Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Non-Coupled and Mutually Coupled Switched Reluctance Machines for an E-Bike Traction Application: Pole Configurations, Design, and Comparison

dc.contributor.advisorEmadi, Ali
dc.contributor.authorHowey, Brock
dc.contributor.departmentMechanical Engineeringen_US
dc.date.accessioned2018-12-14T21:04:44Z
dc.date.available2018-12-14T21:04:44Z
dc.date.issued2018
dc.descriptionThis dissertation contains a comprehensive analysis of both non-coupled and mutually coupled switched reluctance motors with concentrated windings for an electric bicycle traction application. Multiple pole configurations are analyzed and compared for each motor type. Includes magnetic design, thermal analysis, and structural analysis. A prototype is designed, manufactured, and validated.en_US
dc.description.abstractThis thesis discusses the design of both a conventional non-coupled switched reluctance motor (CSRM) and a mutually-coupled SRM (MCSRM) for an exterior rotor e-bike application. Several novel pole configurations were analyzed for each machine type, and the performance of the final CSRM and MCSRM designs were compared for this application. A commercially available e-bike permanent magnet synchronous motor (PMSM) was purchased, reverse engineered, and validated to define the geometry constraints and performance targets for the designs. Since switched reluctance motors do not use rare-earth permanent magnets, they are often seen as a potential low-cost alternative to permanent magnet machines. The goal of this research is to explain the relative advantages of CSRMs and MCSRMs when compared to PMSM machines for a direct-drive e-bike application. The final CSRM and MCSRM designs are analyzed in detail; electromagnetic, controls, thermal, and structural considerations are all studied. A prototype of the final CSRM design was manufactured and validated experimentally, using a dynamometer setup. The finalized CSRM design is shown to be competitive with the PMSM machine when considering torque output, and is superior in terms of peak efficiency, and high speed torque performance. However, the CSRM noise output and torque ripple were not compared to the PMSM, and a less-common asymmetric-bridge converter is required for the CSRM, which may hinder the ability for the machine to be implemented into existing e-bike packages. The high speed torque performance of the MCSRM is shown to be inferior to both the CSRM and PMSM, as is the torque quality and efficiency. The MCSRM is shown to be highly resistant to saturation which gives it the potential for high torque output at low speed (if thermal limits are not breached), though low saturation levels also contribute to low machine power factor. The MCSRM may be better suited to lower speed, high torque applications, for this reason.en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.degreetypeThesisen_US
dc.description.layabstractThis thesis studies the design process and analysis of two different motor types, for an electric bicycle application. They are designed to replace a commercially available permanent magnet synchronous motor (PMSM). This type of motor is typically expensive due to the rare-earth magnet material it requires. The two motors discussed in this thesis are switched reluctance motors (SRMs), which do not require magnet material, and thus have the potential to save cost (in addition to other benefits). One of the SRMs has magnetic fields that are independently controlled (CSRM), and one has fields that are controlled together to produce torque (MCSRM). The magnetics, control, thermal, and structural aspects of the CSRM and MCSRM are studied in detail. Novel geometry considerations (i.e. novel pole configurations) which impact the magnetics of each machine are compared to find the best-performing configuration for each machine type.en_US
dc.identifier.urihttp://hdl.handle.net/11375/23643
dc.language.isoenen_US
dc.subjectSwitched Reluctance Motoren_US
dc.subjectMutually Coupled Switched Reluctance Motoren_US
dc.subjectTraction Motoren_US
dc.subjectReluctance Machineen_US
dc.subjectMotor Modellingen_US
dc.subjectMagnetic Saturationen_US
dc.subjectElectric Bicycleen_US
dc.subjectSRMen_US
dc.subjectMCSRMen_US
dc.subjectE-Bikeen_US
dc.subjectConcentrated Windingen_US
dc.subjectMutual Couplingen_US
dc.titleNon-Coupled and Mutually Coupled Switched Reluctance Machines for an E-Bike Traction Application: Pole Configurations, Design, and Comparisonen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Howey_Brock_L_201809_PhD.pdf
Size:
22.15 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: