Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Large Strain Deformation of Aluminum Alloys by Channel-Die Compression

dc.contributor.advisorEmbury, J. D.
dc.contributor.authorDeschamps, Alexis
dc.contributor.departmentMaterials Science and Engineeringen_US
dc.date.accessioned2021-05-06T16:57:47Z
dc.date.available2021-05-06T16:57:47Z
dc.date.issued1994-03
dc.description.abstractThe mechanical properties of pure Aluminium, Al-0.2%Cu and Al-0.4%Cu at large strains were studied by channel-die compression at three different temperatures: 77K, 200K and 300K. The results were interpreted in terms of work hardening rate versus stress (0/r) diagrams. The evolution of the structure was studied on a range of scales from macroscopic to microscopic, by optical study of slip lines, X-ray diffraction for texture measurements, Electron Back-Scattering Kikuchi Patterns for local texture measurements, and by Transmission Electron Microscopy for microstructural information. Intense shear banding was observed at large strains in all alloys at all temperatures. The texture evolution was shown to be consistent with this change in deformation mode. At low temperatures, stage HI of deformation was shown to be represented by a straight line in the 6lr diagram. Increasing the temperature lead to a dramatic decrease in work hardening rate and to an increasing concavity of the 0lr plots. The addition of solutes to pure Aluminium was shown to result in an increase of the work hardening rate, which could be represented by a simple translation of the 0/r plots on the stress axis. At large strains, all three materials experienced a stage (stage IV) of constant work hardening at low rate. The stage IV work hardening rate decreased with increasing temperature, and was not influenced by solute content. The stage Ill-Stage IV transition was very sharp at 77K and smoother at higher testing temperatures. Phenomenological models were developed for the prediction of the influence of temperature and solute content on work hardening. Moderate strains were modelled taking into account the evolution of the dislocation density into two different populations during the deformation. The influence of solutes on work hardening was modelled by considering how segregation of solute atoms at the dislocation cores influences dynamic recovery. Stage IV work hardening was considered to arise from the accumulation of dislocation debris resulting from the dynamic recovery events.en_US
dc.description.degreeMaster of Engineering (ME)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/26434
dc.language.isoenen_US
dc.subjectlarge strain deformationen_US
dc.subjectaluminum alloyen_US
dc.subjectchannel-dieen_US
dc.subjectcompressionen_US
dc.titleLarge Strain Deformation of Aluminum Alloys by Channel-Die Compressionen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deschamps_Alexis_1994Mar_masters.pdf
Size:
28.52 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: