Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Duplicate Gene Evolution in a Tetraploid African Clawed Frog (Silurana)

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

By increasing genomic size, whole-genome duplication (WGD) is considered a major source of evolutionary innovation and speciation. We examined sequence evolution and expression divergence following WGD in a tetraploid African clawed frog (\textit{Silurana}). We hypothesized that the redundancy generated by WGD might allow for sex-specific and/or tissue-specific divergence, contributing to sexual dimorphism in this frog, and that such changes could be detected at both the expression and sequence levels. We investigated this hypothesis with a transcriptome-based approach, comparing both sexes across brain, heart and liver. We compared molecular evolution and expression divergence of duplicate gene homeologs to singleton genes and to an extant diploid relative, and identified genes with evidence for sex-biased expression. In doing so, we provide evidence for an allopolyploid mechanism of WGD and speciation in \textit{Silurana}. Additionally, we find that female-biased gene expression is more prevalent among duplicate genes than male-biased expression, particularly in brain where expression levels are highest. We similarly identified antagonistically sex-biased homeologs with indication of positive selection. Our results indicate that divergent evolution at both the sequence and expression levels following WGD favors the co-option of female-biased gene expression and may help resolve sexually antagonistic selection in this frog, thereby facilitating the evolution of sexual dimorphism.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By