Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Etale K-theory and Iwasawa theory of number fields

dc.contributor.advisorKolster, M.en_US
dc.contributor.authorBrauckmann, Borisen_US
dc.contributor.departmentMathematicsen_US
dc.date.accessioned2014-06-18T16:43:42Z
dc.date.available2014-06-18T16:43:42Z
dc.date.created2011-01-31en_US
dc.date.issued1993-08en_US
dc.description.abstract<p>Results of W. G. Dwyer and E. M. Friedlander on étale K-theory of the S-integers O^s_E in a number field E are used to express the higher étale tame and wild kernel in terms of arithmetical invariants in the cyclotomic Z_l-extension of F = E(ζ_l). Furthermore, properties of these groups are discussed, such as higher rank formulas and Galois descent.</p>en_US
dc.description.degreeDoctor of Philosophy (PhD)en_US
dc.identifier.otheropendissertations/3884en_US
dc.identifier.other4901en_US
dc.identifier.other1754001en_US
dc.identifier.urihttp://hdl.handle.net/11375/8700
dc.subjectMathematicsen_US
dc.subjectMathematicsen_US
dc.titleEtale K-theory and Iwasawa theory of number fieldsen_US
dc.typethesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fulltext.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format