Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Morphological, Mechanical and Rheological Behaviour of Cellulose Nanocrystal-Poly(Methyl Methacrylate) Nanocomposites Prepared by Wet Ball Milling and Melt Mixing

dc.contributor.advisorCranston, Emily D
dc.contributor.authorGraham, Lexa
dc.contributor.departmentChemical Engineeringen_US
dc.date.accessioned2014-10-14T19:47:31Z
dc.date.available2014-10-14T19:47:31Z
dc.date.issued2014-11
dc.description.abstractCellulose nanocrystals (CNCs) are an ideal reinforcing agent for polymer nanocomposites because they are lightweight, nano-sized, and have a high elastic modulus. To date, using cellulose nanocrystals in common matrices has been generally unsuccessful due to their hydrophilicity and incompatibility with hydrophobic polymers. To overcome the poor compatibility, we have grafted poly(methyl methacrylate) (PMMA) onto the surface of the nanocrystals for the first time using a one-pot, aqueous in-situ “grafting from” polymerization reaction with ceric ammonium nitrate initiator to produce poly(methyl methacrylate)-grafted-cellulose nanocrystals (PMMA-g-CNCs). We compared the compounding of CNCs and modified CNCs with PMMA using two processing methods; melt mixing and wet ball milling. We examined the morphological, mechanical and rheological behaviour of the nanocomposites and found that ball milled composites had lower mechanical and rheological performance compared to melt mixed composites for both CNCs and modified CNCs. Additionally, we found that high (>1 wt. %) loadings of CNCs had a positive effect on the performance of nanocomposites, while low loadings of CNCs and all loadings of PMMA-g-CNCs had no net effect on the performance of the nanocomposites compared to the control. The morphology of nanocomposites showed some agglomeration in the samples with CNCs, but more pronounced agglomeration in samples with PMMA-g-CNCs. This is consistent with the decreased rheological and mechanical behaviour of composites with PMMA-g-CNCs compared with CNCs.en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/16087
dc.language.isoenen_US
dc.subjectCellulose nanocrystals, nanocompositesen_US
dc.titleMorphological, Mechanical and Rheological Behaviour of Cellulose Nanocrystal-Poly(Methyl Methacrylate) Nanocomposites Prepared by Wet Ball Milling and Melt Mixingen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LG MASc Thesis Sept 24_Compressed final Edit PDF PRINT.pdf
Size:
7.49 MB
Format:
Adobe Portable Document Format
Description:
Thesis article

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: