Selective Area Growth Techniques Using Metal Organic Chemical Vapour Deposition for III-V Semiconductor Quantum Well Laser Devices
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Selective area growth (SAG) is a technique used for semiconductor manufacturing to alter the epitaxial growth formation on the surface of a substrate. Surface feature modifications allow for local area semiconductor growth manipulation, increasing flux in the vicinity of non-growth mask edges. GaAs (100) wafers were processed with photolithographic direct laser pattern writing to create a series of silica rectangular prism masks on the surface of the substrate. The non-growth centers possess a very low sticking coefficient when placed within a metal-organic chemical vapour deposition (MOCVD) chamber with respect to the semiconductor materials deployed. In this work the establishment of a robust MOCVD process flow leading up to InGaAs compounds is defined at McMaster University’s Centre of Emerging Device Technologies. Quantum-well laser devices were fabricated in surface cavities to highlight the capabilities of SAG with MOCVD. A micro-photoluminescence device was manufactured with spatial resolution to test quantum-well emission spectra. The growth mechanics and photoluminescence of the quantum-well lasers were examined and characterized to improve the parametric control of the MOCVD process flow.