Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Computational and Structural Approaches to Periodicities in Strings

dc.contributor.advisorDeza, Antoineen_US
dc.contributor.advisorFranek, Frantiseken_US
dc.contributor.authorBaker, Andrew R.en_US
dc.contributor.departmentComputing and Softwareen_US
dc.date.accessioned2014-06-18T17:00:43Z
dc.date.available2014-06-18T17:00:43Z
dc.date.created2012-12-16en_US
dc.date.issued2013-04en_US
dc.description.abstract<p>We investigate the function ρ<sub><em>d</em></sub>(<em>n</em>) = max { <em>r</em>(<em><strong>x</strong></em>) | <em><strong>x</strong></em> is a (<em>d</em>, <em>n</em>)-string } where <em>r</em>(<em><strong>x</strong></em>) is the number of runs in the string <em><strong>x</strong></em>, and a (<em>d</em>, <em>n</em>)-string is a string with length <em>n</em> and exactly <em>d</em> distinct symbols. Our investigation is motivated by the conjecture that ρ<sub><em>d</em></sub>(<em>n</em>) ≤ <em>n</em>-<em>d</em>. We present and discuss fundamental properties of the ρ<sub><em>d</em></sub>(<em>n</em>) function. The values of ρ<sub><em>d</em></sub>(<em>n</em>) are presented in the (<em>d</em>, <em>n</em>-<em>d</em>)-table with rows indexed by <em>d</em> and columns indexed by <em>n</em>-<em>d</em> which reveals the regularities of the function. We introduce the concepts of the r-cover and core vector of a string, yielding a novel computational framework for determining ρ<sub><em>d</em></sub>(<em>n</em>) values. The computation of the previously intractable instances is achieved via first computing a lower bound, and then using the structural properties to limit our exhaustive search only to strings that can possibly exceed this number of runs. Using this approach, we extended the known maximum number of runs in binary string from 60 to 74. In doing so, we find the first examples of run-maximal strings containing four consecutive identical symbols. Our framework is also applied for an arbitrary number of distinct symbols, <em>d</em>. For example, we are able to determine that the maximum number of runs in a string with 23 distinct symbols and length 46 is 23. Further, we discuss the structural properties of a shortest (<em>d</em>, <em>n</em>)-string <em><strong>x</strong></em> such that <em>r</em>(<em><strong>x</strong></em>) > <em>n</em>-<em>d</em>, should such a string exist.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/7635en_US
dc.identifier.other8689en_US
dc.identifier.other3540506en_US
dc.identifier.urihttp://hdl.handle.net/11375/12777
dc.subjectstringen_US
dc.subjectalgorithmen_US
dc.subjectrunen_US
dc.subjectworden_US
dc.subjectperiodicityen_US
dc.subjectstring algorithmen_US
dc.subjectTheory and Algorithmsen_US
dc.subjectTheory and Algorithmsen_US
dc.titleComputational and Structural Approaches to Periodicities in Stringsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
574.96 KB
Format:
Adobe Portable Document Format