Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

Experimental and Computational Investigations of Chalcogen Bonding

dc.contributor.advisorVargas-Baca, Ignacio
dc.contributor.authorMacDougall, Phillip
dc.contributor.departmentChemistryen_US
dc.date.accessioned2024-06-06T14:21:43Z
dc.date.available2024-06-06T14:21:43Z
dc.date.issued2024
dc.description.abstractChalcogen bonding (ChB) is a particular case of secondary bonding centred on heavy group-16 elements. It is almost exclusively identified through crystallography by measuring interatomic distances intermediate between single-bond averages and the sum of van der Waals radii. However, there is significant recent progress in discerning its signatures using spectroscopic techniques such as multinuclear NMR. This M.Sc. thesis describes progress in two research projects on chalcogen bonding. The first examined the effect of halogenation on the aggregation of 3-methyl-5-phenyl 1-2-tellurazole 2-oxide. The second examined the strengthening of ChB interaction between molecules of benzo-1,2-chalcogenazole 2-oxides by chlorination. The bromination of 3-methyl-5-phenyl 1-2-tellurazole 2-oxide yielded 3,3,3-tri-bromo-3-methyl-5-phenyl-1,2-tellurazole-2-anole. Four unique crystal structures were obtained with the most promising being the dimeric structure. Deprotonation was unsuccessfully attempted although yielded 2 unique crystal structures co-crystallized with proton-sponge. Iodination of 3-methyl-5-phenyl 1-2-tellurazole 2-oxide was also performed, resulting in a mixed tetrameric aggregate containing two molecules of 3-methyl-5-phenyl 1-2-tellurazole 2-oxide and two 1,1-di-iodo-3-methyl-5-phenyl 1-2-tellurazole 2-oxide molecules. DFT investigations into the electronic properties, thermodynamics of aggregation, and basicity were performed. Similar to the chlorinated derivative, the most favourable aggregate to form is the hetero-tetramer with two brominated or iodinated molecules and 2 non-halogenated molecules. The reaction of benzo 1,2-sellenazole 2-oxide with SO2Cl2 and benzo 1,2-tellurazole 2-oxide with HCl followed by SO2Cl2 yielded halogenated derivatives of each molecule in which the chalcogen was oxidized from Ch(II) to Ch(IV). In the selenium derivative, an unexpected chlorination occurred on the heterocycle of the molecule. Crystal structures were obtained for each chlorinated product where dimeric interactions were observed. DFT calculations show how the electronic and orbital mixing contributions to the ChB interactions are enhanced upon halogenation. Gibbs free energy of aggregation is most negative for a mixed structure in which two chlorinated molecules and two unchlorinated molecules are linked.en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/29845
dc.language.isoenen_US
dc.subjectChemistryen_US
dc.subjectMain Group Chemistryen_US
dc.subjectChalcogen Bondingen_US
dc.subjectComputaional Chemistryen_US
dc.titleExperimental and Computational Investigations of Chalcogen Bondingen_US
dc.typeThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MacDougall_Phillip_L_202406_MSc.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: