Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

End-to-End Deep Image Matting Platform

dc.contributor.advisorChen, Jun
dc.contributor.authorXiao, Botao
dc.contributor.departmentElectrical and Computer Engineeringen_US
dc.date.accessioned2019-08-26T19:02:19Z
dc.date.available2019-08-26T19:02:19Z
dc.date.issued2019
dc.description.abstractImage matting is a basic feature in most of image quality improvement applications and is considered as a fundamental problem in the computer vision field. In this paper, an End-to-End Image Matting Platform is proposed to segment the foreground and background by creating an alpha matte image. My end-to-end image matting algorithm is a learning based network which contains two stages. The first stage is to create a tri-map image from an RGB image using segmentation neural network where tri-map images are used to locate the expected foreground objects with rough outlines. The second stage is an image matting neural network, and it takes the outputs from the first stage as prior knowledge to predict precise alpha matte images. With the help of image matting formula and the outputs from the second stage, contents in an RGB image can be easily split into foreground and background. I applied both training and evaluating on Adobe matting benchmark and Car Media 2.0's car oriented image matting dataset, and the outcomes demonstrated the convenience and superior performance of our algorithm compared to existing state of the art methods. This paper put forward a web platform structure to integrate deep learning algorithms. I applied multiple strategies to enhance the performance of the platform. By using this platform, multiple users can work with different deep learning applications at the same time which dramatically increases the efficiency of the server usage.en_US
dc.description.degreeMaster of Applied Science (MASc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/24738
dc.language.isoenen_US
dc.subjectmattingen_US
dc.titleEnd-to-End Deep Image Matting Platformen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Xiao_Botao_201908_MAsc.pdf
Size:
83.52 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: