Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Investigating the Role of the NLRP3 Inflammasome in Statin-Induced Myopathy

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

As a front-line treatment for cardiovascular disease, statins are among some of the most widely prescribed drugs worldwide. Statins are effective at lowering cholesterol, but approximately 7-29% of patients report some form of adverse muscle effect during the course of treatment. The severity of these side effects ranges from low-level to life-threatening myopathy. The mechanism of statin myopathy remains ill-defined, but muscle-specific E3 ubiquitin ligases have been implicated. In addition, statins have been shown to activate caspase-1 (and increase IL-1β) in immune cells, which is a key effector of the NLRP3 inflammasome. The relevance of this inflammatory response in statin myopathy remains unknown. Using C2C12 myotubes, an in vitro model of statin-induced myopathy was developed to test the impact of NLRP3 inflammasome activation on markers of statin myopathy. Gene expression of the muscle-specific E3 ubiquitin ligases atrogin-1 and MuRF-1 (atrogenes) were used as markers of statin-induced myopathy. Lipopolysaccharide priming of the NLRP3 inflammasome was found to lower the effective dose of fluvastatin required to augment atrogene expression. This effect correlated with reduced phosphorylation of Akt and FOXO3a, a transcription factor regulating atrogene expression. Statin-induced atrogene expression was also found to be dependent on an isoprenoid that is required for protein prenylation rather than cholesterol biosynthesis pathways. Fluvastatin increased caspase-1 activity in a prenylation-dependent manner and selective inhibitors of NLRP3 and caspase-1 were able to prevent increased atrogene expression with fluvastatin treatment. Therefore, the NLRP3 inflammasome contributes to markers of statin-induced myopathy through a prenylation-dependant pathway in muscle cells. This work presents a novel mechanism involved in statin myopathy, and has shown that the inflammasome may represent a new drug target to mitigate muscle symptoms in patients taking statins.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By