Etale K-theory and Iwasawa theory of number fields
| dc.contributor.advisor | Kolster, M. | en_US |
| dc.contributor.author | Brauckmann, Boris | en_US |
| dc.contributor.department | Mathematics | en_US |
| dc.date.accessioned | 2014-06-18T16:43:42Z | |
| dc.date.available | 2014-06-18T16:43:42Z | |
| dc.date.created | 2011-01-31 | en_US |
| dc.date.issued | 1993-08 | en_US |
| dc.description.abstract | <p>Results of W. G. Dwyer and E. M. Friedlander on étale K-theory of the S-integers O^s_E in a number field E are used to express the higher étale tame and wild kernel in terms of arithmetical invariants in the cyclotomic Z_l-extension of F = E(ζ_l). Furthermore, properties of these groups are discussed, such as higher rank formulas and Galois descent.</p> | en_US |
| dc.description.degree | Doctor of Philosophy (PhD) | en_US |
| dc.identifier.other | opendissertations/3884 | en_US |
| dc.identifier.other | 4901 | en_US |
| dc.identifier.other | 1754001 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11375/8700 | |
| dc.subject | Mathematics | en_US |
| dc.subject | Mathematics | en_US |
| dc.title | Etale K-theory and Iwasawa theory of number fields | en_US |
| dc.type | thesis | en_US |
Files
Original bundle
1 - 1 of 1