Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

The Effect of Cycloserine on Metabolism and Contractile Function in Rodent Skeletal Muscle

dc.contributor.advisorGibala, M.J.
dc.contributor.authorDawson, Kristen D.
dc.contributor.departmentHuman Biodynamicsen_US
dc.date.accessioned2018-03-01T17:11:09Z
dc.date.available2018-03-01T17:11:09Z
dc.date.issued2003-09
dc.description.abstract<p> We hypothesized that acute inhibition of the contraction-induced expansion of the muscle TCA cycle intermediate (TCAI) pool via would not adversely effect metabolism or contractile function. Forty rats were anaesthetized and the gastrocnemius muscle (GAS) from one leg was vascularly isolated and perfused with saline (CON) or a red cell media containing DL-cycloserine (CYCLO; Sigma C-7005; dose=0.05 mg/g), an inhibitor of alanine aminotransferase (AAT). After 1h of perfusion, the GAS muscle was either snap frozen (CON-Rest, n=11; CYCLO-Rest, n=9) or stimulated to contract for 10 min (1Hz, 0.3 ms, 2 V) with blood flow fixed at 30 ml min-1 100g-1 and then snap frozen (CON-Stim, n=10; CYCLO-Stim, n=10). The maximal activity of AAT was lower (P≤0.05) at both CYCLO-Rest (0.61±0.02 mmol·kg-1w.w./min; mean± SEM) and CYCLO-Stim (0.63±0.01 mmol·kg-1w.w./min) vs CON-Rest (3.56±0.16 mmol·kg-1w.w./min) and CON-Stim (3.92±0.29 mmol·kg-1w.w./min). Consistent with lower net flux through AAT, muscle [alanine] was lower (P≤0.05) after CYCLO-Stim (6.97±0.26 mmol·kg-1 dw) compared to CON-Stim (8.55±0.56 mmol·kg-1 dw) and not different vs CON-Rest (6.79±0.41 mmol·kg-1 dw). The sum of five measured TCAI (malate, fumarate, citrate, isocitrate, and 2-oxoglutarate) was higher (P≤0.05) at both CON-Rest (2.10± 0.09 mmol·kg-1 dw) and CON-Stim (2.48± 0.11 mmol·kg-1 dw) vs CYCLO-Rest (1.56± 0.11 mmol·kg-1 dw) and CYCLO-Stim (1.88± 0.15 mmol·kg-1 dw) respectively. Despite the reduction in [TCAI] following CYCLO treatment, there was no difference between conditions in muscle lactate accumulation or phosphocreatine degradation after 10 min of stimulation. Contractile function was not different (P≤0.05) between conditions at either rest or stimulation and the decline in force production over ten minutes of stimulation was identical (~60%) between CON-Stim and CYCLO-Stim respectively. We conclude that flux through AAT was reduced after cycloserine treatment, however the acute inhibition of TCAI expansion did not compromise aerobic energy provision. These data support the hypothesis that the contraction-induced increase in muscle [TCAI] is not causally linked to oxidative energy delivery.</p>en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/22608
dc.language.isoen_USen_US
dc.subjectcycloserine, metabolism, contractile function, rodent, skeletal muscleen_US
dc.titleThe Effect of Cycloserine on Metabolism and Contractile Function in Rodent Skeletal Muscleen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dawson_Kristen_D._2003Sept_Masters..pdf
Size:
3.67 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: