this question in the context of a within-modality haptic setting, we assessed participants’ perception of edges that cross the index, middle, and ring fingers of the right hand. We used a 2-interval forced choice (2IFC) task to measure the acuity of each digit individually, as well as the acuity of all three digits working together, by asking participants to distinguish the locations of two closely spaced plastic edges. In examining the data, we considered three perceptual models, an optimal (Bayesian) model, an unweighted average model, and a winner-take-all model. The results indicate that participants perceived sub-optimally, such that the acuity of the three digits together did not exceed that of the best individual digit. We further investigated our question by having participants unknowingly undergo a 2IFC cue conflict condition, where they thought they were touching a straight edge which was actually staggered and thus gave each digit a different positional cue. Our analyses indicate that participants did not undertake optimal cue combination but are inconclusive with respect to which suboptimal strategy they employed.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By