Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Modules in which Complements are Summands

dc.contributor.advisorMueller, Bruno J.en_US
dc.contributor.authorKamal-Eldeen, Mahmoud A.en_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:33:02Z
dc.date.available2014-06-18T16:33:02Z
dc.date.created2010-05-14en_US
dc.date.issued1986en_US
dc.description.abstract<p>This thesis studies modules over commutative integral domains with the property that every closed submodule is a direct summand (we denote this property by (C₁)). It is shown that any non-torsion module with property (C₁) is a direct sum of an injective submodule and a finite direct sum of uniform torsion free reduced submodules. This reduces the study of the problem to finite direct sums of uniform torsion free reduced modules and to torsion modules. Then we characterize finite direct sums of uniform torsion free reduced modules over commutative (Prüfer, Noetherian of Krull dimension one, Dedekind) domains which have property (C₁). We also characterize finite direct sums of uniform torsion modules with local endomorphism rings over Noetherian domains which have property (C₁). Finally, we classify all modules with property (C₁) over Dedekind domains.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/1129en_US
dc.identifier.other2571en_US
dc.identifier.other1312969en_US
dc.identifier.urihttp://hdl.handle.net/11375/5784
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleModules in which Complements are Summandsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format