Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Development of TiAlN PVD Coating Systems for Machining of Compacted Graphite Iron (CGI)

dc.contributor.advisorVeldhuis, Stephen
dc.contributor.authorAbdoos, Majid
dc.contributor.departmentMechanical Engineeringen_US
dc.date.accessioned2020-12-23T15:47:29Z
dc.date.available2020-12-23T15:47:29Z
dc.date.issued2020
dc.description.abstractCompacted graphite iron, with its improved mechanical properties, is the ideal candidate to replace grey cast iron in the automotive industry. Engine blocks made from CGI are lighter, smaller, and show higher fuel efficiency. However, machining compacted graphite iron is extremely challenging compared to grey cast iron, especially in continuous cutting operations. Difficulties in dry turning CGI can be attributed to a lack of a protective tribolayer and its high tendency to stick to the cutting tool, which results in built-up edge formation and adhesion wear. This research attempts to address challenges associated with CGI turning by developing a TiAlN coating with a focus on thickness and low residual stress. The mentioned coating was developed using a new technology called super fine cathode (SFC) which enables better control over residual stress generation and, therefore, enables the deposition of a TiAlN coating with higher thickness compared to its commercial range. The properties and performance of this coating were comprehensively studied using X-Ray diffraction, scanning electron microscopy, micro and nanomechanical indentation, scratch test, optical 3D microscopy, and tool wear studies. The results show that residual stress is the main measured feature limiting coating thickness and affecting wear pattern during the machining of CGI. By using a low substrate bias voltage and a high nitrogen pressure, deposition of a thick TiAlN coating under low compressive residual stress was achieved, which significantly delayed substrate exposure, reduced built-up edge formation, lowered the cutting forces, and improved tool life by 35%. Moreover, to improve the coating quality along the cutting edge, wet blasting was applied before the deposition process, which resulted in better edge quality and consistency.en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.description.degreetypeThesisen_US
dc.description.layabstractWith continuous improvement and optimization of the materials used in advanced industrial components, there is an increasing demand for improving machining productivity. This goal can be achieved by prolonging tool life and improving final part quality by tailoring the cutting tool according to the workpiece material. Physical vapor deposition is an effective method to alter superficial tool properties by applying a thin layer of hard coating and, thus, protecting the tool during the machining process. In the present research a TiAlN coating was developed for the machining of compacted graphite iron (CGI) by focusing on thickness, coating properties, and substrate geometry. The developed coating was able to improve tool life by 35% in comparison to commercially available coatings.en_US
dc.identifier.urihttp://hdl.handle.net/11375/26095
dc.language.isoenen_US
dc.titleDevelopment of TiAlN PVD Coating Systems for Machining of Compacted Graphite Iron (CGI)en_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abdoos_Majid_2020 Dec_PhD.pdf
Size:
6.47 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: