Target Tracking Formulation of the SVSF With Data Association Techniques
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Abstract
An important area of study for aerospace and electronic systems involves target tracking applications. To successfully track a target, state and parameter estimation strategies are used in conjunction with data association techniques. Even after 50 years, the Kalman filter (KF) remains the most popular and well-studied estimation strategy in the field. However, the KF adheres to a number of strict assumptions that leads to instabilities in some cases. The smooth variable structure filter (SVSF) is a relatively new method, which is becoming increasingly popular due to its robustness to disturbances and uncertainties. This paper presents a new formulation of the SVSF. The probabilistic and joint probabilistic data association techniques are combined with the SVSF and applied on multitarget tracking scenarios. In addition, a new covariance formulation of the SVSF is presented based on improving the estimation results of nonmeasured states. The results are compared and discussed with the popular KF method.