Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Computational determination of the largest lattice polytope diameter

dc.contributor.advisorDeza, Antoine
dc.contributor.authorChadder, Nathan
dc.contributor.departmentComputing and Softwareen_US
dc.date.accessioned2017-10-17T12:43:44Z
dc.date.available2017-10-17T12:43:44Z
dc.date.issued2017
dc.description.abstractA lattice (d, k)-polytope is the convex hull of a set of points in dimension d whose coordinates are integers between 0 and k. Let δ(d, k) be the largest diameter over all lattice (d, k)-polytopes. We develop a computational framework to determine δ(d, k) for small instances. We show that δ(3, 4) = 7 and δ(3, 5) = 9; that is, we verify for (d, k) = (3, 4) and (3, 5) the conjecture whereby δ(d, k) is at most (k + 1)d/2 and is achieved, up to translation, by a Minkowski sum of lattice vectors.en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/22226
dc.language.isoenen_US
dc.titleComputational determination of the largest lattice polytope diameteren_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chadder_Nathan_S_2017Sept_MASc.pdf
Size:
370.59 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: