Alexander Invariants of Periodic Virtual Knots
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In this thesis, we show that every periodic virtual knot can be realized as the closure of a periodic virtual braid. If K is a q-periodic virtual knot with quotient K_*, then the knot group G_{K_*} is a quotient of G_K and we derive an explicit q-symmetric Wirtinger presentation for G_K, whose quotient is a Wirtinger presentation for G_{K_*}. When K is an almost classical knot and q=p^r, a prime power, we show that K_* is also almost classical, and we establish a Murasugi-like congruence relating their Alexander polynomials modulo p.
This result is applied to the problem of determining the possible periods of a virtual knot $K$. For example, if K is an almost classical knot with nontrivial Alexander polynomial, our result shows that K can be p-periodic for only finitely many primes p. Using parity and Manturov projection, we are able to apply the result and derive conditions that a general q-periodic virtual knot must satisfy. The thesis includes a table of almost classical knots up to 6 crossings, their Alexander polynomials, and all known and excluded periods.