Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Covering Dimension and the Modeling Distribution

dc.contributor.advisorLintz, R. G.en_US
dc.contributor.authorMogyorosy, Josephen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T17:05:12Z
dc.date.available2014-06-18T17:05:12Z
dc.date.created2009-08-21en_US
dc.date.issued1975en_US
dc.description.abstract<p>This thesis deals with paracompact spaces with the covering dimension of Lebesgue. A paracompact Hausdorff space with finite covering dimension is characterized by sequences of covers, as an inverse limit of finite dimensional metric spaces, and in terms of a single finite dimensional metric space. In connection with non-deterministic mathematics we introduce the modeling distribution and it is proved (under suitable assumptions) that a modeling distribution preserves paracompactness, complete paracompactness, strong paracompactness, compactness, and final compactness, and lowers covering dimension.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/860en_US
dc.identifier.other1738en_US
dc.identifier.other960829en_US
dc.identifier.urihttp://hdl.handle.net/11375/13772
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleCovering Dimension and the Modeling Distributionen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format