Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A virtual finite element method for contact problems

dc.contributor.advisorDokainish, M.A.en_US
dc.contributor.authorUnderhill, Roy Clare Williamen_US
dc.contributor.departmentMechanical Engineeringen_US
dc.date.accessioned2014-06-18T16:43:19Z
dc.date.available2014-06-18T16:43:19Z
dc.date.created2011-01-03en_US
dc.date.issued1992-09en_US
dc.description.abstract<p>An algorithm is presented for the solution of mechanical contact problems using the displacement based Finite Element Method. The corrections are applied as forces at the global level, together with any corrections for other nonlinearities, without having to nominate either body as target or contactor. The technique requires statically reducing the global stiffness matrices to each degree of freedom involved in contact. Nodal concentrated forces are redistributed as continuous tractions. These tractions are re-integrated over the element domains of the opposing body. This creates a set of virtual elements which are assembled to provide a convenient mesh of the properties of the opposing body no matter what its actual discretizaton into elements. Virtual nodal quantities are used to calculate corrective forces that are optimal to first order. The work also presents a derivation of referential strain tensors. This sheds new light on the updated Lagrangian formulation, gives a complete and correct incremental form for the Lagrangian strain tensor and illustrates the role of the reference configuration and what occurs when it is changed.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/3778en_US
dc.identifier.other4795en_US
dc.identifier.other1716440en_US
dc.identifier.urihttp://hdl.handle.net/11375/8584
dc.subjectMechanical Engineeringen_US
dc.subjectMechanical Engineeringen_US
dc.titleA virtual finite element method for contact problemsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format