Welcome to the upgraded MacSphere! We're putting the finishing touches on it; if you notice anything amiss, email macsphere@mcmaster.ca

A Data-Driven Algorithm for Parameter Estimation in the Parametric Survival Mixture Model

dc.contributor.advisorZhu, Rong
dc.contributor.authorZhang, Jin
dc.contributor.departmentStatisticsen_US
dc.date.accessioned2017-04-06T19:55:26Z
dc.date.available2017-04-06T19:55:26Z
dc.date.issued2007-12
dc.description.abstract<p> We propose a data-driven estimation algorithm in survival mixture model. The objective of this study is to provide an alternative fitting procedure to the conventional EM algorithm. The EM algorithm is the classical ML fitting of the parametric mixture model. If the initial values for the EM algorithm are not properly chosen, the maximizers might be local or divergent. Traditionally, initial values are given manually according to experience or a gridpoint search. This is a heavy burden for a high-dimensional data sets. Also, specifying the ranges of parameters for a grid-point search is difficult. To avoid the specification of initial values, we employ the random partition. Then, improvement of fitting is adjusted according to model specification. This process is repeated a large number of times, so it is computer intensive. The large repetitions makes the solution more likely to be the global maximizer, and it is driven purely by the data. We conduct a simulation study for three cases of two-component Log-Normal, two-component Weibull, and two-component Log-Normal and Wei bull, in order to illustrate the effectiveness of the proposed algorithm. Finally, we apply our algorithm to a breast cancer study data which follows a cure model. The program is written in R. It calls existing R functions, so it is flexible to use in regression situations where model formula must be specified. </p>en_US
dc.description.degreeMaster of Science (MSc)en_US
dc.description.degreetypeThesisen_US
dc.identifier.urihttp://hdl.handle.net/11375/21298
dc.language.isoenen_US
dc.subjectData-Driven Algorithmen_US
dc.subjectParameter Estimationen_US
dc.subjectParametric Survivalen_US
dc.subjectMixture Modelen_US
dc.titleA Data-Driven Algorithm for Parameter Estimation in the Parametric Survival Mixture Modelen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang_Jin_2007Dec_Masters.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.68 KB
Format:
Item-specific license agreed upon to submission
Description: