SOLUTIONS OF A TWO-COMPONENT GINZBURG-LANDAU SYSTEM
| dc.contributor.advisor | Alama, Stanley | en_US |
| dc.contributor.advisor | Bronsard, Lia | en_US |
| dc.contributor.advisor | Pelinovsky, Dmitry | en_US |
| dc.contributor.author | GAO, QI | en_US |
| dc.contributor.department | Mathematics and Statistics | en_US |
| dc.date.accessioned | 2014-06-18T17:03:35Z | |
| dc.date.available | 2014-06-18T17:03:35Z | |
| dc.date.created | 2013-09-09 | en_US |
| dc.date.issued | 2013-10 | en_US |
| dc.description.abstract | <p>We study Ginzburg–Landau equations for a complex vector order parameter to a two-component system. We discuss the existence, uniqueness, asymptotics, monotonicity and stability of solutions by extending Alama-Bronsard-Mironescu's results in a more general case.</p> | en_US |
| dc.description.degree | Doctor of Philosophy (PhD) | en_US |
| dc.identifier.other | opendissertations/8128 | en_US |
| dc.identifier.other | 9231 | en_US |
| dc.identifier.other | 4568725 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11375/13309 | |
| dc.subject | Calculus of variations | en_US |
| dc.subject | Elliptic equations and systems | en_US |
| dc.subject | Superconductivity | en_US |
| dc.subject | Vortices | en_US |
| dc.subject | Mathematics | en_US |
| dc.subject | Mathematics | en_US |
| dc.title | SOLUTIONS OF A TWO-COMPONENT GINZBURG-LANDAU SYSTEM | en_US |
| dc.type | dissertation | en_US |
Files
Original bundle
1 - 1 of 1