Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

THE DESIGN OF A NOVEL LYAPUNOV-BASED OFFSET-FREE MODEL PREDICTIVE CONTROLLER

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis considers the problem of control of nonlinear systems subject to limited availability of measurements and uncertainty in model parameters. To address this problem, first a linear offset free MPC is designed. Subsequently, a Lyapunov-based offset free MPC design is presented to handle structured uncertainty subject to constant disturbances. The controller's ability to handle unstructured uncertainty and measurement noise is demonstrated through simulation examples. Next, the problem of handling lack of state measurements as well as uncertainty is considered. To achieve simultaneous state and disturbance parameter estimation, a Lyapunov-based model predictive controller (MPC) is integrated with a moving horizon based mechanism, to achieve (where possible) offset elimination in the unmeasured states as well. A chemical reaction process example is presented to illustrate the key points. Finally its efficacy is demonstrated through a polymerization process example.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By