Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

BCG-Induced Trained Innate Immunity in Alveolar Macrophages and Their Role in Early Protection Against Tuberculosis

dc.contributor.advisorXing, Zhou
dc.contributor.authorVaseghi-Shanjani, Maryam
dc.contributor.departmentMedical Sciencesen_US
dc.date.accessioned2019-07-11T17:25:44Z
dc.date.available2019-07-11T17:25:44Z
dc.date.issued2019
dc.description.abstractPulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (M.tb) is the leading cause of infectious disease-related death worldwide. The critical role of adaptive immunity in anti-TB host defence has been firmly established; thus, current efforts in developing novel vaccination strategies against TB are primarily focused on generating protective adaptive immunity at the infection site, the lungs. Innate immunity has not been a target for vaccination strategies against TB due to the belief that innate immune cells cannot exhibit memory-like characteristics which are known to be central to the long-lasting immunity created by vaccines. Also, the importance of innate immunity in anti-TB immunity has been overlooked. However, over 25% of individuals that are heavily exposed to M.tb clear infection without any detectable conventional T cell immune responses, suggesting a crucial role for innate immune cells in bacterial clearance. Interestingly, the early protection in these individuals is associated with their Bacillus Calmette-Guerin (BCG) vaccination status. Epidemiological studies have shown that BCG is capable of providing protection against numerous infections unrelated to TB in an innate-immune dependent manner. Such observations suggest that the innate immune system exhibits memory-like characteristics, capable of remembering the exposure to the vaccine and thereby responding in an augmented manner to future systemic infections. Nonetheless, it still remains unknown whether parenteral BCG immunization modulates the innate immune cells in the lung and airways, and if so, what role the trained innate immune cells play in early protection against pulmonary TB. Using a subcutaneous BCG immunization and pulmonary TB challenge murine model, we show that early protection against M.tb is independent of adaptive responses in the BCG immunized host. Our data suggest that enhanced early protection is mediated by the BCG-trained memory alveolar macrophages that we have shown to be functionally, phenotypically, metabolically, and transcriptionally altered following immunization. These novel findings suggest a significant anti-TB immune role for the innate immune memory established in the lung following parenteral BCG immunization and have important implications for the development of novel vaccination strategies against TB.en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.description.layabstractPulmonary tuberculosis (TB) is a disease of the lung and is now one of the leading causes of human mortality worldwide. For more than eight decades, parenterally administered Bacillus Calmette–Guérin (BCG) vaccine has been globally used as the only approved vaccine against TB. Recently, it has also been observed that BCG vaccination provides protection against other diseases unrelated to TB and reduces childhood mortality in many developing countries where it is routinely administered to children shortly after birth. The mechanisms underlying the off-target protective effects of BCG vaccine remains largely under-investigated. In this project, we investigated how BCG vaccination enhances the immune system responses against TB and other unrelated infectious diseases. A better understanding of how the BCG vaccination modulates our immune system will provide us with the knowledge that will be useful in the development of more effective vaccination strategies against infectious diseases.en_US
dc.identifier.urihttp://hdl.handle.net/11375/24596
dc.language.isoenen_US
dc.subjectMycobacterium tuberculosisen_US
dc.subjectPulmonaryen_US
dc.subjectBCGen_US
dc.subjectInnate immune responseen_US
dc.subjectTrained innate immunityen_US
dc.subjectVaccineen_US
dc.subjectAlveolar macrophageen_US
dc.subjectMacrophage memoryen_US
dc.titleBCG-Induced Trained Innate Immunity in Alveolar Macrophages and Their Role in Early Protection Against Tuberculosisen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vaseghi-Shanjani_Maryam_2019July_MSc.pdf
Size:
9.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: