Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Macrophage SR-BI and Atherosclerosis

dc.contributor.advisorTrigatti, Bernardo L.
dc.contributor.authorTedesco, Vivienne C.
dc.contributor.departmentBiochemistry and Biomedical Sciencesen_US
dc.date.accessioned2017-05-26T20:22:26Z
dc.date.available2017-05-26T20:22:26Z
dc.date.issued2006-04
dc.description.abstract<p> The Scavenger Receptor, Class B, Type I (SR-BI) is an integral membrane protein whose expression in the liver is critical to reverse cholesterol transport by mediating the selective uptake of HDL-derived cholesterol. SR-BI is expressed in a variety of tissues including bone marrow derived macrophages and foam cells in atherosclerotic lesions. We have explored the effect of eliminating SR-BI in leukocytes on advanced stages of atherosclerotic plaque development in apoE KO mice. We observed statistically significant cardiomegaly as a result of the elimination of SR-BI in bone marrow derived cells compared to controls (P=0.02). We report that the elimination of SR-BI in bone marrow derived cells in apoE KO mice induced to undergo atherosclerosis by feeding a high fat diet for four weeks leads to no significant difference in cross-sectional atherosclerotic plaque area at the aortic root (4.9±0.9x10^4 μm^2 when SR-BI-/- apoE-/- --> apoE-/- [n=9] and 5.5±0.9x10^4 μm^2 when SR-BI +/+ apoE-/- --> apoE -/- [n=12], P=0.68) or plaque volume through the aortic sinus (1.8±0.3x 10^7 μm^3 when SR-BI-/- apoE-/- --> apoE-/- [n=9] and 1.9±0.3x10^7 μm^3 when SR-BI +/+ apoE-/- --> apoE -/- [n=12], P=0.69). We demonstrate that macrophage SR-BI protein expression can be decreased by cholesterol associated with lipoproteins. Furthermore, we report that in Raw 264.7 macrophage-like cells the expression of SR-BI can also decrease in response to glucosamine treatment. The expression of SR-BI is decreased significantly in cells overexpressing SR-BI (1d1A[mSR-BI] cells [P=0.003]) due to treatment with glucosamine with increased protein mobility. We support this finding by demonstrating that this difference may be the result of altered glycosylation.</p>en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/21499
dc.language.isoen_USen_US
dc.subjectmacrophage, atherosclerosis, Scavenger Receptor, integral membrane protein, tissueen_US
dc.titleMacrophage SR-BI and Atherosclerosisen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tedesco_Vivienne_C._2006Apr_Masters..pdf
Size:
6.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: