Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Process Optimization in Machining: An Applied Research Approach

dc.contributor.advisorVeldhuis, Stephenen_US
dc.contributor.authorOomen-Hurst, Simon M.en_US
dc.contributor.departmentMechanical Engineeringen_US
dc.date.accessioned2014-06-18T16:59:58Z
dc.date.available2014-06-18T16:59:58Z
dc.date.created2012-09-21en_US
dc.date.issued2012-10en_US
dc.description.abstract<p>The objective of this research was to work with industrial partners to develop and apply innovative and intelligent improvement to their production processes in order to achieve a higher level of productivity and quality while lowering cost.</p> <p>Two projects were completed and are discussed in this work. The first project was focused on improving tooling in a milling process of high value parts by varying coatings and geometries of the tooling. The second project involved implementing statistical process control (SPC) using control charts and process capability metrics through customized software.</p> <p>In the first project, the industrial partner was experiencing rapid wear of tools when milling NiCrMoV steel. A detailed material characterisation study revealed the likely cause was the presence of un-tempered martensite having high hardness. Cutting tools were then chosen to compare the performance of tools with varying rake angle and coating; where all other geometry/features were identical. It was found that the best performing tooling had a relatively more aggressive rake angle at 16º, and a PVD coating consisting of TiAlN + Al<sub>2</sub>O<sub>3 </sub>+ ZrN; showing a tool life 300% greater than the baseline tooling. Inspection of the worn tools by SEM, EDX, and Raman spectroscopy revealed that the Al<sub>2</sub>O<sub>3</sub> and ZrN coating layers detached long before the failure.</p> <p>In the second project, software was developed collaboratively with an industrial partner for a CNC turning process. The process was semi-automated, and used 100% inspection of parts. Part measurement data was recorded by the software, allowing for SPC to be applied to identify common-cause sources of variation. The software was then able to make offset recommendations in real-time to correct for variation. Providing process history for quality assurance (QA) also allowed for identifying of several areas for improvement in the process which were corrected, considerably reducing variability.</p>en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.identifier.otheropendissertations/7411en_US
dc.identifier.other8468en_US
dc.identifier.other3341060en_US
dc.identifier.urihttp://hdl.handle.net/11375/12533
dc.subjectmanufacturingen_US
dc.subjectsupercleanen_US
dc.subjectmachiningen_US
dc.subjectspcen_US
dc.subjectramanen_US
dc.subjectabrasive wearen_US
dc.subjectManufacturingen_US
dc.subjectManufacturingen_US
dc.titleProcess Optimization in Machining: An Applied Research Approachen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format